
z/OS Communications Server

IP Configuration Reference
Version 1 Release 4

SC31-8776-03

���

z/OS Communications Server

IP Configuration Reference
Version 1 Release 4

SC31-8776-03

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 1017.

Fourth Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM® publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

IBMLink™:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xvii

Tables . xix

About this document . xxiii
Who should use this document xxiii
Where to find more information xxiii

Where to find related information on the Internet xxiii
Accessing z/OS licensed documents on the Internet. xxiv
Using LookAt to look up message explanations xxv
How to contact IBM service xxv
z/OS Communications Server information. xxv

Summary of changes . xxxiii

Part 1. Base TCP/IP system . 1

Chapter 1. Configuration data sets 3
Summary of configuration data sets. 33

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 9
Summary of TCP/IP address space configuration statements 9
PROFILE.TCPIP search order 12
Statement syntax . 12
ARPAGE statement . 14
ASSORTEDPARMS statement 15
ATMARPSV statement . 19
ATMLIS statement . 21
ATMPVC statement . 24
AUTOLOG statement . 25
BEGINROUTES statement . 28
BSDROUTINGPARMS statement 37
DELETE statement . 42
DEVICE and LINK statements 47
DEVICE and LINK statement—ATM devices 52
DEVICE and LINK statement—CLAW devices 55
DEVICE and LINK statement—CTC devices 60
DEVICE and LINK statement—HYPERchannel A220 devices 62
DEVICE and LINK statement—LAN Channel Station and OSA devices 65
DEVICE and LINK statement—MPCIPA devices. 71
DEVICE and LINK statement—MPCIPA HiperSockets devices 76
DEVICE and LINK statement—MPCOSA devices 78
DEVICE and LINK statement—MPCPTP devices 80
DEVICE and LINK statement—SNA LU0 links 83
DEVICE and LINK statement—SNA LU 6.2 links 86
DEVICE and LINK statement—X.25 NPSI connections 88
DEVICE and LINK statement—VIRTUAL devices 91
DEVICE and LINK statement—3745/46 channel DLC devices 93
GATEWAY statement . 96
GLOBALCONFIG statement 104
HOME statement . 107
INCLUDE statement . 112
INTERFACE statements . 113

© Copyright IBM Corp. 2000, 2002 iii

||

INTERFACE statement—IPAQENET6 interfaces 114
INTERFACE statement—LOOPBACK6 interface 119
INTERFACE statement—VIRTUAL6 interfaces 121
IPCONFIG statement . 123
IPCONFIG6 statement . 135
ITRACE statement . 139
KEEPALIVEOPTIONS statement 141
NETACCESS statement . 143
PKTTRACE statement. 146
PORT statement . 152
PORTRANGE statement . 157
PRIMARYINTERFACE statement. 161
SACONFIG statement . 163
SMFCONFIG statement . 166
SMFPARMS statement . 170
SOMAXCONN statement. 172
START statement . 173
STOP statement . 175
TCPCONFIG statement . 176
TRANSLATE statement . 179
UDPCONFIG statement . 182
VIPADYNAMIC statement . 185

Chapter 3. TCP/IP cataloged procedure (TCPIPROC) 193
TCP/IP cataloged procedure (TCPIPROC) 193

Using output data sets . 195
Specifying TCP/IP address space parameters 195

Chapter 4. Protocol number and port assignments 197
Protocol assignments . 197
Port assignments . 197

PROFILE.TCPIP port assignments 198
/etc/services and ETC.SERVICES port assignments. 200

Chapter 5. TCPIP.DATA configuration statements. 205
Resolver setup statements . 205

Resolver setup statement information 205
COMMONSEARCH/NOCOMMONSEARCH statement 207
DEFAULTIPNODES statement. 208
DEFAULTTCPIPDATA statement 209
GLOBALIPNODES statement 210
GLOBALTCPIPDATA statement 211
; and # Statements . 213

Summary of statements in TCPIP.DATA 214
TCPIP.DATA configuration statements 215

system_name considerations 215
Dynamically changing TCPIP.DATA statements. 215
Syntax conventions . 217
ALWAYSWTO statement . 218
DATASETPREFIX statement 219
DOMAIN statement . 220
DOMAINORIGIN statement 221
HOSTNAME statement . 222
LOADDBCSTABLES statement 223
LOOKUP statement. 225
MESSAGECASE statement 226

iv z/OS V1R4.0 CS: IP Configuration Reference

||
||
||

||

||
||
||
||

||
||

||

||

NAMESERVER statement 227
NSINTERADDR statement 228
NSPORTADDR statement 230
OPTIONS statement . 231
RESOLVERTIMEOUT statement 233
RESOLVERUDPRETRIES statement 234
RESOLVEVIA statement . 235
SEARCH statement. 236
SOCKDEBUG statement . 238
SOCKTESTSTOR statement 239
SOCKNOTESTSTOR statement 240
SORTLIST statement . 241
TCPIPJOBNAME statement. 243
TCPIPUSERID statement 244
TRACE RESOLVER statement 245
TRACE SOCKET statement 246
; and # Statements . 247

Sample TCPIP.DATA data set (TCPDATA) 248

Part 2. Server applications . 253

Chapter 6. OMPROUTE . 255
OMPROUTE cataloged procedure (optional) 255
Starting OMPROUTE using UNIX system services 257

OMPROUTE parameters . 257
OMPROUTE environment variables 257
OMPROUTE configuration file 258

OSPF configuration statements 258
RIP configuration statements 277
Common configuration statements for RIP and OSPF 290

Chapter 7. SNALINK . 297
SNALINK cataloged procedure (SNALPROC) 297
SNALINK parameters . 297

Chapter 8. SNALINK LU6.2 299
SNALINK LU6.2 cataloged procedure (LU62PROC) 299
Sample SNALINK LU6.2 configuration data set (LU62CFG) 299
Summary of SNALINK LU6.2 configuration statements 300
SNALINK LU6.2 configuration statements 301

Statement syntax . 301
Statement ordering . 301
BUFFERS statement . 302
DEST statement . 303
LINK statement . 304
TRACE statement . 305
VTAM statement . 306

Chapter 9. X.25 NPSI . 307
X.25 NPSI cataloged procedure (X25PROC) 307
Sample X.25 NPSI server configuration data set (X25CONF) 307
Summary of X.25 NPSI server configuration statements 309
X.25 NPSI server configuration statements 309

Statement syntax . 309
ALTLINK statement . 310
BUFFERS statement . 312

Contents v

DEST statement . 313
FAST statement . 314
LINK statement . 315
OPTIONS statement . 316
TIMERS statement . 318
TRACE statement . 319
VTAM statement . 321

Chapter 10. NCPROUTE server 323
NCPROUTE cataloged procedure (NCPROUT) 323
Specifying the NCPROUTE parameters 324
NCPROUTE profile data set 325
NCPROUTE gateways statements 326

Syntax rules . 326

Chapter 11. TN3270 Telnet Server 333
Overview of Telnet profile statements 333

TELNETGLOBALS statements 333
TELNETPARMS statements 333
PARMSGROUP statements 333
BEGINVTAM block . 333

Telnet parameter statements in the TCP/IP profile 334
General rules for parameter statements 335
BINARYLINEMODE statements 337
CLIENTAUTH statement . 338
CODEPAGE statement . 339
CONNTYPE statement . 340
CRLLDAPSERVER statement 341
DBCSTRACE statements 342
DBCSTRANSFORM statements 343
DEBUG statement . 344
DROPASSOCPRINTER statement 346
DISABLESGA statement . 347
ENCRYPTION statement. 348
EXPRESSLOGON statements 349
FULLDATATRACE statements 350
INACTIVE statement . 351
KEEPINACTIVE statement 352
KEEPLU statements . 353
KEYRING statement . 354
LUSESSIONPEND statements 355
MAXRECEIVE statement. 356
MAXREQSESS statement 357
MAXVTAMSENDQ statement 358
MSG07 statement . 359
OLDSOLICITOR statements 360
PORT and SECUREPORT statements. 361
PRTINACTIVE statement 362
SCANINTERVAL and TIMEMARK statements 363
SECUREPORT statement 364
SEQUENTIALLU statements 365
SGA statements . 366
SIMCLIENTLU statements 367
SINGLEATTN statements 368
SMFINIT and SMFTERM statements 369
SNAEXT statements . 370

vi z/OS V1R4.0 CS: IP Configuration Reference

||

||

||
||

SSLTIMEOUT statement . 371
TELNETDEVICE statement 372
TESTMODE statement . 374
TIMEMARK statement. 375
TKOSPECLU and TKOSPECLURECON statements. 376
TN3270E statements . 377
WLMCLUSTERNAME statement 378

Telnet mapping statements in the TCP/IP profile 379
General rules for BEGINVTAM statements 379
ALLOWAPPL statement . 383
DEFAULTAPPL statement 384
DEFAULTLUS statement . 386
DEFAULTLUSSPEC statement 387
DEFAULTPRT statement . 388
DEFAULTPRTSPEC statement 389
DESTIPGROUP statement 390
HNGROUP statement . 391
INTERPTCP statement . 392
IPGROUP statement . 393
LINEMODEAPPL statement. 394
LINKGROUP statement . 395
LUGROUP statement . 396
LUMAP statement . 397
PARMSGROUP statement 399
PARMSMAP statement . 400
PORT statement . 401
PRTDEFAULTAPPL statement 402
PRTGROUP statement . 403
PRTMAP statement. 404
QUEUESESSION statement 406
RESTRICTAPPL statement 407
TELNETDEVICE statement 409
USERGROUP statement . 410
USSTCP statement . 411

Telnet USS table setup . 412
General usage rules for Telnet USS macroinstructions 412
USSCMD macroinstruction 413
USSMSG macroinstruction 415
USSPARM macroinstruction 419
USSTAB macroinstruction 421
USSEND macroinstruction 422

Telnet INTERPRET table setup 423
General usage rules for Telnet INTERPRET macroinstructions 423
INTAB macroinstruction . 424
LOGCHAR macroinstruction 425
ENDINTAB macroinstruction 429

Telnet LU exit setup . 430
Operation . 430
Requirements for LU exit routines 431
LU exit routine parameter list 432

Chapter 12. EXPRESS LOGON using DCAS (Digital Certificate Access
Server) . 433

Starting DCAS . 433
Express Logon sample procedure (EZADCASP) 434
PassTicket server configuration file processing. 434

Contents vii

||

||

||

||
||
||
||

DCAS configuration file keywords and parameters 435
CLIENTAUTH keyword . 435
IPADDR keyword . 435
KEYRING keyword . 436
LDAPPORT keyword . 436
LDAPSERVER keyword . 436
PORT keyword . 437
SAFKEYRING keyword . 437
STASHFILE keyword . 437
TCPIP keyword . 437
V3CIPHER keyword . 438

Chapter 13. File Transfer Protocol (FTP) 439
FTP server cataloged procedure (FTPD) 439
FTPD parameters . 440
FTP configuration statements in FTP.DATA 442

FTP server user exits . 443
Summary of FTP server configuration statements. 451

FTP.DATA data set statements. 457
ACCESSERRORMSGS statement 458
ADMINEMAILADDRESS statement 459
ANONYMOUS statement. 460
ANONYMOUSFILEACCESS statement 462
ANONYMOUSFILETYPEJES statement 463
ANONYMOUSFILETYPESEQ statement 464
ANONYMOUSFILETYPESQL statement 465
ANONYMOUSFTPLOGGING statement 466
ANONYMOUSHFSDIRMODE statement 467
ANONYMOUSHFSFILEMODE statement 468
ANONYMOUSHFSINFO statement 469
ANONYMOUSLEVEL statement 470
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
ASATRANS statement. 475
AUTOMOUNT statement . 476
AUTORECALL statement . 477
AUTOTAPEMOUNT statement. 478
BANNER statement. 479
BLKSIZE statement. 480
BUFNO statement . 481
CCXLATE statement . 482
CHKPTINT statement . 483
CIPHERSUITE statement . 484
CONDDISP statement . 485
CTRLCONN statement . 486
DATACLASS statement . 487
DATATIMEOUT statement . 488
DB2 statement . 489
DB2PLAN statement . 490
DCBDSN statement . 491
DCONNTIME statement . 493
DEBUG statement . 494
DEBUGONSITE statement . 496
DEST statement . 497
DIRECTORY statement . 498
DIRECTORYMODE statement 499

viii z/OS V1R4.0 CS: IP Configuration Reference

||

||

DUMP statement. 500
DUMPONSITE statement . 502
EMAILADDRCHECK statement 503
ENCODING statement . 504
EXTENSIONS statement . 505
FILETYPE statement . 507
FTPKEEPALIVE statement . 508
FTPLOGGING statement. 509
HFSINFO statement . 510
INACTIVE statement . 511
ISPFSTATS statement. 512
JESENTRYLIMIT statement. 513
JESINTERFACELEVEL statement 514
JESLRECL statement . 516
JESPUTGETTO statement . 517
JESRECFM statement . 518
KEYRING statement . 519
LISTSUBDIR statement . 520
LOGINMSG statement . 521
LRECL statement . 522
MBDATACONN statement . 523
MGMTCLASS statement . 524
MIGRATEVOL statement . 525
MVSINFO statement . 526
MVSURLKEY statement . 527
PORTCOMMAND statement 528
PORTCOMMANDIPADDR statement 529
PORTCOMMANDPORT statement 530
PRIMARY statement . 531
QUOTESOVERRIDE statement 532
RDW statement . 533
RECFM statement . 534
REPLYSECURITYLEVEL statement. 536
RETPD statement . 537
SBDATACONN statement . 538
SBSUB statement . 540
SBSUBCHAR statement . 541
SECONDARY statement . 542
SECURE_CTRLCONN statement 543
SECURE_DATACONN statement 544
SECURE_FTP statement . 545
SECURE_LOGIN statement 546
SECURE_PBSZ statement . 548
SMF statement . 549
SMFAPPE statement . 551
SMFDEL statement . 552
SMFEXIT statement . 553
SMFJES statement . 554
SMFLOGN statement . 555
SMFREN statement . 557
SMFRETR statement . 559
SMFSQL statement. 561
SMFSTOR statement . 562
SOCKSCONFIGFILE statement 564
SPACETYPE statement . 565
SPREAD statement. 566

Contents ix

||

||

||

||

||
||

SQLCOL statement . 567
STARTDIRECTORY statement 568
STORCLASS statement . 569
TLSTIMEOUT statement . 570
TRACE statement . 571
TRAILINGBLANKS statement 572
TRUNCATE statement. 573
UCOUNT statement . 574
UCSHOSTCS statement . 575
UCSSUB statement. 576
UCSTRUNC statement . 577
UMASK statement . 578
UNITNAME statement . 579
VCOUNT statement . 580
VOLUME statement . 581
WLMCLUSTERNAME statement 582
WRAPRECORD statement . 583
WRTAPEFASTIO statement. 584
XLATE statement . 585
SOCKS configuration statements in SOCKSCONFIGFILE 586

DIRECT statement . 587
SOCKD statement . 588

FTP code page conversion . 589
Code page conversions for the control connection 589
Code page conversions for the data connection 589

Chapter 14. Trivial file transfer protocol (TFTP) 591

Chapter 15. BIND 4.9.3-based domain name system (DNS) 593
The named daemon . 594
Boot file directives . 597
Domain data files . 599

Control entries, resource records, and special characters 599

Chapter 16. BIND 9-based domain name system (DNS) 605
v9 Name server cataloged procedure (NAMED9) 605
Starting BIND 9-based DNS server from the UNIX shell 606
Configuration file concepts . 610

Address match lists . 611
Comment syntax . 612

Configuration file statements 612
acl statement . 614
controls statement . 615
include statement . 617
key statement . 618
logging statement . 619
options statement . 624
sortlist statement. 634
server statement . 636
trusted-keys statement . 638
view statement . 639
zone statement . 642
Dynamic update policies . 649
Zone file . 650

Types of resource records and when to use them 650
MX records . 653

x z/OS V1R4.0 CS: IP Configuration Reference

||

Setting TTLs . 654
Inverse mapping . 654
Other zone file directives . 655
BIND master file extension: The $GENERATE directive 656

RNDC configuration file . 657

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 659
Configuration file option data formats 659
Base options . 659
DHCP load balancing options 668
IBM-specific options . 669

Chapter 18. Syslog daemon 671
Syslog daemon files . 671
Syntax for syslogd . 671
Configuration statements . 672

Facility names. 672
Facilities used by z/OS Communications Server 672
Priority codes . 673
Destinations . 673

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 675
The Policy configuration file . 675

LogLevel statement . 677
PolicyPerfMonitorForSDR statement 678
TcpImage statement . 681
ReadFromDirectory statement 683
SetSubnetPrioTosMask statement 689
PolicyAction statement . 691
ServiceCategories statement 700
PolicyRule statement . 704
ServicePolicyRules statement 711

PAGENT search order. 714
Starting PAGENT from the z/OS shell 714
Starting PAGENT as a started task 716
Starting the SLA subagent from the z/OS shell 717
Starting the SLA subagent as a started task. 718
Starting the traffic regulation manager daemon (TRMD) from the z/OS shell 719
Starting the traffic regulation manager daemon (TRMD) as a started task 719

Chapter 20. RSVP agent . 723
RSVP configuration file . 723

LogLevel statement . 724
TcpImage statement . 725
Interface statement . 726
RSVP statement . 728

RSVPD.CONF search order 730
Starting RSVP from the z/OS shell 730
Starting RSVP as a started task 730

Chapter 21. Intrusion Detection Services (IDS) policy 733

Chapter 22. Simple Network Management Protocol (SNMP). 747
OSNMPD procedure . 747
SNMP agent (OSNMPD) . 748

Starting OSNMPD from the z/OS UNIX System Services shell 748

Contents xi

OSNMPD parameters . 748
OSNMPD.DATA statement syntax 750
OSNMPD.DATA search order 750
OSNMPD.DATA example. 750
PW.SRC statement syntax 751
PW.SRC search order . 751
SNMPTRAP.DEST statement syntax 752
SNMPTRAP.DEST search order 752
SNMPD.CONF search order 752
SNMPD.CONF statement syntax 753
Coding the SNMPD.CONF entries 754
SNMPD.CONF sample . 767
SNMPD.BOOTS statement syntax 770
SNMPD.BOOTS search order 770

SNMP query engine (SNMPQE) 771
SNMP query engine cataloged procedure (SNMPPROC) 771
Specifying the SNMPQE parameters 771
SNMP parameter data set (SNMPARMS) sample 772
MIBDESC.DATA . 774

osnmp . 775
OSNMP.CONF statement syntax 775
OSNMP.CONF search order 777
OSNMP.CONF sample . 778
MIBS.DATA statement syntax 779
MIBS.DATA search order . 780

TRAPFWD daemon. 780
Starting TRAPFWD from an MVS console 780
Specifying TRAPFWD parameters 781
Starting TRAPFWD from the UNIX shell 782
TRAPFWD.CONF syntax. 782
TRAPFWD.CONF search order 782
TRAPFWD examples . 783

Chapter 23. Remote print server (LPD) 785
LPD server cataloged procedure (LPSPROC) 785
Sample LPD server configuration data set (LPDDATA) 786
Specifying LPD server parameters 787
Summary of LPD server configuration statements 788
Statements for the LPD server configuration data set 788

Syntax rules . 788
DEBUG statement . 789
JOBPACING statement . 790
OBEY statement . 791
SERVICE statement . 792
STEPLIMIT statement . 802
UNIT statement . 803
VOLUME statement . 804

Chapter 24. PORTMAP . 805
PORTMAP cataloged procedure (PORTPROC) 805

Chapter 25. UNIX PORTMAP 807
UNIX PORTMAP cataloged procedure (OPORTRPC) 807

Chapter 26. NCS Interface . 809
NRGLBD cataloged procedure (NRGLBD) 809

xii z/OS V1R4.0 CS: IP Configuration Reference

||

LLBD cataloged procedure (LLBD) 809

Chapter 27. Network database (NDB) system 811
NDB setup cataloged procedure (NDBSETUP) 811
PORTS cataloged procedure (PORTSPRC) 812
PORTC cataloged procedure (PORTCPRC) 813

Chapter 28. SMTP server . 815
SMTP cataloged procedure (SMTPPROC) 815816

Summary of SMTP configuration statements 816
SMTP server exits . 818
SMTP configuration data set statements 823
ALTNJEDOMAIN statement . 824
ALTTCPHOSTNAME statement 825
ATSIGN statement . 826
BADSPOOLFILEID statement 827
CHECKSPOOLSIZE statement 828
DBCS statement . 829
DEBUG statement . 832
FINISHOPEN statement . 833
GATEWAY statement . 834
INACTIVE statement . 835
IPMAILERADDRESS statement 836
LISTENONADDRESS statement 837
LOCALCLASS statement. 838
LOCALFORMAT statement . 839
LOG statement . 840
MAILER statement . 841
MAILFILEDSPREFIX statement 843
MAILFILEUNIT statement . 844
MAILFILEVOLUME statement 845
MAXMAILBYTES statement 846
NJECLASS statement . 847
NJEDOMAIN statement . 848
NJEFORMAT statement . 849
NJENODENAME statement . 850
NOLOG statement . 851
NOSOURCEROUTE statement 852
OUTBOUNDOPENLIMIT statement 854
PORT statement . 855
POSTMASTER statement . 856
RCPTRESPONSEDELAY statement 857
RESOLVERRETRYINT statement 858
RESOLVERUSAGE statement 859
RESTRICT statement . 860
RETRYAGE statement . 862
RETRYINT statement . 863
REWRITE822HEADER statement 864
SECURE statement. 865
SMSGAUTHLIST statement. 866
SPOOLPOLLINTERVAL statement 867
TEMPERRORRETRIES statement 868
TIMEZONE statement . 869
WARNINGAGE statement . 870

Chapter 29. TIMED daemon 871

Contents xiii

||

Starting TIMED from z/OS . 871
Starting TIMED as a procedure 871

Chapter 30. SNTP daemon 873
Starting SNTPD from z/OS . 873
Starting SNTPD as a procedure 873

Chapter 31. Remote execution server 875
Remote execution server cataloged procedure (RXPROC) 875

Remote execution server parameters 877
RXUEXIT user exit sample . 878
z/OS remote execution server 880

z/OS UNIX System Services REXECD command (orexecd) 880
z/OS UNIX System Services RSHD command (orshd) 880

Chapter 32. Miscellaneous (MISC) server 883
Miscellaneous (MISC) server cataloged procedure (MISCSERV) 883
Specifying the MISC server parameters 883

Part 3. Appendixes . 885

Appendix A. OROUTED server 887
OROUTED cataloged procedure 887
Starting OROUTED from the z/OS shell 888
OROUTED parameters . 888
OROUTED profile . 891
Gateways file or data set syntax rules 892
OROUTED to OMPROUTE migration 898

Appendix B. Using translation tables 907
SBCS translation table hierarchy 907

Customizing SBCS translation tables 909
Syntax rules for SBCS translation tables 910

SBCS country/region translation tables 910
ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points . . . 912

DBCS translation table hierarchy 912
Usage notes for the TRANSLATE option for the FTP client 914
Telnet 3270 DBCS transform mode codefiles 915
Customizing DBCS translation tables 915
DBCS country/region translation tables 916
Converting translation tables to binary 917

Appendix C. SMF type 118 records 921
Standard subtype record numbers 921
Telnet server SMF record layout 922
FTP server type 118 SMF record layout 922
SMF record layout for API calls 924
SMF record layout for FTP client calls 924
SMF record layout for Telnet client calls 925
SMF record layout for TCPIPSTATISTICS 926
SMF record 109 layout . 928

Appendix D. SMF type 119 records 931
Common SMF type 119 record format 931
SMF 119 record subtypes . 932
Standard data format concepts 933

xiv z/OS V1R4.0 CS: IP Configuration Reference

||
||
||

Common TCP/IP identification section 934
TCP connection initiation record 935
TCP connection termination record 936
TCP/IP statistics record . 938
TN3270 server SNA session initiation record 944
TN3270 server SNA session termination record 945
TSO Telnet client connection initiation record 948
TSO Telnet client connection termination record 949
FTP server transfer completion record 951
FTP server logon failure record 954
FTP client transfer completion record 956
UDP socket close record . 959
TCP/IP stack start/stop record 960
Server port statistics record . 961
Interface statistics record. 963

Appendix E. LDAPv2 schema 2 definition files. 967
PAGENTAT sample . 967
PAGENTOC sample . 985

Appendix F. How to read a syntax diagram 997
Symbols and punctuation . 997
Parameters . 997
Syntax examples. 997

Longer than one line . 998
Required operands . 998
Choose one required item from a stack 998
Optional values . 998
Choose one optional operand from a stack 998
Repeating an operand. 998
Selecting more than one operand 999
Nonalphanumeric characters 999
Blank spaces in syntax diagrams. 999
Default operands. 999
Variables. 999
Syntax fragments . 999

Appendix G. Related protocol specifications (RFCs) 1001
Draft RFCs . 1008

Appendix H. Information APARs 1011
Information APARs for IP documents 1011
Information APARs for SNA documents 1012
Other information APARs . 1012

Appendix I. Accessibility . 1015
Using assistive technologies 1015
Keyboard navigation of the user interface 1015

Notices . 1017
Trademarks . 1020

Index . 1023

Communicating Your Comments to IBM 1049

Contents xv

||

||

xvi z/OS V1R4.0 CS: IP Configuration Reference

Figures

1. Summary of device and link statements . 48
2. Source VIPA usage chart . 110
3. TCP/IP cataloged procedure (TCPIPROC) . 194
4. Sample protocol file or data set provided with z/OS CS 197
5. Sample PROFILE.TCPIP port statements . 200
6. /etc/services example. 203
7. Sample TCPIP.DATA data set (TCPDATA) . 252
8. OMPROUTE cataloged procedure . 256
9. SNALINK cataloged procedure (SNALPROC) . 297

10. SNALINK LU6.2 cataloged procedure (LU62PROC) 299
11. Sample of LU62CFG . 300
12. X.25 NPSI cataloged procedure (X25PROC) . 307
13. Sample X.25 NPSI server configuration data set (X25CONF) 309
14. NCPROUTE cataloged procedure (NCPROUT) 324
15. USS message layout in storage . 415
16. FTP Server cataloged procedure (FTPD) . 440
17. PAGENT sample procedure . 716
18. PAGTSNMP sample procedure . 718
19. TRMD sample procedure . 721
20. RSVP sample procedure . 731
21. OSNMPD sample procedure . 748
22. OSNMPD.DATA example . 751
23. SNMPD.CONF sample . 770
24. SNMP query engine cataloged procedure (SNMPPROC) 771
25. SNMP parameter data set (SNMPARMS) sample 773
26. OSNMP.CONF sample . 779
27. TRAPFWD cataloged procedure. 781
28. LPD Server cataloged procedure (LPSPROC). 786
29. Sample LPD server configuration data set (LPDDATA) 787
30. PORTMAP cataloged procedure (PORTPROC) 805
31. UNIX PORTMAP cataloged procedure (OPORTRPC) 807
32. NRGLBD cataloged procedure . 809
33. LLBD cataloged procedure (LLBD) . 810
34. NDB setupcataloged procedure (NDBSETUP). 812
35. PORTS cataloged procedure (PORTSPRC) . 813
36. PORTC cataloged procedure (PORTCPRC) . 814
37. SMTP cataloged procedure (SMTPPROC) . 816
38. Example of a TCP-to-NJE mail gateway . 834
39. Starting TIMED as a procedure . 871
40. Starting SNTPD as a procedure . 874
41. Remote execution cataloged procedure (RXPROC). 877
42. RXUEXIT user exit (RXUEXIT) . 880
43. MISC server cataloged procedure (MISCSERV) 883
44. OROUTED cataloged procedure. 888
45. PAGENTAT sample . 985
46. PAGENTOC sample . 996

© Copyright IBM Corp. 2000, 2002 xvii

||

||

xviii z/OS V1R4.0 CS: IP Configuration Reference

Tables

1. New information . xxxiii
2. New information for IPv6 . xxxiv
3. Changed information . xxxiv
4. Changed information for IPv6 . xxxiv
5. Moved information . xxxv
6. TCP/IP configuration data sets . 3
7. Summary of TCP/IP address space configuration statements 9
8. BSDROUTINGPARMS modification methods . 39
9. IPv6 network interfaces supported by TCP/IP . 113

10. Summary of resolver setup statements . 205
11. Summary of TCPIP.DATA configuration statements 214
12. Refreshable TCPIP.DATA . 216
13. Summary of SNALINK LU6.2 configuration statements 300
14. Summary of X.25 NPSI server configuration statements 309
15. NCPRoute options . 332
16. Telnet parameter statements . 334
17. Device type and logmode table . 372
18. Telnet mapping statements. 379
19. Client identifier types and definitions . 381
20. Variables substituted for USSMSG . 416
21. Default table variable substitution . 417
22. Logon interpret routine parameter list . 428
23. Summary of FTP server configuration statements 451
24. Logging statement categories. 621
25. named.conf options and valid zone types . 647
26. Nametype field values . 649
27. Resource record components. 650
28. Valid RRs . 650
29. RDATA as describing a resource . 651
30. RRs as a message . 653
31. RR example . 653
32. MX records . 654
33. TTL types used in a zone file . 654
34. PTR records . 654
35. Data formats for DHCP options . 659
36. Base options . 660
37. Options affecting the operation of the IP layer on a per-host basis 661
38. IP layer parameters per-interface options . 662
39. Link layer parameters per-interface options. 663
40. TCP parameter options . 663
41. Application and service parameter options . 663
42. DHCP extensions options . 665
43. DHCP load balancing options. 668
44. IBM-specific options . 669
45. Syslogd facilities . 672
46. PAGENT configuration file statements . 676
47. PolicyAction mapping to LDAP . 698
48. PolicyRule mapping to LDAP . 708
49. IDS-specific condition attributes . 734
50. IDS-specific action attributes . 735
51. IDS scan global policies . 737
52. IDS scan event policies (ICMP) . 738
53. IDS scan event policies (TCP and UDP) . 739

© Copyright IBM Corp. 2000, 2002 xix

||
||

||
||

||

||

54. IDS attack policies (MALFORMED and FLOOD) 740
55. IDS attack policies (FRAGMENT and REDIRECT) 740
56. IDS attack policies (RESTRICTED PROTOCOL and RAW) 741
57. IDS attack policies (RESTRICTED OPTIONS) 742
58. IDS attack policies (PERPETUAL ECHO) . 743
59. IDS TR policies . 744
60. Summary of LPD server configuration statements 788
61. Summary of SMTP configuration statements . 816
62. SMTP user exit settings . 819
63. SMTP server exit input parameter list . 819
64. Exit action codes and values (Part 1) . 822
65. Exit action codes and values (Part 2) . 823
66. Exit action codes and values (Part 3) . 823
67. ORouteD parameters . 890
68. OROUTED RACF to OMPROUTE RACF . 898
69. OROUTED PROFILE.TCPIP to OMPROUTE PROFILE.TCPIP 899
70. BSDROUTINGPARMS to OMPROUTE configuration file 899
71. OROUTED profile to OMPROUTE configuration file 900
72. OROUTED gateways file to OMPROUTE configuration file 901
73. OROUTED start parameters to OMPROUTE start parameters and configuration file. 904
74. MODIFY OROUTED to OMPROUTE . 905
75. SBCS translation table hierarchy . 907
76. Translation table members for Telnet client and non-Telnet SBCS applications 910
77. SBCS translation table members for Telnet 3270 DBCS transform support 911
78. ISO-8 interpretations for certain ASCII and EBCDIC code points 912
79. IBM PC interpretations for certain ASCII and EBCDIC code points 912
80. DBCS translation table hierarchy . 912
81. Translation table members for DBCS applications 916
82. Standard subtype record numbers . 921
83. Telnet server SMF record format . 922
84. FTP server type 118 SMF record format . 922
85. API call SMF record format . 924
86. FTP client SMF record format . 924
87. Telnet client SMF record format . 926
88. SMF record layout for TCPIPSTATISTICS . 926
89. SMF record 109 layout . 928
90. Records types and subtype information . 931
91. SMF 119 record subtype information and record type 932
92. Common TCP/IP identification section . 934
93. TCP connection initiation record self-defining section 935
94. TCP connection initiation specific section . 936
95. TCP connection termination self-defining section. 937
96. TCP connection termination section . 937
97. SMF records: TCP/IP statistics record self-defining section 939
98. IP statistics section . 939
99. TCP statistics section. 941

100. UDP statistics section . 942
101. ICMP statistics section . 943
102. TN3270 server SNA session initiation record self-defining section 944
103. TN3270 server SNA session initiation section . 945
104. TN3270 server SNA sesson termination record self-defining section 945
105. TN3270 server SNA session termination section 946
106. TN3270 server host name section . 948
107. TSO Telnet client connection initiation section . 949
108. TSO Telnet client connection initiation record TCP/IP identification section 949
109. TSO Telnet client connection termination record self-defining section 950

xx z/OS V1R4.0 CS: IP Configuration Reference

||

||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||

110. TSO Telnet client connection termination section. 950
111. FTP server transfer completion record self-defining section 951
112. FTP server transfer completion record section 952
113. FTP server transfer completion record section: Host name 954
114. FTP server transfer completion record section: First associated data set name 954
115. FTP server transfer completion record section: Second associated data set name 954
116. FTP server logon failure record self-defining section 955
117. FTP server logon failure record section . 955
118. FTP client transfer completion record self-defining section 956
119. FTP client transfer completion record section . 957
120. FTP client transfer completion associated data set name section. 958
121. FTP client transfer completion SOCKS section 959
122. UDP socket close record self-defining section . 959
123. UDP socket close record section . 960
124. TCP/IP stack start/stop record self-defining section 961
125. TCP/IP stack start/stop record section . 961
126. Server port statistics record self-defining section 962
127. TCP server port statistics section . 962
128. UDP server port statistics section . 963
129. Interface statistics record self-defining section. 964
130. Interface statistics section . 964
131. IP information APARs . 1011
132. SNA information APARs . 1012
133. Non-document information APARs . 1013

Tables xxi

||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

xxii z/OS V1R4.0 CS: IP Configuration Reference

About this document

This document contains reference material such as statement syntax, options,
keywords, and descriptions for z/OS™ Communications Server (z/OS CS). It also
provides detailed information for the statements used to configure address spaces,
servers, and applications. For detailed information about configuration-related tasks,
refer to z/OS Communications Server: IP Configuration Guide. The information in
this document supports both IPv6 and IPv4. Unless explicitly noted, information
describes IPV4 networking protocol. IPv6 support is qualified within the text.

Use this document to perform the following tasks:
v Configure z/OS CS
v Customize and administer z/OS CS

This document supports z/OS.e™.

Who should use this document
This document is intended for programmers and system administrators who are
familiar with TCP/IP, MVS™, z/OS, UNIX®, and the Time Sharing Option Extensions
(TSO/E).

Where to find more information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the documents in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to find related information on the Internet
z/OS

– http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

– http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

– http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

– http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

– http://www.redbooks.ibm.com/

IBM Systems Center flashes

– http://www-1.ibm.com/support/techdocs/atsmastr.nsf

RFCs

– http://www.ietf.org/rfc.html

RFC drafts

– http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

© Copyright IBM Corp. 2000, 2002 xxiii

|

|

|

|

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

xxiv z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|

|

|

|

|
|

|

|

|
|

http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

How to contact IBM service

For immediate assistance, visit this Web site:
http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating Your
Comments to IBM” on page 1049.

z/OS Communications Server information
This section contains descriptions of the documents in the z/OS Communications
Server library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

v In softcopy on CD-ROM collections.

Softcopy information
Softcopy publications are available in the following collections:

About this document xxv

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|

|

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Titles Order
Number

Description

z/OS V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager® and PDF
formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R4 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication
IBM S/390® Redbooks™

Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server library
z/OS V1R4 Communications Server documents are available on the CD-ROM
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info
APARs). See Appendix H, “Information APARs” on page 1011 for a list of the
documents and the info APARs associated with them.

v Info APARs for OS/390® documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

v Info APARs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Planning and migration:

Title Number Description

z/OS Communications Server:
SNA Migration

GC31-8774 This document is intended to help you plan for SNA, whether you
are migrating from a previous version or installing SNA for the
first time. This document also identifies the optional and required
modifications needed to enable you to use the enhanced
functions provided with SNA.

z/OS Communications Server:
IP Migration

GC31-8773 This document is intended to help you plan for TCP/IP Services,
whether you are migrating from a previous version or installing IP
for the first time. This document also identifies the optional and
required modifications needed to enable you to use the
enhanced functions provided with TCP/IP Services.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes
concepts of z/OS Communications Server’s support of IPv6,
coexistence with IPv4, and migration issues.

xxvi z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

||||

|
|
||
|
|
|
|

|
|
||
|
|
|
|

|
|
|

||
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Resource definition, configuration, and tuning:

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC31-8775 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity with the
z/OS operating system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is recommended.
Use this document in conjunction with the z/OS Communications
Server: IP Configuration Reference.

z/OS Communications Server:
IP Configuration Reference

SC31-8776 This document presents information for people who want to
administer and maintain IP. Use this document in conjunction
with the z/OS Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC31-8777 This document presents the major concepts involved in
implementing an SNA network. Use this document in conjunction
with the z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC31-8778 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document in
conjunction with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC31-8836 This document contains sample definitions to help you implement
SNA functions in your networks, and includes sample major node
definitions.

z/OS Communications Server:
AnyNet SNA over TCP/IP

SC31-8832 This guide provides information to help you install, configure,
use, and diagnose SNA over TCP/IP.

z/OS Communications Server:
AnyNet Sockets over SNA

SC31-8831 This guide provides information to help you install, configure,
use, and diagnose sockets over SNA. It also provides information
to help you prepare application programs to use sockets over
SNA.

z/OS Communications Server:
IP Network Print Facility

SC31-8833 This document is for system programmers and network
administrators who need to prepare their network to route SNA,
JES2, or JES3 printer output to remote printers using TCP/IP
Services.

Operation:

Title Number Description

z/OS Communications Server:
IP User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It
contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

About this document xxvii

Title Number Description

z/OS Communications Server:
IP System Administrator’s
Commands

SC31-8781 This document describes the functions and commands helpful in
configuring or monitoring your system. It contains system
administrator’s commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP configuration
process.

z/OS Communications Server:
SNA Operation

SC31-8779 This document serves as a reference for programmers and
operators requiring detailed information about specific operator
commands.

z/OS Communications Server:
Quick Reference

SX75-0124 This document contains essential information about SNA and IP
commands.

Customization:

Title Number Description

z/OS Communications Server:
SNA Customization

LY43-0092 This document enables you to customize SNA, and includes the
following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs:

Title Number Description

z/OS Communications Server:
IP Application Programming
Interface Guide

SC31-8788 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own client
or server application. You can also use this document to adapt
your existing applications to communicate with each other using
sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the socket
interface for CICS® using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC31-8830 This document is for programmers who want application
programs that use the IMS™ TCP/IP application development
services provided by IBM’s TCP/IP Services.

z/OS Communications Server:
IP Programmer’s Reference

SC31-8787 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program your
own applications in a TCP/IP environment. These functions
provide support for application facilities, such as user
authentication, distributed databases, distributed processing,
network management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time Sharing
Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program in
either the same or a different domain.

xxviii z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

||
|
|
|
|
|

Title Number Description

z/OS Communications Server:
SNA Programmer’s LU 6.2
Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application
programming interface for host application programs. This
document applies to programs that use only LU 6.2 sessions or
that use LU 6.2 sessions along with other session types. (Only
LU 6.2 sessions are covered in this document.)

z/OS Communications Server:
SNA Programmer’s LU 6.2
Reference

SC31-8810 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC31-8808 This document describes how applications use the
communications storage manager.

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC31-8828 This document describes the Common Management Information
Protocol (CMIP) programming interface for application
programmers to use in coding CMIP application programs. The
document provides guide and reference information about CMIP
services and the SNA topology agent.

Diagnosis:

Title Number Description

z/OS Communications Server:
IP Diagnosis

GC31-8782 This document explains how to diagnose TCP/IP problems and
how to determine whether a specific problem is in the TCP/IP
product code. It explains how to gather information for and
describe problems to the IBM Software Support Center.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

LY43-0088

LY43-0089

These documents help you identify an SNA problem, classify it,
and collect information about it before you call the IBM Support
Center. The information collected includes traces, dumps, and
other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes:

Title Number Description

z/OS Communications Server:
SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and
USS messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB)

SC31-8784 This volume contains TCP/IP messages beginning with EZB.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4
(EZZ-SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and
SNM.

About this document xxix

Title Number Description

z/OS Communications Server:
IP and SNA Codes

SC31-8791 This document describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Description

z/OS Communications Server:
APPC Application Suite User’s
Guide

SC31-8809 This documents the end-user interface (concepts, commands,
and messages) for the AFTP, ANAME, and APING facilities of the
APPC application suite. Although its primary audience is the end
user, administrators and application programmers may also find it
useful.

z/OS Communications Server:
APPC Application Suite
Administration

SC31-8835 This document contains the information that administrators need
to configure the APPC application suite and to manage the
APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server:
APPC Application Suite
Programming

SC31-8834 This document provides the information application programmers
need to add the functions of the AFTP and ANAME APIs to their
application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communications Server for OS/390 V2R7 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Migrating Subarea Networks to an IP Infrastructure SG24–5957

IBM Communication Controller Migration Guide SG24–6298

Related information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA documents.

xxx z/OS V1R4.0 CS: IP Configuration Reference

||

||

|
|
|
|

|
|

The table below lists documents that may be helpful to readers.

Title Number

z/OS Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS Security Server LDAP Client Programming SC24-5924

z/OS Security Server LDAP Server Administration and Use SC24-5923

Understanding LDAP SG24-4986

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services User’s Guide SA22-7801

z/OS UNIX System Services Planning GA22-7800

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS C/C++ Run-Time Library Reference SA22-7821

z/OS Program Directory GI10-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 1997 ISBN 156592–222–0

TCP/IP Tutorial and Technical Overview GG24-3376

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

z/OS System Secure Sockets Layer Programming SC24-5901

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

v At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

About this document xxxi

|

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

|
|
|

||

||

|
|
|
|
|

|
|
|
|
|

v To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

xxxii z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

Summary of changes

Summary of changes
for SC31-8776-03
z/OS Version 1 Release 4

This document contains information previously presented in SC31-8776-02, which
supports z/OS Version 1 Release 2. The information in this document supports both
IPv6 and IPv4. Unless explicitly noted, information describes IPV4 networking
protocol. IPv6 support is qualified within the text.

New information

Table 1. New information

Topic See for details

ACCESSERRORMSGS statement Chapter 13, “File Transfer Protocol (FTP)”
on page 439

DVIPSEC option “IPCONFIG statement” on page 123

ENCODING, MBDATACONN, SBSUB,
SBSUBCHAR statements

Chapter 13, “File Transfer Protocol (FTP)”
on page 439

FORMAT option “IPCONFIG statement” on page 123

FTPLOGGING and
ANONYMOUSFTPLOGGING

Chapter 13, “File Transfer Protocol (FTP)”
on page 439

KEEPLU, PRTDEFAULTAPPL,
SEQUENTIALLU, and SGA statements

Chapter 11, “TN3270 Telnet Server” on
page 333

NOSOURCEROUTE statement “NOSOURCEROUTE statement” on
page 852

OMPROUTE_OPTIONS environment variable “OMPROUTE environment variables” on
page 257

Operating system resource limits information options statement on page 624

ServicePolicyRules statement usage note “ServicePolicyRules statement” on
page 711

SNTP daemon chapter Chapter 30, “SNTP daemon” on page 873

SYSPLEXPORTS option “VIPADYNAMIC statement” on page 185

TCPSTACKSOURCEVIPA options on
IPCONFIG statement

“IPCONFIG statement” on page 123

Telnet LU exit setup routines Chapter 11, “TN3270 Telnet Server” on
page 333

View options “view statement” on page 639

WRTAPEFASTIO statement “WRTAPEFASTIO statement” on page 584

Added a new Dependency subsection for some statements to explain the
relationships between statements.

© Copyright IBM Corp. 2000, 2002 xxxiii

The following areas contain new information pertaining to IPv6 support:

Table 2. New information for IPv6

Topic See for details

COMMONSEARCH, DEFAULTIPNODES, and
GLOBALIPNODES statements

205

ETC.IPNODES data set 3

INTERFACE statement—IPAQENET6 interfaces 114

INTERFACE statement—LOOPBACK6 interface 119

INTERFACE statement—VIRTUAL6 interfaces 121

IPCONFIG6 statement 135

Sample protocol file 197

An appendix with z/OS product accessibility information has been added.

Changed information

Table 3. Changed information

Topic See for more details

DEVICE and LINK statement —
CLAW devices, LINK section

“DEVICE and LINK statement—CLAW devices” on
page 55

FTP server user exits Chapter 13, “File Transfer Protocol (FTP)” on page 439

FTP server SMF user exit Chapter 13, “File Transfer Protocol (FTP)” on page 439

NETACCESS statement
parameters

“NETACCESS statement” on page 143

Syntax diagrams and parameter
descriptions for TN3270

Chapter 11, “TN3270 Telnet Server” on page 333

The following areas contain changed information pertaining to IPv6 support:

Table 4. Changed information for IPv6

Topic See for more details

The following statements:

v AUTOLOG

v BEGINROUTES

v BSDROUTINGPARMS

v DEVICE and LINK

v GATEWAY

v HOME

v IPCONFIG

v PKTTRACE

v PORT

v PRIMARYINTERFACE

v TRANSLATE

v VIPADYNAMIC

Chapter 2, “TCP/IP profile (PROFILE.TCPIP) and
configuration statements” on page 9

xxxiv z/OS V1R4.0 CS: IP Configuration Reference

Table 4. Changed information for IPv6 (continued)

Topic See for more details

The following statements:

v Controls

v Logging

v Options

v Server

v View

v Zone

Chapter 16, “BIND 9-based domain name system
(DNS)” on page 605

v Other zone file directives (IPv6
DNS/Resolver DNS HLD)

v BIND master file extension: the
$GENERATE directive (IPv6
DNS/Resolver DNS HLD)

v RNDC configuration file (IPv6
DNS/Resolver DNS HLD)

Chapter 16, “BIND 9-based domain name system
(DNS)” on page 605

DEBUG, DUMP, EXTENSIONS,
PORTCOMMAND,
PROTCOMMANDIPADDR, and
PORTCOMMANDPORT
statements

Chapter 13, “File Transfer Protocol (FTP)” on page 439

Moved information

Table 5. Moved information

Topic See for more details

BIND 9-based v9 Name Server
Configuration, Statistics File
section

z/OS Communications Server: IP Diagnosis

Deleted information

v Example FTPSMFEX User Exit

v OPTMSS parameter on the PORT statement

v SHAREPORT parameter on the PORTRANGE statement

v TELENTDEVICE, LUSESSIONPEND, and MSG07 statements

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

Summary of changes
for SC31-8776-01
z/OS Version 1 Release 2

Summary of changes xxxv

This document contains information previously presented in SC31-8776-00, which
supports z/OS Version 1 Release 1.

New information

v Express Logon, see Chapter 12, “EXPRESS LOGON using DCAS (Digital
Certificate Access Server)” on page 433

v BIND 9–based DNS upgrade, see Chapter 16, “BIND 9-based domain name
system (DNS)” on page 605

v OROUTED to OMPROUTE migration, see Appendix A, “OROUTED server” on
page 887

v Summary of device and link statements chart, see Figure 1 on page 48 (related
to Efficient Routing using HiperSockets Accelerator)

v Modified FTP.DATA parameters for Kerberos authentication (Kerberos support)

v New appendix for LDAPv2 Schema 2 Definition Files, see Appendix E, “LDAPv2
schema 2 definition files” on page 967

v New appendix for SMF Type 119 Records, see Appendix D, “SMF type 119
records” on page 931

v New chapter for Intrusion Detection Services (IDS) Policy, see Chapter 21,
“Intrusion Detection Services (IDS) policy” on page 733

v New statement, DEVICE and LINK Statement—MPCIPA HiperSockets Devices,
see “DEVICE and LINK statement—MPCIPA HiperSockets devices” on page 76

v TRUNCATE statement, see “TRUNCATE statement” on page 573

Changed information

v System resolver, see Chapter 5, “TCPIP.DATA configuration statements” on
page 205

v Enhanced LU mapping support for dynamic IP environments, see Chapter 11,
“TN3270 Telnet Server” on page 333

v Policy enhancements, see Chapter 19, “z/OS UNIX system services Policy Agent
and SLA subagent” on page 675

– Intrusion detection, see Chapter 19, “z/OS UNIX system services Policy Agent
and SLA subagent” on page 675 and Chapter 21, “Intrusion Detection
Services (IDS) policy” on page 733

– VLAN priority tagging, see Chapter 19, “z/OS UNIX system services Policy
Agent and SLA subagent” on page 675

– Sysplex distributor policy enhancements, see Chapter 19, “z/OS UNIX system
services Policy Agent and SLA subagent” on page 675 and Appendix E,
“LDAPv2 schema 2 definition files” on page 967

– Application driven policy classification, see Chapter 19, “z/OS UNIX system
services Policy Agent and SLA subagent” on page 675 and Appendix E,
“LDAPv2 schema 2 definition files” on page 967

v SNMP community MIB, see Chapter 22, “Simple Network Management Protocol
(SNMP)” on page 747

v Routing enhancements:

– OMPROUTE to allow RIP1 and RIP2 packets over the same interface, see
RIP_INTERFACE statement on page 282

– OSPF MD5 authentication, see “OSPF configuration statements” on page 258

– Replaceable static routes, see “GATEWAY statement” on page 96 and
“BEGINROUTES statement” on page 28

v SMTP Server Exit for Spam Control, see “SMTP server exits” on page 818

xxxvi z/OS V1R4.0 CS: IP Configuration Reference

v Connection Load Balancing using Sysplex distributor in a Network with CISCO
routers, see Chapter 2, “TCP/IP profile (PROFILE.TCPIP) and configuration
statements” on page 9

v FTP Security enhancements:

– ISPF statistics

– Protect against bounce attacks

– TLS Enablement for FTP

– Socksify FTP client

– Surrogate RACF® support

See Chapter 13, “File Transfer Protocol (FTP)” on page 439.

v FTP Support enhancements:

– SPF Statistics enhancements

– Stream mode restart

– RFC updates

– Debug enhancements

See Chapter 13, “File Transfer Protocol (FTP)” on page 439.

v Enhanced CLAW packing, see “DEVICE and LINK statement—CLAW devices”
on page 55

v Express Logon Feature using TN3270E server on z/OS, see “RESTRICTAPPL
statement” on page 407

v TN3270E RFC updates, see “EXPRESSLOGON statements” on page 349,
“SNAEXT statements” on page 370, and “RESTRICTAPPL statement” on
page 407

v Telnet debug enhancements, see “DEBUG statement” on page 344

v Improve TCP/IP storage utilization management, see “GLOBALCONFIG
statement” on page 104

v Performance enhancements, see “TCPCONFIG statement” on page 176

Deleted information

v Operator commands and system administration information. This information was
moved to z/OS Communications Server: IP System Administrator’s Commands.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SC31-8776-00
z/OS Version 1 Release 1

This document contains information also presented in OS/390 V2R10 IBM
Communication Server: IP Configuration Reference.

Summary of changes xxxvii

xxxviii z/OS V1R4.0 CS: IP Configuration Reference

Part 1. Base TCP/IP system

© Copyright IBM Corp. 2000, 2002 1

2 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 1. Configuration data sets

Summary of configuration data sets
The following table lists the configuration data sets used by the TCP/IP servers and
functions. It includes the name of the sample and the usage of the data set.

The following terms are used in this table:

high-level qualifier (HLQ)
High level qualifiers (HLQ) permit you to associate an application’s
configuration data set with a particular jobname or TSO user ID, or permit
you to use a default configuration data set for the application. The possible
high-level qualifiers are:

userid The TSO user ID which invoked the application

jobname
The application’s batch JCL JOB name or the name of the
application’s started procedure

hlq TCP/IP is distributed with a default high-level qualifier (HLQ) of
TCPIP. To override the default HLQ used by dynamic data set
allocation, specify the DATASETPREFIX statement in the
TCPIP.DATA configuration file. For most configuration files, the
DATASETPREFIX value is used as the last step in the search
order. Note that DATASETPREFIX is not used as the last step in
the search order for the PROFILE.TCPIP and TCPIP.DATA
configuration files.

Table 6. TCP/IP configuration data sets

Data set (search order) Copied from Usage

hlq.ETC.IPNODES SEZAINST(EZBREIPN) One of the local host files used for
IPv6 name query, or IPv4 and IPv6
name query when COMMONSEARCH
is specified in the resolver setup file.

ETC.PROTO usr/lpp/tcpip/samples/protocol Used to map types of protocol to
integer values to determine the
availability of the specified protocol.
Required by several z/OS CS
components.
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

ETC.RPC SEZAINST(ETCRPC) Defines RPC applications to the
Portmapper function.

ETC.SERVICES usr/lpp/tcpip/samples/services Establishes port numbers for servers
using TCP and UDP. Required for
z/OS UNIX SNMP, OROUTED, and
OMPROUTE (if the RIP protocol is
used).
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

© Copyright IBM Corp. 2000, 2002 3

|

|
|
|
|
|

||

|
|
|

||
|
|
|
|
|
|
|

|||
|
|
|

Table 6. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

FTP.DATA
1. //SYSFTPD
2. userid/jobname.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA

SEZAINST(FTCDATA) for the client
and (FTPSDATA) for the server

Overrides default FTP client and
server parameters for the FTP server.
For more information about hlq,
jobname, or userid, see Chapter 13,
“File Transfer Protocol (FTP)” on
page 439.

HOSTS.LOCAL (or /etc/hosts) SEZAINST(HOSTS) Input data set to MAKESITE for
generation of HOSTS.ADDRINFO and
HOSTS.SITEINFO.

LPD.CONFIG SEZAINST(LPDDATA) Configures the Line Printer Daemon
for the Remote Print Server.

LU62CFG SEZAINST(LU62CFG) Provides configuration parameters for
the SNALINK LU6.2 interface.

MASTER.DATA No sample provided DNS database input required for
authoritative name servers.

MIBS.DATA

1. The name of an HFS file or an
MVS file specified by the
MIBS_DATA environment variable

2. /etc/mibs.data HFS file

No sample provided Defines textual names for MIB objects
for the osnmp command.

NPSIDATE SEZAINST(NPSIDATE) Operates the TCP/IP X.25 NCP
Packet Switching Interface.

NPSIGATE SEZAINST(NPSIGATE) Supports GATE MCHs for X.25 NCP
Packet Switching Interface.

OMPROUTE configuration

1. The name of an HFS file or MVS
file specified by the
OMPROUTE_FILE environment
variable

2. /etc/omproute.conf

3. hlq.ETC.OMPROUTE.CONF

SEZAINST(EZAORCFG) Contains OMPROUTE configuration
statements.

OSNMP.CONF

1. /etc/osnmp.conf

2. /etc/snmpv2.conf

/usr/lpp/tcpip/samples/snmpv2.conf Defines target host security
parameters for the osnmp command.

4 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

Table 6. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

OSNMPD.DATA

1. The name of an HFS file or MVS
file specified by the
OSNMPD_DATA environment
variable

2. /etc/osnmpd.data HFS file

3. The data set specified on the
OSNMPD DD statement in the
agent procedure

4. jobname.OSNMPD.DATA, where
jobname is the name of the job
used to start the SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlq.OSNMPD.DATA, where hlq
either defaults to TCPIP or is
specified on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/osnmpd.data Used by SNMP for setting values for
selected MIB objects.

PAGENT.CONF

1. File or data set specified with -c
startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

/usr/lpp/tcpip/samples/pagent.conf Defines Policy Agent configuration
parameters and optionally defines
service policies (rules and actions).

PROFILE.TCPIP

1. //PROFILE

2. job_name.node_name.TCPIP

3. hlq.node_name.TCPIP

4. job_name.PROFILE.TCPIP

5. hlq.PROFILE.TCPIP

SEZAINST(SAMPPROF) Provides TCP/IP initialization
parameters and specifications for
network interfaces and routing.

Resolver Setup File SEZAINST (RESSETUP) Provides configuration statements for
the resolver.

Chapter 1. Configuration data sets 5

|

Table 6. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

PW.SRC

1. The name of an HFS file or an
MVS file specified by the
PW_SRC environment variable

2. /etc/pw.src HFS file

3. The data set specified on
SYSPWSRC DD statement in the
agent procedure

4. jobname.PW.SRC, where jobname
is the name of the job used to
start the SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either
defaults to TCPIP or is specified
on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

No sample provided Defines a list of community names
used when accessing objects on a
destination SNMP agent.

RSVPD.CONF

1. File or data set specified with -c
startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/rsvpd.conf

4. hlq.RSVPD.CONF

/usr/lpp/tcpip/samples/rsvpd.conf Defines RSVP Agent configuration
parameters.

SNMPD.BOOTS

1. The name of an HFS file or an
MVS file specified by the
SNMPD_BOOTS environment
variable.

2. /etc/snmpd.boots

Note: The first file found in the
search order is used.

No sample provided Defines the SNMP agent security and
notification destinations.
Note: If the SNMPD.BOOTS file is
not provided, the SNMP agent creates
the file. If multiple SNMPv3 agents are
running on the same MVS image, use
the environment variable to specify
different SNMPD.BOOTS files for the
different agents. For security reasons,
ensure unique engine IDs are used for
different SNMP agents.

SNMPD.CONF

1. The name of an HFS file or an
MVS file specified by the
SNMPD_CONF environment
variable.

2. /etc/snmpd.conf

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/snmpd.conf Defines the SNMP agent security and
notification destinations.
Note: If the SNMPD.CONF file is
found, the PW.SRC file and the
SNMPTRAP.DEST files are not used.

6 z/OS V1R4.0 CS: IP Configuration Reference

|

Table 6. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

SNMPTRAP.DEST

1. The name of an HFS file or an
MVS file specified by the
SNMPTRAP_DEST environment
variable

2. /etc/snmptrap.dest HFS file

3. The data set specified on
SNMPTRAP DD statement in the
agent procedure

4. jobname.SNMPTRAP.DEST,
where jobname is the name of the
job used to start the SNMP agent

5. SYS1.TCPPARMS(SNMPTRAP)

6. hlq.SNMPTRAP.DEST, where hlq
either defaults to TCPIP or is
specified on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

No sample provided Defines a list of managers to which
the SNMP agent sends traps.

SMTPCONF SEZAINST(SMTPCONF) Provides configuration parameters for
the Simple Mail Transfer Protocol.

SMTPNOTE SEZAINST(SMTPNOTE) Defines note parameters for Simple
Mail Transfer Protocol.

TCPIP.DATA SEZAINST(TCPDATA) Provides parameters for TCP/IP client
programs.
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

TNDBCSCN SEZAINST(TNDBCSCN) Provides configuration parameters for
Telnet 3270 Transform support.

TRAPFWD.CONF

1. An HFS file or an MVS data set
specified by the
TRAPFWD_CONF environment
variable

2. /etc/trapfwd.conf

Note: The first file found in the
search order is used.

No sample provided Defines addresses to which the Trap
Forwarder Daemon forwards traps.
Note: If the environment variable is
set and if the file specified by the
environment variable is not found, the
Trap Forwarder daemon terminates.

VTAMLST SEZAINST(VTAMLST) Defines VTAM® applications and their
characteristics. Entries required for
Telnet, SNALINK LU0, SNALINK
LU6.2, and X.25 NPSI Server.

X25CONF SEZAINST(X25CONF) Provides configuration parameters for
the X.25 NCP Packet Switching
Interface.

X25VSVC SEZAINST(X25VSVC) Provides switched virtual circuit
configuration for the X.25 NCP Packet
Switching Interface.

Chapter 1. Configuration data sets 7

8 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration
statements

This chapter contains the following sections:

v “Summary of TCP/IP address space configuration statements”

v “PROFILE.TCPIP search order” on page 12

v “Statement syntax” on page 12

v Statements and descriptions

Note: Configuring the stack for IPv6 is done in the BPXPRMxx member of
SYS1.PARMLIB. For more information about configuring the stack to support
IPv6, refer to z/OS Communications Server: IP Configuration Guide or IPv6
Network and Application Design Guide.

Summary of TCP/IP address space configuration statements
Table 7 contains a brief description of each configuration statement, along with the
page number where you can find more information.

Table 7. Summary of TCP/IP address space configuration statements

Statement Description Page

ARPAGE Alters the number of minutes before
an ARP table entry is deleted.

14

ASSORTEDPARMS Passes initialization parameters to
TCP/IP.

15

ATMARPSV Defines the ATMARP server to resolve
ATMARP requests for a logical IP
subnetwork (LIS).

19

ATMLIS Describes the characteristics of an
ATM logical IP subnet (LIS).

21

ATMPVC Describes a permanent virtual circuit
to be used by an ATM link.

24

AUTOLOG Indicates which procedures should be
automatically started when TCP/IP is
started.

25

BEGINROUTES, ENDROUTES Defines IP routing table entries in
standard BSD format for static routes.

28

BEGINVTAM, ENDVTAM
and associated statements

Descriptions of the Telnet statements
for VTAM in the hlq.PROFILE.TCPIP
data set.

379

BSDROUTINGPARMS Defines network interface information.
Used by the OROUTED and
NCPROUTE servers.

37

DELETE Removes an ATMARPSV, ATMLIS,
ATMPVC, device, link, port, or
portrange.

42

© Copyright IBM Corp. 2000, 2002 9

|
|
|
|

Table 7. Summary of TCP/IP address space configuration statements (continued)

Statement Description Page

DEVICE and LINK statements Defines an IPv4 device. To configure
your devices, add the appropriate
DEVICE and LINK statements to the
configuration data set. The LINK
statements show how to define a
network interface link associated with
the device and are included with the
DEVICE statement for that device
type.

47

DEVICE and LINK ATM devices 52

DEVICE and LINK CLAW devices 55

DEVICE and LINK CTC devices 60

DEVICE and LINK HYPERchannel A220 devices 62

DEVICE and LINK LAN Channel Station and OSA
devices

65

DEVICE and LINK MPCIPA devices 71

DEVICE and LINK MPCIPA HiperSocket devices 76

DEVICE and LINK MPCOSA devices 78

DEVICE and LINK MPCPTP devices

Used for:

v EE

v HPDT

v Communication between stacks

v XCF connections

80

DEVICE and LINK SNA LU0 links 83

DEVICE and LINK SNA LU 6.2 links 86

DEVICE and LINK X.25 NPSI connections 88

DEVICE and LINK Virtual devices 91

DEVICE and LINK 3745/46 Channel DLC devices 93

GATEWAY Defines IP routing table entries for
static routes.

96

GLOBALCONFIG Passes global configuration
parameters to TCP/IP.

104

HOME Provides a list of home addresses and
associated link names.

107

INCLUDE Causes another data set that contains
profile configuration statements to be
included at this point.

112

INTERFACE statements Defines an IPv6 interface. 113

INTERFACE IPAQENET6 interfaces

Specifies IPv6 OSA-Express QDIO
interfaces.

114

10 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|
|

Table 7. Summary of TCP/IP address space configuration statements (continued)

Statement Description Page

INTERFACE LOOPBACK6 interface

Allows you to add additional IP
addresses for LOOPBACK6 in the
initial profile or in an obeyfile.

119

INTERFACE VIRTUAL6 interfaces

Specifies IPv6 static virtual interfaces.

121

INTERNALCLIENTPARMS See TELNETPARMS. 333

IPCONFIG Specifies IP configuration values. 123

IPCONFIG6 Specifies IPv6 configuration values. 135

ITRACE Controls tracing for configuration, the
SNMP subagent, commands, and the
autolog subtask.

139

KEEPALIVEOPTIONS Specifies the operating parameters of
the TCP keepalive mechanism.

141

NETACCESS, ENDNETACCESS Configures network access. 143

PKTTRACE Defines the conditions used to select
IP packets as candidates for tracing
and subsequent analysis.

146

PORT Reserves a port for one or more given
job names.

152

PORTRANGE Reserves a range of ports for one or
more job names.

157

PRIMARYINTERFACE Specifies which link is to be
considered the primary interface.

161

SACONFIG Specifies parameters for the TCP/IP
SNMP subagent.

163

SMFCONFIG Provides SMF logging for Telnet, FTP,
TCP API, and TCP stack activity.

166

SMFPARMS Provides SMF logging for Telnet and
FTP client activity and TCP API
activity.

170

SOMAXCONN Specifies a maximum connection
length for the connection request
queues created by the socket call
listen().

172

START Starts the specified device or interface. 173

STOP Stops the specified device or interface. 175

TCPCONFIG Specifies TCP parameters. 176

TELNETGLOBALS Specifies a Telnet port. 333

TELNETPARMS Defines parameters for the Telnet
server.

333

TRANSLATE Indicates the relationship between an
Internet address and the network
address.

179

UDPCONFIG Specifies UDP parameters. 182

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 11

||

|
|
|

|

|

|

|||

Table 7. Summary of TCP/IP address space configuration statements (continued)

Statement Description Page

VIPADYNAMIC, ENDVIPADYNAMIC Starts a block of definitions related to
Dynamic VIPAs. This includes
VIPABACKUP, VIPADEFINE,
VIPADELETE, VIPADISTRIBUTE,
VIPARANGE, and VIPASMparms.

185

PROFILE.TCPIP search order
The search order for accessing PROFILE.TCPIP information is as follows. The first
file found in the search order is used.

1. //PROFILE

2. job_name.node_name.TCPIP

3. hlq.node_name.TCPIP

4. job_name.PROFILE.TCPIP

5. hlq.PROFILE.TCPIP

Statement syntax
Statement syntax is the same in both the configuration data set
hlq.PROFILE.TCPIP and the VARY TCPIP,,CMD=OBEYFILE data set. The following
formatting restrictions apply to configuration statements:

v Entries in a configuration data set are free format; blanks, comments, and
end-of-record are ignored.

v A configuration statement consists of a statement name followed by a required
blank, and usually one or more positional arguments. Separate each argument
by one or more blanks or end-of-record.

v A semicolon begins a comment. Comments act as blanks, separating words
without affecting their meaning.

v An argument followed by a comment must have a blank before the semicolon.

v Statements can be split across multiple lines.

v Sequence numbers are not allowed.

v Lowercase letters are translated to uppercase before the statements are
executed, except for those parameters for which mixed case is supported. The
community name is case sensitive.

v An END statement terminates a number of statements, such as AUTOLOG. If the
END statement is omitted, all subsequent tokens in the data set are interpreted
as parameters for that configuration statement.

v If a syntax error is encountered in a list of parameters, such as a HOME list, the
rest of the entries in the list are ignored.

Note: Because some statements skip the entry in error and continue to process
the remaining entries, this does not apply to all statements.

v Profile statements do have some order restrictions. The basic order is any
statement that references a name defined in another statement must follow that
statement. For example, LINK statements must follow the DEVICE statement that
defines the device referenced by the link. Statements referencing links (for
example, GATEWAY, HOME, and TRANSLATE) must follow the referenced LINK
statement.

12 z/OS V1R4.0 CS: IP Configuration Reference

User-defined names on configuration statements must adhere to the following rules:

v Each character must be a non-blank printable character.

v The following characters are not allowed:

– comma (,)

– semicolon (;)

– period (.)

– equal (=)

v The following are considered printable characters:

– ¢ < (+ | & ! $ *) ¬ \ - / % _ > ? ` : # @ ’ ″ [\ { } ¬ ~ (also alphabetic and
numeric characters)

v The first character must be alphanumeric or either $ or @. If it is numeric, the
name must not be a hexadecimal number.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 13

ARPAGE statement
Use the ARPAGE statement to change the number of minutes between creation or
revalidation of an ARP table entry, and deletion of the entry. By default, TCP/IP
deletes ARP table entries 20 minutes after creation or revalidation. An ARP table
entry is revalidated when another ARP packet is received from the same host
specifying the same hardware address. The ARPAGE statement only applies to
LAN channel station (LCS) devices.

Syntax

�� ARPAGE
20 minutes

minutes
�

Parameters
minutes

The number of minutes between creation or revalidation of an ARP table entry
and deletion of the entry.

This number is an integer in the range of 1 – 1440 (24 hours). The default is 20
minutes.

Modifying
To modify parameters for the ARPAGE statement, you must respecify the statement
with the new parameters.

Dependency
v Because ARP cache entries for MPCIPA and MPCOSA interfaces are not

managed by the TCP/IP stack, they are not affected by the ARPAGE statement.

Examples
This example causes revalidation of ARP table entries every 10 minutes.
ARPAGE 10

Usage notes
v IPCONFIG ARPTO allows you to specify the number of seconds between

creation or revalidation and deletion.

v The revalidation of ARP requests for asynchronous transfer mode (ATM) is
controlled using the ATMLIS statement.

Related topics
See ARPTO in “IPCONFIG statement” on page 123.

14 z/OS V1R4.0 CS: IP Configuration Reference

|
|

ASSORTEDPARMS statement
Use the ASSORTEDPARMS statement to pass initialization parameters to TCP/IP. If
the ASSORTEDPARMS statement is specified, the following warning message is
issued:
EZZ0717I ASSORTEDPARMS STATEMENT ON LINE lineno WILL BE RETIRED IN A FUTURE RELEASE

Note: Support for the ASSORTEDPARMS statement will be dropped in a future
release. It is recommended that you use the GLOBALCONFIG, IPCONFIG,
TCPCONFIG, and UDPCONFIG statements instead of ASSORTEDPARMS.

Syntax

�� ASSORTedparms 1

CLAWUSEDoublenop
IGNORERedirect
NOFWD
NOUDPQueuelimit
RESTRICTLowports
STOPONclawerror
TCPIPStatistics
VARSUbnetting
SOURCEVIPA

ENDASSORTedparms �

Parameters
CLAWUSEDOUBLENOP

Forces channel programs for Common Link Access to Workstation (CLAW)
devices to have two NOP CCWs to end the channel programs. This is required
for some vendor devices, and only applies to first-level MVS systems. The
CLAWUSEDOUBLENOP parameter is confirmed by the message:
EZZ0337I CLAWUSEDOUBLENOP IS SET

IGNOREREDIRECT
Causes TCP/IP to ignore ICMP Redirect packets. The IGNOREREDIRECT
parameter is confirmed by the message:
EZZ0335I ICMP WILL IGNORE REDIRECTS

If you are using OROUTED, use this option because OROUTED does not
support ICMP redirects.

IPCONFIG IGNOREREDIRECT is the preferred method to specify this option. If
you are using Intrusion Detection Services (IDS) policy to detect and discard
ICMP Redirects and this option is not specified, ICMP Redirects are discarded
while the policy is active.

If this option is not specified, ICMP Redirect packets are allowed. Any earlier
statement that has specified IGNOREREDIRECT is reversed. For example, an
IPCONFIG IGNOREREDIRECT statement is reversed if it is followed by an
ASSORTEDPARMS statement that does not contain an IGNOREREDIRECT
parameter.

This is confirmed by the message:
EZZ0335I ICMP WILL NOT IGNORE REDIRECTS

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 15

|
|
|

|

|
|
|

|

|

|

|

NOFWD
Stops the transfer of data between networks by disabling IP datagram routing
between different network interfaces. This statement can be used for security or
to ensure correct usage of limited resources. The NOFWD parameter is
confirmed by the message:
EZZ0334I IP FORWARDING IS DISABLED

If either ASSORTEDPARMS NOFWD or IPCONFIG NODATAGRAMFWD is
specified in a profile, or if neither the ASSORTEDPARMS nor the IPCONFIG
statement is specified, forwarding is disabled. If the ASSORTEDPARMS or
IPCONFIG statement is specified and the NOFWD and NODATAGRAMFWD
parameters are not included, forwarding is enabled.

IPCONFIG NODATAGRAMFWD is the preferred method to specify this option.

NOUDPQUEUELIMIT
Used to specify that UDP should not have a queue limit. With
NOUDPQUEUELIMIT specified, it is possible for inbound datagrams to arrive
and be queued to a UDP application’s socket faster than the application can
receive the datagrams. If so, the amount of data queued could be substantial,
resulting in a possible shortage of system storage. For this reason, IBM
recommends setting a limit using UDPQUEUELIMIT or by using an IDS Traffic
Regulation policy.

The NOUDPQUEUELIMIT parameter is confirmed by the message:
EZZ0336I NO LIMIT ON INCOMING UDP DATAGRAM QUEUE SET

UDPCONFIG NOUDPQUEUELIMIT is the preferred method to specify this
option.

If this option is not specified, a UDP queue limit is set at a maximum of 2000
incoming datagrams. In addition, any earlier statement that specified
NOUDPQUEUELIMIT is reversed. For example, a UDPCONFIG
NOUDPQUEUELIMIT statement is reversed if it is followed by an
ASSORTEDPARMS statement that does not contain a NOUDPQUEUELIMIT
parameter.

Note: If Intrusion Detection Services (IDS) Traffic Regulation (TR) policy is in
effect for a UDP port, then NOUDPQUEUELIMIT is overridden for that
port.

RESTRICTLOWPORTS
When set, ports 1 through 1023 are reserved for jobs by the PORT and
PORTRANGE statements. The RESTRICTLOWPORTS parameter is confirmed
by the messages:
EZZ0338I UDP PORTS 1 THRU 1023 ARE RESERVED
EZZ0338I TCP PORTS 1 THRU 1023 ARE RESERVED

When RESTRICTLOWPORTS is specified, an application cannot obtain a port
in the 0 through 1023 range unless it is authorized. Applications can be
authorized to low ports in the following ways:

v Using PORT or PORTRANGE with the appropriate job name or a wildcard
job name such as ″*″ or ″OMVS″. If the SAF keyword is used on PORT or
PORTRANGE, additional access restrictions can be imposed by a security
product such as RACF.

v APF authorized applications can access unreserved low ports.

16 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

v OMVS superuser (UID(0)) applications can access unreserved low ports.

UDPCONFIG RESTRICTLOWPORTS and TCPCONFIG
RESTRICTLOWPORTS are the preferred methods to specify this option.

STOPONCLAWERROR
Stops channel programs (HALTIO and HALTSIO) when a CLAW device error is
detected. The STOPONCLAWERROR parameter is confirmed by the message:
EZZ0345I STOPONCLAWERROR IS ENABLED

If this option is not specified, then channel programs are not stopped when a
CLAW device error is detected. If IPCONFIG STOPONCLAWERROR was
specified previously, the STOPONCLAWERROR is reversed if it is followed by
an ASSORTEDPARMS statement which does not contain
STOPONCLAWERROR.

TCPIPSTATISTICS
Prints the values of several TCP/IP counters to the output data set designated
by the CFGPRINT JCL statement. These counters include the number of TCP
retransmissions and the total number of TCP segments sent from the MVS
TCP/IP system.

The TCPIPSTATISTICS parameter is confirmed by the message:
EZZ0613I TCPIPSTATISTICS IS ENABLED

Note: This parameter is identical to the GLOBALCONFIG TCPIPSTATISTICS
parameter (see “GLOBALCONFIG statement” on page 104).

However, the SMFCONFIG TCPIPSTATISTICS parameter (see
“SMFCONFIG statement” on page 166) serves a different purpose. It
requests that SMF records of subtype 5 containing TCP/IP statistics are
created. These statistics are recorded in SMF type 118 or 119, subtype 5
records.

GLOBALCONFIG TCPIPSTATISTICS is the preferred method to specify this
option.

VARSUBNETTING
Specifies that variable subnetting is being used. Enables OROUTED to add
variable subnet/supernet routes. Variable-length subnet masks can be coded on
the BSDROUTINGPARMS statement. Also, this option allows OROUTED
applications to dynamically update the IP routing table with variable-length
subnet masks. If OROUTED is configured to use RIPv2, VARSUBNETTING
must be enabled. The VARSUBNETTING parameter is confirmed by the
message:
EZZ0352I VARIABLE SUBNETTING SUPPORT IS ENABLED FOR OROUTED

Note: This parameter is applicable to OROUTED only.

SOURCEVIPA
Requests that TCP/IP use the corresponding virtual IP address in the HOME list
as the source IP address for outbound datagrams that do not have an explicit
source address. You must update the HOME statement in order for
SOURCEVIPA to take effect. For more information, see “HOME statement” on
page 107. This parameter has no effect on RIP packets used by RIP services
(OROUTED, NCPROUTE, and OMPROUTE) as well as OSPF packets used by
OSPF services (OMPROUTE). The SOURCEVIPA parameter is confirmed by
the message:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 17

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

EZZ0351I SOURCEVIPA SUPPORT IS ENABLED

IPCONFIG SOURCEVIPA is the preferred method to specify this option.

Modifying
To change a parameter value, respecify the statement with the new parameter
value. Any parameters not specified are reset to their default value.

Dependency
v Applications that have a dependency on being able to obtain an available port in

the 0 through 1023 range without having that port explicitly reserved for its use
should be run as APF authorized or superuser. The use of
RESTRICTLOWPORTS is recommended to increase system security.

v If any of the ASSORTEDPARMS are specified on other statements
(GLOBALCONFIG, IPCONFIG, TCPCONFIG, or UDPCONFIG), the settings from
the last statement processed are used. For example, if RESTRICTLOWPORTS
is not specified on ASSORTEDPARMS (and thus defaults to off) but is specified
on a subsequent TCPCONFIG statement, RESTRICTLOWPORTS is set for TCP.

Examples
This example shows the use of the NOFWD parameter on the ASSORTEDPARMS
statement.
ASSORTEDPARMS

NOFWD
ENDASSORTEDPARMS

Usage notes
v It is recommended that you use the GLOBALCONFIG, IPCONFIG, TCPCONFIG,

and UDPCONFIG statements rather than the ASSORTEDPARMS statement. If
some but not all of the ASSORTEDPARMS are specified, by default, those not
specified are set to off. GLOBALCONFIG, IPCONFIG, TCPCONFIG, and
UDPCONFIG, in contrast, do not alter parameters that are not specified.

v The ENDASSORTEDPARMS statement is the delimiter for the
ASSORTEDPARMS statement. The ASSORTEDPARMS string is then cleared,
and processing resumes at the next token that is recognized as a valid
configuration command.

v If you specify NOUDPQUEUELIMIT when running untested UDP applications on
your system, a malfunctioning application can use all available storage.

Related topics
v “GLOBALCONFIG statement” on page 104

v “IPCONFIG statement” on page 123

v “SMFCONFIG statement” on page 166

v “TCPCONFIG statement” on page 176

v “UDPCONFIG statement” on page 182

18 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

ATMARPSV statement
Use the ATMARPSV statement to designate the ATMARP server to resolve
ATMARP requests for a logical IP subnet (LIS).

Statements describing ATM devices must be coded in the following order:

v ATMLIS

v DEVICE

v LINK

v ATMPVC (if used)

v ATMARPSV

When an ATM device is started, TCP/IP attempts to establish a connection to the
ATMARP server for any LINK associated with a device that both specifies an
ATMLIS and has a corresponding ATMARPSV defined.

Syntax

�� ATMARPSV arpsrv_name lis_name SVC ip_addr NSAP physical_addr
PVC pvc_name

�

Parameters
arpsrv_name

The ATMARP server to resolve ARP requests for this LIS. An arpsrv_name has
a maximum length of 16 characters.

lis_name
The logical IP subnet (LIS) as defined previously on the ATMLIS statement and
as included on the LINK statement. An lis_name has a maximum length of 16
characters.

SVC
Indicates that TCP/IP should connect to the ATMARP server by way of a
switched virtual circuit (SVC).

ip_addr
The IP address of the ATMARP server. This IP address must be contained
within the subnet defined by the lis_name parameter.

NSAP
The type of physical address; Network Services Access Point.

physical_addr
The physical address of the ATMARP server. Specify a 40-digit hexadecimal
value.

Note: This is required only if the connection to the ATM ARP server is a
switched virtual circuit (SVC).

PVC
Indicates that TCP/IP should connect to the ATMARP server by way of a
permanent virtual circuit (PVC). Not all ATMARP server products support being
used as an ATMARP server over a PVC connection.

pvc_name
Use to specify the PVC name of the connection to the ATM ARP server, such

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 19

|
|
|

|
|

|
|
|

|
|

|
|
|

as ATMPVC1. This is required only if the connection to the ATM ARP server is a
permanent virtual circuit (PVC). The following rules apply to this parameter:

v A PVC name has a maximum length of eight characters.

v This name must match the pvc defined for the ATM port in the ATM native
settings in the OSA configuration, which may further restrict the set of valid
names.

Modifying
To dynamically change any values on the ATMARPSV statement, follow these
steps:

1. Stop the associated ATM device or devices.

2. Use VARY TCPIP with an OBEYFILE which contains a DELETE ATMARPSV
statement.

3. Use VARY TCPIP with an OBEYFILE which contains the updated ATMARPSV
statement.

4. Start the associated ATM device or devices.

Examples
This is an example of a PVC connection to an ATMARP server:
ATMLIS LIS1 9.67.100.0 255.255.255.0
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1 LIS LIS1
ATMPVC PVC1 LINK1
ATMARPSV ARPSV1 LIS1 PVC PVC1

This is an example of an SVC connection to an ATMARP server:
ATMLIS LIS1 9.67.100.0 255.255.255.0
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1 LIS LIS1
ATMARPSV ARPSV1 LIS1 SVC 9.67.100.10
NSAP 1234567890123456789012345678901234567890

Related topics
v “ATMLIS statement” on page 21

v “ATMPVC statement” on page 24

v “DEVICE and LINK statement—ATM devices” on page 52

v “DELETE statement” on page 42

20 z/OS V1R4.0 CS: IP Configuration Reference

|

ATMLIS statement
Use the ATMLIS statement to describe the characteristics of an ATM logical IP
subnet (LIS). An LIS is a separate administrative ATM entity. Each logical IP subnet
operates and communicates independently of other logical IP subnets on the same
ATM network.

Syntax

�� ATMLIS lis_name subnet_value subnet_mask
ATMLIS Options

�

ATMLIS Options:

DFLTMTU 9180

DFLTMTU default_mtu
INACTVTO 300

INACTVTO inactivity_timeout
MINHold 60

MINHold min_holding_time
CEAGE 900

CEAGE cache_entry_age
ARPRETRies 2

ARPRETRies arp_retries
ARPTO 3

ARPTO arp_timeout
PEAKCR 0

PEAKCR peak_cell_rate
BEARERclass C

BEARERclass class

Parameters
lis_name

The ATM logical IP subnet on the LINK statement. A lis_name has a maximum
length of 16 characters.

subnet_value
The subnet value that defines this logical IP subnet.

Note: The subnet value must be in the subnet mask. In other words, any bit in
the subnet value that is a 1-bit also must be a 1-bit in the subnet mask.

subnet_mask
The subnet mask that defines this logical IP subnet.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 21

DFLTMTU default_mtu
The maximum transmission unit for SVCs within this logical IP subnet. The
minimum valid value for this parameter is 0, the maximum is 65535, and the
default is 9180.

INACTVTO inactivity_timeout
The number of seconds before an established SVC connection is dropped due
to no traffic. A value of 0 (minimum) for this parameter indicates there is no time
out period. If a value of 1 through 9 is specified, a value of 10 is used. The
maximum value is 65535, and the default is 300.

MINHold min_holding_time
The minimum number of seconds that a call remains open. A value of 0
(minimum) for this parameter indicates that the call is controlled completely by
the inactivity_timeout. The maximum value for this parameter is 65535 and the
default is 60.

Note: If min_holding_time is less than inactivity_timeout or if inactivity_time out
is 0, then the value for min_holding_time has no effect.

CEAGE cache_entry_age
The number of seconds before an ARP cache entry is removed from the cache.
The minimum value for this parameter is 60. The maximum and default value is
900.

ARPRETRies arp_retries
The number of times an ATMARP request is retried when no response is
received and the arp_timeout expires. By default, two retries occur. The
minimum value for this parameter is 0 and the maximum is 10. The default is 2.

ARPTO arp_timeout
The number of seconds to wait before retransmitting an ATMARP request. By
default, the wait is 3 seconds. The minimum value for this variable is 1 second
and the maximum is 60 seconds. The default is 3.

PEAKCR peak_cell_rate
Indicates the best effort peak cell rate for both forward and backward traffic. A
value of 0 (the minimum) indicates that a peak cell rate equal to 10% of the
actual link speed is used. This is the default. The maximum value for this
variable is 2 147 483 647.

BEARERCLASS class
The class used to initialize the ATM session. The class is a single letter, A, C,
or X. C is the default.

Modifying
The lis_name, subnet_value, and subnet_mask are used to identify each ATMLIS.
ATMLIS options can be updated by issuing an ATMLIS statement for an existing
ATMLIS with an identical lis_name, subnet_value, and subnet_mask. If a previously
defined lis_name is used on another ATMLIS statement with a different
subnet_mask and subnet_value, an error message is issued saying that the
ATMLIS is already defined.

To change any options (other than subnet value and subnet mask) on the ATMLIS
statement, use VARY TCPIP with an OBEYFILE which contains the updated
ATMLIS statement. Any options not included on the ATMLIS statement are reset to
defaults.

22 z/OS V1R4.0 CS: IP Configuration Reference

Note: The new ATMLIS values do not apply to any open ATM SVCs, but they do
apply to any newly created ATM SVCs.

To dynamically change the subnet value or subnet mask value on the ATMLIS
statement, follow these steps:

1. Stop the associated ATM device or devices.

2. Use VARY TCPIP with an OBEYFILE which contains a DELETE ATMLIS
statement and a DELETE LINK statement for each associated ATM link and a
DELETE ATMARPSV statement for any associated ATMARPSV.

3. Use VARY TCPIP with an OBEYFILE which contains the updated ATMLIS
statement along with the associated ATM LINK and ATMARPSV statements.

4. Start the associated ATM device or devices.

Examples
ATMLIS LIS1 9.67.100.0 255.255.255.0

Usage notes
v The subnet_value must be in the subnet_mask.

v The subnet_value must be a class A, B, or C address.

v An ATMLIS must be referenced by a LINK statement. If an ATMLIS is
unreferenced by any LINK statement, that ATMLIS and any ATMARPSV referring
to that ATMLIS are automatically deleted.

v A HOME address used by an ATM LINK referencing an ATMLIS should be within
the logical IP subnetwork defined by the LIS subnet_value and subnet_mask. If it
is not within the subnetwork, the LINK is not able to send or receive data over
SVCs.

Related topics
v “ATMARPSV statement” on page 19

v “DELETE statement” on page 42

v “DEVICE and LINK statement—ATM devices” on page 52

v “HOME statement” on page 107

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 23

|

ATMPVC statement
Use the ATMPVC statement to describe a permanent virtual circuit (PVC) to be
used by an ATM link.

Syntax

�� ATMPVC pvc_name link_name �

Parameters
pvc_name

The name of the permanent virtual circuit on the ATM network. This name must
match the name of the PVC defined in the Open Systems Adapter (OSA)
configuration in the ATM native settings for the ATM port. A pvc_name has a
maximum length of eight characters. Because this name must match the PVC
defined for the ATM port in the ATM native settings in the OSA configuration, it
might further restrict the set of valid names.

link_name
The name of the ATM link associated with this PVC. The link_name must be
defined previously with a LINK statement. The maximum length is 16
characters.

Modifying
To dynamically change any values on the ATMPVC statement, follow these steps:

1. Stop the associated ATM device whose link is referenced on the ATMPVC
statement.

2. Use VARY TCPIP with an OBEYFILE which contains a DELETE ATMPVC
statement.

3. Use VARY TCPIP with an OBEYFILE which contains the updated ATMPVC
statement.

4. Start the associated ATM device.

Examples
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1
ATMPVC PVC1 LINK1

Usage notes
The link_name must be defined using a LINK statement prior to being used on the
ATMPVC statement.

When an ATM device is started, TCP/IP attempts to activate all PVCs defined to all
LINKs associated with the ATM device.

Related topics
v “DELETE statement” on page 42

v “DEVICE and LINK statement—ATM devices” on page 52

24 z/OS V1R4.0 CS: IP Configuration Reference

|

AUTOLOG statement
The AUTOLOG statement is used to provide a list of procedures (STARTPROCs) to
be started by the Autolog Task when TCP/IP is started. In addition, every five
minutes the Autolog Task checks that these procedures are still active and restarts
those that are inactive. It also cancels and restarts those procedures that appear to
be hung because their socket connections are not active. Only those socket
connections to ports reserved for the procedure by the PORT statement are
checked, excluding those ports that have the NOAUTOLOG option specified.

Do not use AUTOLOG to automatically start generic servers (those without affinity
to a specific stack) such as FTP and the BIND 9 name server. Instead, use some
other automation outside of AUTOLOG to automatically start generic servers. For
more information about generic servers, refer to z/OS Communications Server: IP
Configuration Guide.

Syntax

�� AUTOLog
5

wait
�

� 1 proc_name
PARMSTRING ″ parm_string ″ JOBNAME job_name

�

� ENDAUTOLOG �

Parameters
wait

The time TCP/IP should allow for a procedure to come down when at startup, it
is still active and TCP/IP is attempting to AUTOLOG the procedure again. This
could happen if the procedure did not come down when TCP/IP was last shut
down.

The default is 5 minutes. wait can be set to any value from 0 to 30 minutes. If a
wait value outside the valid range is specified, the default of 5 minutes is used.
When a wait value of 0 is specified, TCP/IP startup does not cancel and restart
any procedures in the autolog list that are already started.

TCP/IP does not cancel the procedure at initialization. TCP/IP checks every 10
seconds (until the time interval specified by wait has expired) to see if the
procedure has come down. If the procedure comes down during one of these
10 second intervals, it is restarted. If the procedure is still active when the time
interval specified by wait expires, then TCP/IP cancels and restarts the
procedure.

proc_name
A procedure that the TCP/IP address space should start. The procedure name
must be a member of a cataloged procedure library.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 25

|
|
|
|
|
|
|

|
|
|
|
|

PARMSTRING ″parm_string″
A string to be added following the START procedure_name. Do not include the
comma. The parm_string is 115 characters or less, not counting the double
quotation marks around the string.

Note: The entire parm_string must be on one line.

JOBNAME job_name
The job name used for the PORT reservation statement. This can be identical
to the procedure_name, but for z/OS UNIX jobs that spawn listener threads it is
not. If the job_name is not explicitly set, it is assumed to be the same as the
proc_name.

ENDAUTOLOG
The ENDAUTOLOG statement specifies the end of the AUTOLOG parameters
to pass to TCP/IP.

Modifying
To modify the AUTOLOG statement, use a VARY TCPIP command with an
OBEYFILE that contains a new AUTOLOG statement. The first AUTOLOG
statement in an OBEYFILE replaces all previous AUTOLOG statements, and
subsequent AUTOLOG statements in the same OBEYFILE append to the existing
statements.

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

Examples
This example shows how to include several servers in the AUTOLOG statement:
AUTOLOG

FTPD JOBNAME FTPD1 ; FTP Server
LPSERVE ; LPD Server
NAMESRV ; Domain Name Server
NCPROUT ; NCPRoute Server
PORTMAP JOBNAME PORTMAP1 ; USS Portmap server (SUN 4.0)
OROUTED ; RouteD Server
RXSERVE ; Remote Execution Server
SMTP ; SMTP Server
OSNMPD ; SNMP Agent Server
SNMPQE ; SNMP Client Address space
TCPIPX25 ; X25
MVSNFS ; Network File System Server

ENDAUTOLOG

This example shows how to autolog two procedures. The first is named MYPROC1.
When it is started, it should use the following MVS console start command:
S MYPROC1,PARMS=’-w 100’,ID=XYZ

The second procedure has a listening z/OS UNIX thread that is the first spawned
task. (You can use the MVS DISPLAY ACTIVE,LIST console command to determine
the job name.) If MYPROC21 abends or stops listening, the following MVS console
start command is entered:
S MYPROC2,PARMS=’-dzy 50’,DSN=’HLQ.’

AUTOLOG 20
MYPROC1 PARMSTRING "PARMS=’-w 100’,ID=XYZ"
MYPROC2 PARMSTRING "PARMS=’-dzy 50’,DSN=’HLQ.’" JOBNAME MYPROC21

26 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

ENDAUTOLOG

PORT 2010 TCP MYPROC1
2011 TCP MYPROC21

Usage notes
v INTCLIEN cannot be specified as a procedure name on the AUTOLOG

statement.

v The AUTOLOG statement can be used to start both socket and non-socket
applications. For any procedure that has no port reserved in the PORT
statement, AUTOLOG initially starts the procedure when TCP/IP starts. For
procedures whose ports are reserved in the PORT statement (and do not have
the NOAUTOLOG option specified), each port is checked to make sure that the
procedure has an active connection to that port. If a procedure has multiple ports
reserved and any one port is inactive, the procedure will be canceled and
restarted. For TCP connections, the procedure must have a socket open to that
port in the LISTEN state. For UDP connections, the procedure must have a
socket open to that port.

Related topics
“PORT statement” on page 152

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 27

|
|
|
|
|
|
|
|
|
|

BEGINROUTES statement
Use the BEGINROUTES statement to add static routes to the IP route table. The
BEGINROUTES statement is an alternative for the GATEWAY statement, that
allows a BSD style syntax to be specified for destination IP address and address
mask, and has enhancements such as allowing the route to be defined as
replaceable and allowing you to define IPv6 static routes.

The IP address can be an IPv4 or IPv6 address and does not need to be a fully
qualified address. The first hop gateway IP address can also support either IPv4 or
IPv6 addresses, but must be a fully qualified address.

Because it is compatible with UNIX standards, easier to code than GATEWAY, and
has enhanced functionality, BEGINROUTES is the recommended method for
defining static routes. Future static route enhancements will only be available with
the BEGINROUTES statement.

The IP route table can be modified by:

v Replace the routing table using the VARY OBEY command.

v Use incoming ICMP and ICMPv6 redirect packets if redirects have not been
disabled on IPCONFIG and IPCONFIG6 statements.

v Incoming ICMP Fragmentation Needed packets can replace IPv4 static routes if
PathMTUDiscovery was enabled on IPCONFIG.

v Dynamic routing daemons (OMPROUTE, OROUTED) can replace IPv4
replaceable static routes, as well as add dynamic routes to the routing table.

v Router advertisements can update IPv6 replaceable static routes, as well as add
dynamic routes to the routing table.

The first BEGINROUTES statement of each configuration data set executed
replaces all static routes in the existing routing table with the new route information.
All static routes are deleted, along with all routes learned by way of ICMP/ICMPv6
Redirects and ICMP Fragmentation Needed. Routes created by OMPROUTE,
OROUTED, and router advertisements are not deleted. Subsequent
BEGINROUTES statements in the same data set add entries to the routing table.

Notes:

1. A BEGINRoutes-ENDRoutes block and a GATEWAY statement cannot be
intermixed in the same configuration data set. If they are intermixed, the first
type found is used and the other type is discarded with warning messages
being issued to the console. You can use a BEGINRoutes-ENDRoutes block in
the initial profile and a GATEWAY statement in a later OBEYFILE data set, and
vice versa.

2. For IPv4 routes, if OMPROUTE or OROUTED is running, static routes defined
by the BEGINRoutes-ENDRoutes block cannot be deleted by OMPROUTE or
OROUTED unless they are defined as replaceable, in which case they can be
replaced only by OMPROUTE, but not by OROUTED. For IPv6 routes, static
routes cannot be replaced by dynamic routes learned by router advertisements
unless the static routes are coded as replaceable. If you want OMPROUTE,
OROUTED, or router advertisements to manage all routes, an empty
BEGINRoutes-ENDRoutes block can be used to eliminate the static routes.

3. When an incorrect ROUTE entry statement is encountered, the ROUTE entry is
rejected with an error message, but the rest of the ROUTE entries in that
BEGINRoutes-ENDRoutes block are still processed. Subsequent
BEGINRoutes-ENDRoutes blocks in the same Profile or OBEYFILE are also
processed.

28 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

4. Route precedence is as follows:

v If a route exists to the destination address (a host route), it is chosen first.

v For IPv4, if subnet, network, or supernetwork routes exist to the destination,
the route with the most specific network mask (the mask with the most bits
on) is chosen second.

v For IPv6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen second.

v If multicast default routes exist (only valid for IPv4), the one with the most
specific multicast address is chosen third.

v Default routes are chosen when no other route exists to a destination.

5. BEGINROUTES statements can only be coded for LINK names or INTERFACE
names that exist when the statement is processed.

Syntax

�� BEGINRoutes 1 Route Entry ENDRoutes �

Route Entry:

1 1ROUTE Destination First Hop PacketSize
Options

Destination:

IPv4_Destination
IPv6_Destination

IPv4_Destination:

dest_ipaddr address_mask
/num_mask_bits
HOST

DEFAULT

IPv6_Destination:

dest_ipaddr /prefixLength
HOST

DEFAULT6

First Hop:

IPv4_FirstHop
IPv6_FirstHop

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 29

|

|

|
|
|

|
|

|
|

|

|
|

IPv4_FirstHop:

gateway_addr
=

link_name

IPv6_FirstHop:

gateway_addr
=

interface_name

Packet size:

MTU mtu_size
DEFAULTSIZE

Options:

NOREPLaceable

REPLaceable

MAXImumretransmittime 120.00

MAXImumretransmittime seconds
�

�
MINImumretransmittime 0.50

MINImumretransmittime seconds

ROUNDTRIPGain 0.125

ROUNDTRIPGain value
�

�
VARIANCEGain 0.25

VARIANCEGain value

VARIANCEMultiplier 2.00

VARIANCEMultiplier value

DELAYAcks

NODELAYAcks

Parameters
dest_ipaddr

The destination IPv4 or IPv6 address. An IPv4 address must be fully qualified.
The DEFAULT/DEFAULT6 keyword in this field specifies default routes. For
IPv4, the destination address can be a host, network, subnetwork, supernetwork
or default address. For IPv6, the destination address can be a host, prefix or
default address. In addition, multiple nondefault routes having an identical
destination IP address and address mask can be specified. When multiple
routes are specified, all of them are used when multipath is enabled on
IPCONFIG/IPCONFIG6 statements; otherwise, only the first route specified is
used.

address_mask (IPv4 routes only)
The BSD style address mask. If the HOST keyword is specified in this field, this
means it is a host route with a mask of 255.255.255.255. For subnetted and
supernetted routes, address_mask can be in several forms depending upon the
VARSUBNETTING setting in the ASSORTEDPARMS or IPCONFIG statement
as follows:

VARSUBNETTING
Variable-length subnet masks can be used in a single network; that is,
multiple subnets having the same network number can have different
subnet masks. The bits must be contiguous from left to right. A subnet
mask that is less than the network class mask is considered to be a
supernet mask. A supernet mask can be defined such that multiple

30 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|

|

networks can be represented by a single supernet. With a supernet
mask, a supernet route can be defined to represent multiple network
routes.

num_mask_bits
An integer value in the range 1–32 that represents the number of left-most
significant bits for the address mask.

prefixLength
An integer value in the range 1–128.

gateway_ipaddr
The host IPv4 or IPv6 address of a gateway or router that you can reach
directly, and that forwards messages for the destination network or host. It must
be either a fully qualified address or an equal sign (=), meaning that the
messages are routed directly to destinations on that network or directly to that
host. The equal sign is not supported for DEFAULT or DEFAULT6 route entry.

link_name or interface name
The name of the link or interface through which packets are sent to the
specified destination. The link or interface name must be previously defined in a
LINK or INTERFACE statement. VIPA links/interfaces are not allowed on the
ROUTE entry statement.

MTU mtu_size
The maximum transmission unit (MTU) in bytes for the destination. This value
can be up to 65535. The keyword DEFAULTSIZE in this field requests that
TCP/IP supply a default value of 576 for IPv4 routes and 1280 for IPv6 routes.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each interface.

REPLACEABLE
Indicates that the static route can be replaced by OMPROUTE if a dynamic
route to the same destination is discovered. OROUTED does not replace static
routes. This parameter can be abbreviated REPL.

Notes:

1. Only one type (replaceable or nonreplaceable) of static route can be defined
to the same destination. All static routes defined to a destination must match
the type of the first static route defined to that destination. Any definitions
that do not match that type are rejected.

2. You can use the netstat route rstat command to display all replaceable
static routes currently configured.

3. Replaceable static routes cannot be defined to destination addresses that
correspond to dynamic VIPAs for which the TCP/IP stack is a sysplex
distributor target.

NOREPLACEABLE
Indicates that static routes cannot be replaced by dynamic routes. The static
route is always used to reach the destination, regardless of any information that
dynamic routes might be available. This is the default behavior. This parameter
can be abbreviated as NOREPL.

Note: Only one type of static route (replaceable or nonreplaceable) can be
defined to the same destination. All static routes defined to a destination
must match the type of the first static route defined to that destination.
Any definitions that do not match that type are rejected.

Retransmit Parameters

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 31

|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

The following parameters affect the TCP retransmit algorithms. When TCP packets
are not acknowledged, TCP begins to retransmit these packets at certain time
intervals. If these packets are not acknowledged after a certain number of
retransmits, TCP closes the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet will be
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and will be
retransmitted 15 times before the connection is timed out. All of the parameters
listed below affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

MAXIMUMRETRANSMITTIME
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds the
specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

MINIMUMRETRANSMITTIME
Sets a minimum retransmit interval. Increasing this value may increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
999.990. The default is 0.5 (500 milliseconds).

ROUNDTRIPGAIN
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be
specified for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is
0.125. This parameter does not affect initial connection retransmission.

VARIANCEGAIN
This value is the percentage of the latest RTT variance from the RTT average
to be applied to the RTT variance average. The higher this value, the more
influence the latest packet’s RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25. This parameter does not affect initial connection
retransmission.

VARIANCEMULTIPLIER
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2. This parameter does not affect initial connection retransmission.

DELAYACKS
Delays transmission of acknowledgments when a packet is received with the
PUSH bit on in the TCP header. The DELAYACKS parameter on the
BEGINRoutes-ENDRoutes block only applies to the TCP protocol and only
affects acknowledgments returned to the foreign host. To delay

32 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

acknowledgments on a TCP/IP port connection, use the DELAYACKS
parameter on the PORT statement. This is the default.

NODELAYACKS
Specifies that an acknowledgment is returned immediately.

Modifying
To modify any values on the BEGINRoutes-ENDRoutes block, use a VARY TCPIP
command with an OBEYFILE that contains a new BEGINRoutes-ENDRoutes block.
All existing static routes are deleted along with all routes learned by way of
ICMP/ICMPv6 Redirects and ICMP Fragmentation Needed, but routes created by
OMPROUTE, OROUTED, and router advertisements are not deleted. To remove all
these static routes from the IP routing table, specify an empty BEGINRoutes-
ENDRoutes block.

Notes:

1. If any HOME entries are deleted, then TCP/IP will delete all routes for the LINK
names associated with such HOME entries.

2. If any INTERFACE statements are dynamically deleted, all static routes that
correspond with the INTERFACE names are deleted.

3. If a LINK or INTERFACE becomes inactive, then all routes that are associated
with that link or INTERFACE will be marked inactive.

4. If a LINK or INTERFACE becomes active, then all static routes that are
associated with that link or INTERFACE will be marked active.

Examples
; BEGINRoutes: Defines static routes to the IP route table for IPv4
; and IPv6
;
BEGINRoutes
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
ROUTE 130.50.75.0 255.255.255.0 = TR1 MTU 2000
ROUTE 193.5.2.0/24 = ETH1 MTU 1500
ROUTE 9.67.43.0 255.255.255.0 = FDDI1 MTU 4000
ROUTE 193.7.2.2 HOST = SNA1 MTU 2000
;
; Destination Subnet Mask First Hop Interface Packet Size
;

ROUTE fe80::230:71ff:fed3:5160 = OSAQDIO26 MTU 2000
ROUTE FEC9::1/128 = OSAQDIO26 MTU 2000

;
;
; Indirect Routes - Routes that are reachable through routers on my
; network.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
ROUTE 193.12.2.0 255.255.255.0 130.50.75.10 TR1 MTU 2000
ROUTE 10.5.6.4 HOST 193.5.2.10 ETH1 MTU 1500
;
; Destination Subnet Mask First Hop Interface Packet Size
;

ROUTE FEC8::/64 fe80::230:71ff:fed3:5160 OSAQDIO26 MTU 2000
;
; Default Route - All packets to an unknown destination are routed
; through this route.
;

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 33

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; Destination First Hop Link Name Packet Size
;
ROUTE DEFAULT 9.67.43.99 FDDI1 MTU DEFAULTSIZE
;
; Destination Subnet Mask First Hop Interface Packet Size
;

ROUTE DEFAULT6 fe80::230:71ff:fed3:5160 OSAQDIO26 MTU DEFAULTSIZE
ENDRoutes

Usage notes
v The destination address and first hop IP address must both be either IPv4 or

IPv6. If they do not match, an error message is displayed.

v An error message is displayed if an IPv6 address is coded for an IPv4
link_name, or if an IPv4 address is coded for an IPv6 interface_name.

v If the first hop IP address is IPv6, then it cannot be an IPv4-compatible or
mapped address (in hexadecimal or dotted-decimal format). If the IPv6 address
is mapped or compatible, then an error message is displayed.

v If the destination address is IPv6, then it can be IPv4-compatible. However, if it is
a mapped address, an error message is displayed.

v A valid host Internet address must contain a nonzero value in the host portion of
the address. In addition, the host portion cannot be all ones, which is considered
the broadcast address. The dest_ipaddr can be either a network or a host
Internet address. The gateway_addr must be a host Internet address.

v Packet size considerations:

– The max_packet_size that z/OS CS can handle varies for different networks.
For example, while the largest packet size for the Ethernet protocol is 1500
bytes, the largest packet size for the 802.3 protocol is 1492 bytes.

– The actual packet size is determined by the total network connection.

- If a locally attached host has a packet size smaller than yours, transfers to
that host use the smaller size.

- The TCP maximum segment size for the 3172 Interconnect Controller
Program is 4096. Any packet specifications over 4096 are limited by this
restriction. For example, if you specified a packet size of 4352, the resulting
packet size would still only be 4096 + the header = 4132.

– Large packets can be fragmented by intervening gateways for IPv4 only.
Fragmentation and reassembly of packets are expensive in their use of
bandwidth and CPU time. Therefore, packets sent through gateways to other
networks should use the default size, DEFAULTSIZE, unless all intervening
gateways and networks are known to accept larger packets or unless you
enable PATHMTUDISCOVERY on IPCONFIG, which will dynamically learn the
maximum MTU for the total network connection. For IPv6,
PATHMTUDISCOVERY is always enabled.

– If this is a RISC System/6000® link, the max_packet_size cannot exceed the
write_size specified on the corresponding DEVICE statement.

– You cannot specify an MTU smaller than the default MTU size. For IPv4 the
default MTU is 576 and for IPv6 it is 1280.

v Considerations for retransmission parameters:

The retransmission parameters allow system administrators who are familiar with
TCP/IP transmission performance to alter the flow of TCP/IP data packets and
acknowledgments. Under normal situations, the following occurs:
– TCP typically waits to receive two packets before sending one ACK to

acknowledge the data within them.

34 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

– When TCP sends a packet, it waits for an acknowledgment. If it times out
before getting an acknowledgment, it resends the packet.

With the following parameters you can adjust the retransmission time out
calculations to allow for slower transmission so that packets are not resent as
quickly.

MAXIMUMRETRANSMITTIME
MINIMUMRETRANSMITTIME
ROUNDTRIPGAIN
VARIANCEGAIN
VARIANCEMULTIPLIER
DELAYACKS
NODELAYACKS

TCP uses these values in an algorithm called the TCP Retransmission Timeout
Calculation. As a result of this calculation, TCP/IP:

– Uses the minimum round-trip time as long as it is less than the
MINIMUMRETRANSMITTIME.

– Uses the average round-trip time if round-trip time is greater than or equal to
the MINIMUMRETRANSMITTIME.

– Uses the maximum round-trip time if round-trip time is greater than the
MAXIMUMRETRANSMITTIME.

You can specify ROUNDTRIPGAIN, VARIANCEGAIN, and
VARIANCEMULTIPLIER to tell TCP how heavily it should weigh the most recent
behavior of the network versus the long term behavior. If you specify smaller
values for these parameters, TCP attempts to correct for congestion only if the
congestion is sustained. With larger values, TCP corrects for congestion more
quickly and the system is more sensitive to variations in network performance. It
is recommend that you use the default values (unless your retransmission rate is
too high).

v With DELAYACKS, you can delay the acknowledgments so that they can be
combined with data sent to the foreign host.

v If the routing table is empty, all addresses in the HOME list remain route capable.
For information on testing commands with LOOPBACK, refer to the z/OS
Communications Server: IP User’s Guide and Commands.

v The IPv4 address_mask must follow the Classless Inter-Domain Routing (CIDR)
convention that requires the actual mask to be one or more on-bits followed by
zero or more off-bits. You cannot have on-bits followed by off-bits followed by
on-bits. Therefore, a class A mask of 0.255.254.0 is valid (an actual mask of
255.255.254.0 or FFFFE00), but a class A mask of 0.255.253.0 is not valid (an
actual mask of 255.255.253.0 or FFFFD00) because 253 is 11111101.

v Static indirect routes cannot be added to the routing table if a direct route does
not already exist in the routing table to the first hop IP address. To ensure that
the indirect static routes are processed as expected, code a direct route for use
by the indirect routes as follows:
BEGINROUTES
ROUTE 9.67.0.0 255.255.192.0 = U42TR MTU 4096
ROUTE 9.67.128.87 255.255.255.255 9.67.17.10 U42TR MTU 4096
ROUTE 9.67.128.117 255.255.255.255 9.67.17.10 U42TR MTU 4096
ROUTE 9.67.134.212 255.255.255.255 9.67.17.10 U42TR MTU 4096
ENDROUTES

The static direct route allows the stack to process the indirect routes during
initialization.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 35

|
|
|
|

|
|
|
|
|
|

|
|

v There is no limit on the number of equal-cost multipath routes to a destination.

v Multicast routes can be specified using host specification. You can also specify
multicast network or prefix routes by using BEGINROUTES. A general multicast
default route for IPv6 can be specified using:
BEGINROUTES
ROUTE FF00::/8 = INTERFACE1 MTU 4096
ENDROUTES

Related topics
v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “IPCONFIG statement” on page 123

v “IPCONFIG6 statement” on page 135

36 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|

|
|
|

|

|

|

|

|

BSDROUTINGPARMS statement

Note: The BSDROUTINGPARMS statement applies to IPv4 only.

Use the BSDROUTINGPARMS statement to define the characteristics of each link
defined at the host over which OROUTED sends routing information to adjacent
routers running the RIP protocol and over which NCPROUTE sends transport PDUs
to client NCPs.

Syntax

�� BSDRoutingparms TRUE
FALSE

�

� 1 link_name DEFAULTSize cost_metric subnet_mask dest_addr
mtu

�

� ENDBSDRoutingparms �

Parameters
TRUE

Specifies that the maximum packet size for the interface is always used
regardless of whether the destination is one or more hops away.

FALSE
Specifies that the default maximum packet size of 576 is used (rather than the
packet size of the interface) when sending to networks that are not locally
attached.

link_name
The name of the link as defined in a LINK statement. Each link must be defined
once in the BSDROUTINGPARMS statement. To be used, a link must be
defined at the time the BSDROUTINGPARMS statement is processed. If the
corresponding link name is not defined in the HOME list, the link has no HOME
address and is rendered as unusable until a HOME address is assigned.

mtu

The maximum packet size for this interface. The DEFAULTSIZE keyword can
be used to designate the default of 576. The minimum value is 1, and the
maximum value is 65535.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each interface.

cost_metric
The metric associated with the cost of use for the link. When sending routing
information over this link, OROUTED adds a metric value to the routing metrics
for the routes that are to be broadcast over this link. The metric value that is
added is the value specified in the BSDROUTINGPARMS section incremented
by one. If a metric of 0 is specified, a metric value of 1 is added, which is the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 37

|

|
|
|

default cost for a directly connected network. If a metric of 1 is specified, a
metric value of 2 is added. The higher metric causes the route over this link to
be less preferred. The range is between 0 to 14. A metric of 0 is usually coded
so that the routes sent over the interface are the most preferred. If using
NCPROUTE without OROUTED, the cost_metric has no effect. In this case,
code a metric of 0. The default is 0.

subnet_mask
A bit mask (expressed in dotted-decimal form) having bits in the network or host
portions that defines the subnet mask associated with the link. Depending upon
the VARSUBNETTING setting in the ASSORTEDPARMS or IPCONFIG
statement, the subnet mask can be in several forms as follows:

v NOVARSUBNETTING

The network portion and the host portion making up the subnet must be
bit-contiguous from left to right. If the link to the network is not subnetted,
then the subnet_mask can be a network class mask. If the subnet_mask
equals 0, the default is the network class mask. Also, a single, fixed-length
subnet mask must be defined for each network; that is, multiple subnets
having the same network number must have identical subnet masks.

v VARSUBNETTING

Variable-length subnet masks can be used in a single network; that is,
multiple subnets having the same network number can have different subnet
masks. The bits must be contiguous from left to right. A subnet mask that is
less than the network class mask is considered to be a supernet mask. A
supernet mask can be defined such that multiple networks can be
represented by a single supernet. With a supernet mask, a supernet route
can be defined to represent multiple network routes.

Notes:

1. The host mask of 255.255.255.255 cannot be used for the subnet mask.

2. The subnet mask is for a link-level subnet mask, which acts as a default for
a route-level subnet mask to be used for routes dynamically created over
this link.

3. The host mask of 255.255.255.255 cannot be used for the interface-level
subnet mask; however, an implicit host route based on its home IP address
is dynamically created internally for this link.

dest_addr
Destination address applies to point-to-point links only. A nonzero destination
address applies to nonbroadcast and nonmulticast capable point-to-point links.
If you specify the destination address and are using OROUTED, the other end
of the point-to-point link must be running RIP also. If 0 is coded, directed
broadcast or multicast address is used; otherwise, insert the address of the host
on the other end of the link. For VIPA links, this field should be 0.

See Figure 1 on page 48 for more descriptions about devices and links.

If you specify the destination address and are using OROUTED, the other end
of the point-to-point link must be running RIP also.

Modifying
To modify the BSDROUTINGPARMS statement for a link, use a VARY TCPIP
command with an OBEYFILE that defines a new BSDROUTINGPARMS statement
for a link with the same link_name. The new BSDROUTINGPARMS statement is a
complete replacement for the original BSDROUTINGPARMS statement. If you have
changed the link’s IP address, or the order of the HOME list entries, along with the

38 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

BSDROUTINGPARMS changes, remember to include the new HOME list statement
in the same OBEYFILE data set as the new BSDROUTINGPARMS statement.
Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

Note: If you are using OROUTED, refer to Table 8 for additional instructions.

Table 8. BSDROUTINGPARMS modification methods

Modification method Required action

Adding new links Issue VARY TCPIP,,OBEYFILE command
with new DEVICE, LINK, HOME, and
BSDROUTINGPARMS statements. No action
is required for ORouteD.

Deleting or changing order of links in use by
OROUTED.

Issue VARY TCPIP,,OBEYFILE command
with new HOME statement. No action is
required for ORouteD.

Changing HOME IP addresses or
BSDROUTINGPARMS values for existing
links in use by OROUTED

1. Issue VARY TCPIP,,OBEYFILE command
with new HOME statements or
BSDROUTINGPARMS statements, or
both.

2. Issue the MODIFY <OROUTED
procname>,RECONFIG command.

Note: If HOME addresses have been changed, the NCP generation definitions must also be
changed in order to recognize the new HOME addresses.

Examples
This example shows the BSDROUTINGPARMS statement for several types of LAN
media.

; link maxmtu metric subnet mask dest addr
BSDROUTINGPARMS false

TR1 2000 0 255.255.255.0 0
ETH1 1500 0 255.255.255.0 0
FDDI1 DEFAULTSIZE 0 255.255.255.0 0

ENDBSDROUTINGPARMS

This example includes a link, LINK3, that is a point-to-point link between host MVS1
and host 128.84.54.6.

;
; link maxmtu metric subnet_mask dest_addr
BSDROUTINGPARMS false

LINK1 DEFAULTSIZE 0 255.255.255.0 0
LINK2 DEFAULTSIZE 0 255.255.255.0 0
LINK3 1500 0 255.255.255.0 128.84.54.6

ENDBSDROUTINGPARMS

This example shows the definitions for VIPA links.
BSDROUTINGPARMS false

VLINK1 DEFAULTSIZE 0 255.255.255.252 0
VLINK2 DEFAULTSIZE 0 255.255.255.252 0

ENDBSDROUTINGPARMS

This example shows how BSDRoutingparms relate to other statements in the
profile.
DEVICE DEVC00 CTC C00 IOBUFFERSIZE 65535 AUTORESTART
LINK LCTCC00 0 DEVC00 IFSPEED 10000
HOME 9.32.2.1 LCTCC00

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 39

DEVICE DEVD00 LCS D00 AUTORESTART
LINK ETHERD00 ETHERNET 0 DEVD00
LINK IBMTRD00 IBMTR 1 DEVD00
LINK FIDDID00 FDDI 2 DEVD00
HOME 130.80.0.1 ETHERD00

130.81.0.2 IBMTRD00
130.82.0.3 FIDDID00

PRIMARYINTERFACE LCTCC00

BSDROUTINGPARMS TRUE
LCTCC00 DEFAULTSIZE 0 255.252.0.0 9.32.2.5
ETHERD00 DEFAULTSIZE 0 255.252.0.0 0
IBMTRD00 DEFAULTSIZE 0 255.252.0.0 0
FIDDID 00 DEFAULTSIZE 0 255.252.0.0 0
ENDBSDROUTINGPARMS

IPCONFIG VARSUBNETTING

START DEVD00

This example shows how to use BSDRoutingparms with supernet routes.
IPCONFIG VARSUBNETTING

HOME
130.201.1.1 VLINK1
172.200.10.1 ETH1
192.3.200.1 CTCBF0

BSDROUTINGPARMS FALSE
ETH1 1500 0 255.252.0.0 0
VLINK1 1500 0 255.254.0.0 0
CTCBF0 1000 0 255.255.252.0 192.3.200.2

ENDBSDROUTINGPARMS

Usage notes
v Use the BSDROUTINGPARMS statement whenever you are running OROUTED

or NCPROUTE. In this case, define each link in the BSDROUTINGPARMS
statement that is to be known by these services. For OMPROUTE, it is not
necessary to define the BSDROUTINGPARMS statement since the parameters
are overridden by OMPROUTE.

Note: If using NCPROUTE with OMPROUTE, the BSDROUTINGPARMS
statement is required to route Transport PDUs prior to OMPROUTE
activation. Because the BSDROUTINGPARMS parameters are overridden
by the interface parameters defined in the OMPROUTE configuration,
ensure that the interface parameters for the SNALINK or IP/CDLC channel
connections are identical in both the BSDROUTINGPARMS statement and
the OMPROUTE configuration file.

v The MTU value specified on BSDROUTINGPARMS statement is also used for
applications that use the setsockopt() IP_MULTICAST_IF option to specify the
route for multicast datagrams.

v For rules on defining virtual IP addresses for VIPA links, see the “HOME
statement” on page 107.

v The maximum transmission unit (MTU) and metric of any other links with a
destination address in the same subnet are updated to ensure that all entries in
the same subnet have the same routing values. Except for these links and the
LOOPBACK link, all links get default BSD values if not specified.

40 z/OS V1R4.0 CS: IP Configuration Reference

v The subnet_mask is related to the HOME IP address of the link. A ClassB HOME
IP address (128.0.0.0 through 191.255.255.255) cannot have a ClassA
subnet_mask (255.0.0.0 through 255.254.0.0) without IPCONFIG
VARSUBNETTING set on. Similarly, a ClassC HOME IP address (192.0.0.0
through 224.255.255.255) cannot have a ClassA or ClassB subnet_mask
(255.0.0.0 through 255.255.254.0) without IPCONFIG VARSUBNETTING set on.

v If no HOME address exists for a LINK or if a HOME address changes by way of
a later VARY TCPIP, processing of the HOME statement verifies whether the
BSDROUTINGPARMS subnet_mask is within the valid ranges depending on the
IPCONFIG VARSUBNETTING settings. OROUTED ignores links without HOME
addresses.

v If running Enterprise Extender with OROUTED, refer to z/OS Communications
Server: IP Configuration Guide.

v When an incorrect BSDROUTINGPARMS entry is encountered, all entries
following that entry on that BSDROUTINGPARMS statement are ignored.
Subsequent BSDROUTINGPARMS statements are processed.

v BSDROUTINGPARMS statements can only be coded for LINK names that exist
in the HOME list when the statement is processed. Thus, LINKs from IPCONFIG
DYNAMICXCF and VIPADYNAMIC should not be included in
BSDROUTINGPARMS statements of the initial PROFILE.TCPIP. However, an
OBEYFILE for the VARY TCPIP command can contain BSDROUTINGPARMS
statements with LINKs from IPCONFIG DYNAMICXCF and VIPADYNAMIC.

v The BSDROUTINGPARMS parameter values are displayed with the DISPLAY
TCPIP,, NETSTAT,DEVLINKS command. If the BSDROUTINGPARMS statement
is not defined, the parameters default to the routing-level parameters from the
BEGINROUTES or GATEWAY statement.

Related topics
v “BEGINROUTES statement” on page 28

v “DEVICE and LINK statement—VIRTUAL devices” on page 91

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “IPCONFIG statement” on page 123

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 41

|
|
|
|

DELETE statement
Use the DELETE statement to delete a previously defined ATMARPSV, ATMLIS,
ATMPVC, device, link, port, or portrange.

Note: Use the INTERFACE statement with the DELETE parameter to delete an
interface.

Syntax

�� DELete ATMARPSV arpsrv_name �

�� DELete ATMLIS lis_name �

�� DELete ATMPVC pvc_name �

�� DELete DEVice device_name �

�� DELete LINK link_name �

�� DELete PORTRange 1 1st_port num_ports protocol �

� PortRange Access Specifications �

PortRange Access Specifications:

DELAYAcks
INTCLIEN

NODELAYAcks
RESERVED
jobname

PortRange Options

PortRange Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SAF resname

�� DELete PORT 1 num TCP Port Access Specification
UDP

�

42 z/OS V1R4.0 CS: IP Configuration Reference

|
|

Port Access Specification:

DELAYAcks
INTCLIEN

NODELAYAcks BIND ipaddr
RESERVED
jobname

Port Options

Port Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SHAREPort BIND ipaddr
�

�
SAF resname

Parameters
arpsrv_name

The name of the ATMARP server to be deleted. This is the name that was used
on an ATMARPSV statement to define the ATMARP server to TCP/IP.

lis_name
The name of the LIS to be deleted. This is the name that was used on an
ATMLIS statement to define the LIS to TCP/IP.

pvc_name
The name of the PVC to be deleted. This is the name that was used on an
ATMPVC statement to define the PVC to TCP/IP.

device_name
The name of the device to be deleted. This is the name that was used on a
DEVICE statement to define the device to TCP/IP.

link_name
The name of the link to be deleted. This is the name that was used on a LINK
statement to define the link to TCP/IP.

num
The port number of the port to be deleted. This is the port number that was
used on a PORT statement to define the port to TCP/IP.

protocol
Specifies the protocol to be used, either TCP or UDP.

INTCLIEN
This keyword indicates the port is assigned to the internal Telnet server rather
than to a client. Therefore, you must use the same port number as specified on
the TELNETPARMS statement. INTCLIEN is only allowed with the TCP
protocol.

jobname
The job name associated with the port to be deleted.

RESERVED
Indicates that the port is not available for use by any user. Use this to lock
certain ports. This is optional and valid for TCP or UDP protocols.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 43

NOAUTOLOG
Tells the TCP/IP address space not to restart the server if it was stopped
previously.

DELAYACKS
Allows you to alter the default TCP/IP behavior for acknowledgments and delay
their transmission so that they can be combined with data sent to the foreign
host. This affects acknowledgments returned when a packet is received with the
PUSH bit on in the TCP header. This is the default.

NODELAYACKS
Specifies that an acknowledgment is returned immediately.

SHAREPORT
Required when reserving a port to be shared across multiple listeners.

1st_port
The first port number of the port range of the link to be deleted.

num_ports
The number of ports to be deleted starting from the 1st_port. This is the same
number of ports that were reserved when the port range was defined with the
PORTRANGE statement.

BIND ipaddr
Associates a job name with an IP address. When a job with the designated
name issues BIND(IN[6]ADDR_ANY, or (INADDR_ANY,IN6ADDR_ANY), the
BIND is intercepted and converted to BIND (specified IP Address). Subsequent
BIND processing occurs as though the server instance had issued the BIND to
the selected IP address. This is optional.

The IP address can be either an IPv4 or fully qualified IPv6 address.

IPv4-mapped IPv6 addresses and IPv4-compatible IPv6 addresses are not
supported.

Note: BIND is not valid on PORTRANGE. For more information about BIND,
see “PORT statement” on page 152 and “PORTRANGE statement” on
page 157.

SAF resname
Indicates that the port is reserved for users that are permitted to the RACF
resource named following the keyword. This is optional and valid for TCP or
UDP protocols.

Note: For more details about SAF resnames, see “PORT statement” on
page 152 and “PORTRANGE statement” on page 157.

Dependency
v To delete a link, you must first delete any associated HOME entry by specifying a

HOME statement that does not include the link, and you must also stop the
device.

Note: You do not need to (and cannot) stop the device when deleting a link for a
virtual device.

v To delete an ATM link, you must first delete any associated ATMPVCs.

v To delete an ATMLIS, you must first delete all associated LINKs and
ATMARPSVs.

44 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

v To delete an ATMARPSV, you must first stop all devices that have a LINK
associated with the ATMLIS for the ATMARPSV.

v You can delete an ATMPVC for a started device. However, if the PVC is in use
as an ATMARP server, you must first stop the devices using the PVC as an
ATMARP server in order to delete the ATMPVC.

v To delete a device, you must first stop the device, then delete all associated
links.

Note: You do not need to (and cannot) stop the device when deleting a link for a
virtual device.

v Individual ports cannot be removed from a PORTRANGE; you must delete the
entire PORTRANGE.

v The port number/range, protocol, and job name must be specified on the
DELETE PORT or DELETE PORTRANGE statement. The optional parameters
are not checked, but are supported so that the PORT and PORTRANGE
statements can be reused by placing the statement DELETE before them.

Modifying
Modification is not applicable to this statement.

Examples
This example shows DELETE statements to delete an ATM PVC named PVC1, an
ATM LIS named LIS1, and an ATMARPSV named ARPSV1:
DELETE ATMPVC PVC1
DELETE ATMLIS LIS1
DELETE ATMARPSV ARPSV1

This example shows DELETE statements that delete a link called sanjose and a
device called ourctc:
DELETE LINK sanjose
DELETE DEVICE ourctc

This example shows a PORT statement to reserve port 5001 for MEGA, and then a
DELETE PORT statement to delete the reservation of that port:
PORT 5001 TCP MEGA
DELETE PORT 5001 TCP MEGA

This example shows several PORTRANGE statements to reserve ports for MEGA,
and then several DELETE PORTRANGE statements to delete the reservations for
those ports:
PORTRANGE 5000 10 UDP MEGA

5100 10 TCP MEGA NOAUTOLOG
5200 10 UDP MEGA DELAYACKS
5300 10 TCP MEGA
5400 10 UDP MEGA
5500 10 TCP MEGA NOAUTOLOG DELAYACKS

DELETE PORTRANGE
5000 10 UDP MEGA
5100 10 TCP MEGA NOAUTOLOG
5200 10 UDP MEGA DELAYACKS
5300 10 TCP MEGA
5400 10 UDP MEGA
5500 10 TCP MEGA NOAUTOLOG DELAYACKS

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 45

|
|

|
|

|
|
|
|

Usage notes
The link_name of a deleted link remains associated with its device. It cannot be
reassigned to a new device while TCP/IP is active.

46 z/OS V1R4.0 CS: IP Configuration Reference

DEVICE and LINK statements
The DEVICE and LINK statements apply to IPv4 only. Use the INTERFACE
statement to specify an IPv6 interface. See “INTERFACE statements” on page 113
for more information.

DEVICE and LINK statements
z/OS CS allows a single TCP/IP address space to drive multiple instances of any
supported device. To configure your devices, add the appropriate DEVICE and LINK
statements to the configuration data set. The LINK statements show how to define
a network interface link associated with the device and are included with the
DEVICE statement for that device type.

The following are the minimum required statements to define a network interface for
use by TCP/IP:

v A set of DEVICE and LINK statements for the appropriate device. Depending on
the type of device being defined, additional PROFILE statements, VTAM
definitions, or both might be required. For more details, see the DEVICE and
LINK statements for the device type.

v A HOME statement assigning an IP address to the LINK interface. For more
details, see “HOME statement” on page 107.

v If you are using static routing, define a BEGINROUTES or GATEWAY statement
referencing the LINK interface to reach the target networks. For more details, see
“BEGINROUTES statement” on page 28 or “GATEWAY statement” on page 96.

v If you are using dynamic routing, see Chapter 6, “OMPROUTE” on page 255 and
Appendix A, “OROUTED server” on page 887.

Because devices (except for VIPA devices) are not automatically initialized, you
must also specify a START statement in the configuration data set to start each
device automatically.

Note: The following restrictions apply to specifying DEVICE and LINK statements:

v Because TCP/IP has a maximum of 255 started devices (not including
VIPA), you cannot start more than 255 devices.

v If you are using OROUTED or OMPROUTE, the maximum number of
non-VIPA interfaces that can be specified in the HOME list is 255.

v There is no maximum for static VIPA interfaces, but the maximum number
of Dynamic VIPA interfaces is 256.

Figure 1 on page 48 summarizes information about the various IPv4 network
interfaces supported by TCP/IP. The values listed in the MTU column represent the
largest MTU supported by each interface.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 47

|
|
|

Notes:

1. Can be point-to-multipoint.

D
ev

ic
e

ty
p

e
L

in
k

ty
p

e

C
T

C
C

T
C

C
L

A
W

IP

L
C

S
S

ee
 b

el
o

w

IB
M

T
R

E
T

H
E

R
N

E
T

80
2.

3

F
D

D
I

C
D

L
C

C
D

L
C

H
C

H
H

C
H

X
25

N
P

S
I

S
A

M
E

H
O

S
T

S
N

A
IU

C
V

S
A

M
E

H
O

S
T

S
N

A
L

U
62

S
A

M
E

H
O

S
T

M
P

C
P

T
P

(f
or

 X
C

F
)

M
P

C
P

T
P

M
C

P
T

C
P

(f
or

IU
T

S
A

M
E

H
)

M
C

P
T

C
P

A
T

M
A

T
M

M
P

C
IP

A
S

ee
 b

el
o

w

IP
A

Q
E

N
E

T

IP
A

Q
E

N
E

T

IP
A

Q
T

R

M
P

C
IP

A
(f

or
H

ip
er

S
oc

ke
ts

)
IP

A
Q

ID
IO

M
P

C
O

S
A

S
ee

be
lo

w

M
P

C
P

T
P

M
C

P
T

C
P

R
S

/6
00

0
or

 O
E

M

LA
N

 u
si

ng
 O

S
A

 in
 L

C
S

 m
od

e
(in

cl
ud

in
g

AT
M

 L
A

N
 E

m
ul

at
io

n)
,

31
72

, 2
21

6,
 o

r
O

E
M

To
ke

n
R

in
g

E
th

er
ne

t

E
th

er
ne

t 8
02

.3

F
D

D
I

37
45

/3
74

6
ne

tw
or

k
us

in
g

N
C

P

A
no

th
er

 h
os

t u
si

ng
 H

yp
er

ch
an

ne
l

ad
ap

te
r

X
.2

5
ne

tw
or

k
us

in
g

X
.2

5
ap

pl
 o

n
sa

m
e

z/
O

S

S
N

A
 n

et
w

or
k

us
in

g
S

N
A

LI
N

K
LU

0
ap

pl
 o

n
sa

m
e

z/
O

S

S
N

A
 n

et
w

or
k

us
in

g
S

N
A

LI
N

K
LU

6.
2

 a
pp

l o
n

sa
m

e
z/

O
S

z/
O

S
, R

S
/6

00
0,

 C
is

co
 C

IP
,

R
S

/6
00

0,
 C

S
/N

T,
 o

r
O

E
M

A
no

th
er

T
C

P
/IP

 w
ith

in
sa

m
e

z/
O

S
 s

ys
pl

ex

AT
M

 n
et

w
or

k
us

in
g

O
S

A
-2

 o
r

O
S

A
-E

xp
re

ss
 in

 A
T

M
 n

at
iv

e
m

od
e

LA
N

 u
si

ng
 O

S
A

-
E

xp
re

ss
 in

 Q
D

IO
 m

od
e

G
ig

ab
it

E
th

er
ne

t

Fa
st

 E
th

er
ne

t,
AT

M
 E

th
er

ne
t L

A
N

E

To
ke

n
R

in
g

A
no

th
er

T
C

P
/IP

 w
ith

in
 s

am
e

C
E

C
 (

#1
1)

LA
N

 u
si

ng
 O

S
A

-2
 o

r
O

S
A

-
E

xp
re

ss
 in

 M
P

C
 m

od
e

Fa
st

 E
th

er
ne

t

F
D

D
I

A
no

th
er

T
C

P
/IP

 o
n

sa
m

e
z/

O
S

(o
rV

TA
M

 fo
r

E
nt

er
pr

is
e

E
xt

en
de

r)

C
o

n
n

ec
ti

vi
ty

z/
O

S
 u

si
ng

 c
ha

nn
el

-t
o-

ch
an

ne
l

ad
ap

te
r

O
S

A
E

N
E

T

O
S

A
F

D
D

I

A
R

P
st

at
is

ti
cs

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

Ye
s

Ye
s

Ye
s

Ye
s

(d
es

t
IP

 a
dd

rs
)

N
o

Ye
s

n/
a

n/
a

A
R

P

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s,

 u
si

ng
 A

T
M

A
R

P
 s

er
ve

r

O
ffl

oa
de

d
to

 a
da

pt
er

O
ffl

oa
de

d
to

 a
da

pt
er

N
o

N
o

Ye
s

us
in

g
br

oa
dc

as
t

N
o

M
T

U
(#

2)

91
80

S
ee

be
lo

w

65
52

7
(#

3)

17
91

4
(#

5)

15
00

14
92

14
92

57
34

4
(#

10
)

17
91

4

89
92

14
92

43
52

81
88

(#
6)

65
51

9

20
48

32
76

4

32
75

8

55
29

6

65
53

5

S
ee

be
lo

w

40
50

59
39

2
(#

7)

40
96

(#
4)

S
ee

be
lo

w

Q
D

IO
M

u
lt

ip
le

lin
ks

Ye
s

N
o

N
o

N
o

N
o

N
oN
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

T
R

L
E

d
ef

in
it

io
n

R
es

er
ve

d
na

m
e

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

G
en

er
at

ed
by

V
TA

M

R
eq

ui
re

d

R
eq

ui
re

d

R
eq

ui
re

d

R
es

er
ve

d
na

m
e

R
eq

ui
re

d

M
u

lt
ic

as
t

su
p

p
o

rt
B

ro
ad

ca
st

su
p

p
o

rt
P

o
in

t
to

 p
o

in
t

D
yn

am
ic

X
C

F
 s

u
p

p
o

rt

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

(#
8)

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

(#
1)

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

(#
1)

Ye
s

Ye
s

Ye
s

(#
1)

Ye
s

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s(

#1
0)

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

ID
 i

n
T

C
P

IP
 p

ro
fi

le

D
ev

ic
e

nu
m

be
r

D
ev

ic
e

nu
m

be
r

D
ev

ic
e

nu
m

be
r

A
da

pt
er

 n
um

be
r

A
da

pt
er

 n
um

be
r

A
da

pt
er

 n
um

be
r

A
da

pt
er

 n
um

be
r

D
ev

ic
e

nu
m

be
r

D
ev

ic
e

nu
m

be
r

X
.2

5
pr

oc
 n

am
e

S
N

A
LI

N
K

 p
ro

c
na

m
e

S
N

A
LI

N
K

 p
ro

c
na

m
e

T
R

LE
 n

am
e

C
P

 n
am

e
of

ta
rg

et
V

TA
M

IU
T

S
A

M
E

H

T
R

LE
 n

am
e

IU
T

IQ
D

xx

O
S

A
 p

or
t n

am
e

O
S

A
 -

 E
xp

re
ss

po
rt

 n
am

e

Figure 1. Summary of device and link statements

48 z/OS V1R4.0 CS: IP Configuration Reference

2. The MTU column represents the largest MTU supported by the interface.

3. Based on the IOBUFFERSIZE value on the CTC device statement in TCP/IP
profile.

4. Based on the write buffer size value on the CLAW device statement in TCP/IP
profile.

5. This MTU value assumes 16Mb Token-Ring. (For 4Mb TR, you must configure
an MTU of 4464 or lower.)

6. Based on the read and write buffer size values on the CDLC device statement
in TCPIP profile.

7. Based on MAXBFRU value in the TRLE definition.

8. Some LCS devices (for example, old 3172s) do not support multicast.

9. Based on frame size configured in HCD.

10. Requires IPBCAST parameter on LINK statement in TCP/IP profile.

Recovery from device failures
TCP/IP automatically attempts reactivation of the non-VIPA device following some
device-failure indications (regardless of the AUTORESTART setting). Specifying
AUTORESTART causes TCP/IP to attempt reactivation following most device-failure
indications.

Note: The AUTORESTART option is meaningful only for errors that occur after the
device is active. For errors that occur before the device reaches the active
state, AUTORESTART has no effect, as such errors might likely be the result
of a configuration error (for example, incorrect device number specification
within the TCP/IP PROFILE). No automatic error correction would be
possible for such an error, and for this reason, TCP/IP initiates device
recovery only when evidence of a previously working configuration exists.
For any error encountered before the device reaches the active state, the
user should correct any configuration error and initiate a new START
DEVICE.

If automatic reactivation is attempted, the number of allowable reactivation attempts
is determined from the IPCONFIG DEVRETRYDURation setting.

DEVRETRYDURation specifies the duration of the Retry Period, during which
TCP/IP attempts automatic recovery of a device. The first reactivation attempt is
performed two seconds after the original error, and subsequent attempts are 30
seconds apart. If not successfully reactivated within the specified retry duration, the
device is returned to the INACTIVE state, and a manual START of the device is
required after the error has been corrected.

Missing interrupt handler (MIH) considerations
When multiple subchannels are used for channel-layer communications, WRITE
operations and READ operations are separated onto their own subchannels. On a
multi-subchannel device, the missing interrupt handler is automatically (by VTAM)
configured OFF on the READ subchannels. (This is necessary, as a READ
command is always active for such devices, and MIH would detect a missing
interrupt on the READ subchannels any time the device experienced an idle
period.) Therefore, there is no need for customers to specify any MIH values for
TCP/IP read devices.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 49

|

The customer should configure a reasonable MIH value for the WRITE subchannels
on a multi-subchannel device, as well as for the single subchannel on other devices
(for example, CDLC), as this protects the system from a storage-usage spike,
brought on by a hung device.

Note: An MIH value of 0, which disables MIH, for a TCP/IP write device or a
single-subchannel device is not recommended.

Reasonable values for MIH on the WRITE (or only) subchannel range from 15
seconds to 30 seconds [a value of 30 seconds might be warranted if either channel
extenders are in the configuration, or dispatching delays (due to running second
level, under VM) are possible]. For nonextended ESCON® channels, being driven
by z/OS running native, 15 seconds is the recommended MIH value.

In summary, MIH on the WRITE (or only) subchannel should be configured ON,
with a value in the range of 15 to 30 seconds for the following TCP/IP device types:

v For multi-subchannel TCP/IP device types, set MIH only on the WRITE
subchannels:

– For ATM, MPCPTP, and MPCOSA, the write subchannels are specified on the
WRITE parameter of the TRLE definition.

– For MPCIPA, the WRITE-control subchannel is specified on the WRITE
parameter of the TRLE definition.

– For LCS, CLAW, and Hyperchannel, the WRITE subchannel is device_number
+1 (where device_number is the value specified on the DEVICE statement in
the TCP/IP profile).

– For CTC, see the description of the adapter_addr parameter on the CTC LINK
statement in z/OS Communications Server: IP Configuration Guide to
determine the WRITE subchannel.

v For single-subchannel TCP/IP device types, set MIH on the single subchannel.

– For CDLC, the WRITE subchannel is the device_number value specified on
the DEVICE statement in the TCP/IP profile.

Note: To override the default MIH value for a given subchannel, use the MIH
statement in the IECIOSxx parmlib member or use the SETIOS MIH
command. Refer to z/OS MVS System Commands and z/OS MVS
Initialization and Tuning Guide for more information about the IECIOSxx
parmlib and SETIOS command, respectively.

For all other TCP/IP device types (including the XCF and IUTSAMEH types of
MPCPTP and the data devices for MPCIPA), MIH is either not applicable or is
automatically disabled by VTAM.

Relationship to VTAM configuration
z/OS CS provides a set of High Performance Data Transfer (HPDT) services that
includes MultiPath Channel (MPC), a high-speed channel interface designed for
network protocol use (for example, APPN® or TCP/IP). Multiple protocols can either
share or have exclusive use of a set of channel paths to an attached platform. The
term MPC+ is used to distinguish this multi-protocol version of MPC from earlier
versions that were restricted to APPN usage only.

MPC provides the user with the ability to have multiple device paths defined as a
single logical connection. The term MPC group is used to define a single MPC

50 z/OS V1R4.0 CS: IP Configuration Reference

connection that can contain multiple read and write paths. The number of read and
write paths do not have to be equal, but there must be at least one read and write
path defined within each MPC group.

MPC groups are defined using the Transport Resource List (TRL), where each
defined MPC group becomes an entry (that is, a TRLE) in the TRL table. The user
defines the channel paths that are a part of the group in the TRLE. Each TRLE is
identified by a resource_name. For ATM, the TRLE also has a port_name to identify
a particular ATM port. For details on defining a TRLE, refer to the z/OS
Communications Server: SNA Resource Definition Reference.

Modifying DEVICE and LINK statements
To modify any DEVICE and LINK statement values, follow these steps:

1. Stop the device.

2. Use a VARY TCP/IP command with an OBEYFILE that contains:

v A new HOME statement that does not contain the home IP address or
addresses of the LINK or LINKs involved in the DELETE

v DELETE linkname and DELETE devicename statements

3. Use a VARY TCPIP command with an OBEYFILE that contains:

v The changed DEVICE and LINK statements

v A new HOME statement that includes the home IP address or addresses of
the LINK or LINKs being added

4. Start the device.

Note: To dynamically change a value on a LINK statement only, do not perform the
DELETE devicename and redefine DEVICE steps in the above list.

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

You can add new DEVICE and LINK statements using the VARY TCPIP command.
You can also delete and redefine existing statements.

When you add new LINK statements, any corresponding BEGINROUTES,
GATEWAY, HOME, and TRANSLATE statements coded to include the new links are
treated as replacements for active statements. Therefore, when you code the
BEGINROUTES, GATEWAY, HOME, or TRANSLATE statements in the OBEYFILE
data set, be sure to include new and existing links that you want to have active in
your configuration.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 51

DEVICE and LINK statement—ATM devices
Use the DEVICE statement to specify the name of the ATM device that you use.
Use the LINK statement to define a network interface link associated with the ATM
device.

The presence of DEVICE and LINK ATM statements in your PROFILE.TCPIP
enables ATM native mode and SNMP network management support for the ATM
device. Even if an ATM device is not being used by this TCP/IP, or is being used by
TCP/IP in ATM LAN Emulation mode instead of Native mode, specifying DEVICE
and LINK statements enable you to retrieve SNMP network management data for
the ATM device. Enabling SNMP network management data for the ATM devices
also requires specification of the OSAENABLED parameter on the SACONFIG
Profile statement. For more information about SNMP OSA Management, refer to the
z/OS Communications Server: IP Configuration Guide.

You can specify multiple LINKs for an ATM device. This is so an ATM device can be
in more than one LIS.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name ATM PORTNAME port_name
ENABLEINcomingsvc

DISABLEINcomingsvc
�

�
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The device name must be the Open Systems Adapter
(OSA) name known to MPC and OSA/SF. The maximum length is eight
characters. This name, the OSA name, must match the name specified on the
transport resource list element (TRLE). For more information on the TRLE, refer
to the z/OS Communications Server: SNA Resource Definition Reference. The
same name is specified in the LINK statements.

ATM
Specifies the device is for ATM use.

PORTNAME port_name
The OSA port name. The maximum length is eight characters. This name must
match the port name specified on the transport resource list element (TRLE).
For more information on the TRLE, refer to the z/OS Communications Server:
SNA Resource Definition Reference.

Note: The PORTNAME must be the same in all instances of TCP/IP and VTAM
that share the same adaptor.

DISABLEINcomingsvc
Device cannot be used for incoming SVCs.

52 z/OS V1R4.0 CS: IP Configuration Reference

|
|

ENABLEINcomingsvc
Allow incoming SVC calls for this device; the device can be used for both
outgoing and incoming SVCs.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name ATM device_name
LIS lis_name

IFSPEED 0

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

ATM
Specifies that the link is an ATM link.

device_name
The device_name must be the same as specified in the DEVICE statement.

LIS lis_name
The logical IP subnet for this LINK. This parameter is only required if the link is
to be used for SVC connections. The maximum length is 16 characters. The
lis_name must be defined on an ATMLIS statement prior to being used on the
LINK statement.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0, the maximum value is
2 147 483 647, and the default is 0 (set dynamically). This value is accessible to
SNMP for management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0, the
maximum value is 2147, and the default ifhspeed for an ATM link is 0. This
value is accessible to SNMP for management queries, but has no effect on
operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Note: To dynamically change a value on a LINK statement only, do not perform the
DELETE devicename and redefine DEVICE steps in the above list.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 53

|
|

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

Examples
The following example specifies that OSA1 is an ATM device:
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1

Usage notes
v When an ATM device is started, TCP/IP updates the IFSPEED and IFHSPEED

values with the actual link speed of the interface.

v To see samples of commands for using dynamic routing with this device, refer to
the information about NBMA subnetworks in z/OS Communications Server: IP
Configuration Guide.

Related topics
v “ATMARPSV statement” on page 19

v “ATMLIS statement” on page 21

v “ATMPVC statement” on page 24

v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “SACONFIG statement” on page 163

v “START statement” on page 173

v “STOP statement” on page 175

v “TRANSLATE statement” on page 179

v z/OS Communications Server: IP System Administrator’s Commands

54 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

DEVICE and LINK statement—CLAW devices
Use the DEVICE statement to specify the name and hexadecimal device number of
a Common Link Access to Workstation (CLAW) device that you use. Devices that
use the CLAW protocol include RISC System/6000 and SP2®. Only one DEVICE
statement should be used for each device. Devices that use the CLAW protocol
include IBM pSeries™ servers and Cisco 7200/7500-series channel-attached
routers. Use the LINK statement to define a network interface link associated with
CLAW devices. Only one LINK statement should be used for each device.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name CLAW device_number �

� host_claw_name workstation_claw_name
NONE

PACKED

15

read_buffers
�

�
15

write_buffers

4096(Unpacked) or 32K (Packed)

read_size
�

�
4096(Unpacked) or 32K (Packed)

write_size

NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

CLAW
Specifies the device is a CLAW device.

device number
The hexadecimal device number of the RISC System/6000. TCP/IP also uses
device number + 1.

host_claw_name
A value that defines the name of the host system in the system validation
exchange between the TCP/IP code and the workstation code. This name must
match the HOSTNAME configured on the device.

The maximum length is eight characters.

workstation_claw_name
A value for the name of the workstation for the system validation exchange.
This name must match the Workstation (or Device) Name configured on the
device. The maximum length is eight characters.

NONE
This CLAW device operates in non-packed mode. This is the default.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 55

PACKED
This CLAW device operates in packed mode.

read_buffers
This is the decimal number (one or more) of buffers to allocate to the read
channel program. The minimum value that can be specified for read_buffers is
1; the maximum effective value will be limited to 256K/Read_Size, even if a
larger value is coded on this statement. This should be large enough to give
TCP/IP sufficient time to process the received data and append the buffer to the
running channel program before it terminates. Each of these buffers uses real
storage, so the number should be small enough not to impact overall system
performance. The default is 15.

write_buffers
This is the decimal number (one or more) of buffers to allocate to the write
channel program. The minimum value that can be specified for write_buffers is
1; the maximum effective value will be limited to 256K/Write_Size, even if a
larger value is coded on this statement. This should be large enough that a
busy TCP/IP can reuse buffers without the channel program terminating. Each
of these buffers uses real storage, so the number should be small enough not
to impact overall system performance. The default is 15.

read_size
This is the size of the read buffers. If non-packed mode is specified, values are:

v 1024

v 2048

v 3072

v 4096

If packed mode is specified, the valid values for the read_size parameter are:

v 32K

v 60K

The default for non-packed mode is 4096. The default for packed mode is 32K.

Use the following guidelines for selection read_size:

Unpacked mode
When configuring CLAW to communicate with RISC System/6000,
choose the read_size value that matches the transmit buffer size
configured on the channel adapter (this is usually 4096, unless the
administrator has overridden this setting on the adapter). When
configuring CLAW to communicate with a Cisco 7200-series or
7500-series router in non-packed mode, always specify a read_size of
4096. For other CLAW devices, refer to the documentation for the
device.

Packed mode
When running workloads that involve bulk-data transfer inbound, the
60K read_size value delivers a higher throughput than the 32K value.
However, this larger buffer will consume more REAL storage than the
32K setting.

write_size
This is the size of the write buffers. If non-packed mode is specified, values are:

v 1024

v 2048

56 z/OS V1R4.0 CS: IP Configuration Reference

v 3072

v 4096 or 4K

If packed mode is specified, the valid values for the write_size parameter are:

v 32K

v 60K

The default for UnPacked mode is 4096. The default for Packed mode is 32K.

Use the following guidelines for selection write_size:

Unpacked mode
When configuring CLAW to communicate with RISC System/6000,
choose the write_size value that matches the receive buffer size
configured on the channel adapter (this is usually 4096, unless the
administrator has overridden this setting on the adapter). When
configuring CLAW to communicate with a Cisco 7200-series or
7500-series router in non-packed mode, always specify a read_size of
4096. For other CLAW devices, refer to the documentation for the
device.

Packed mode
When running workloads that involve bulk-data transfer outbound, the
60K write_size value will deliver a higher throughput than the 32K
value; however, the larger buffer will consume more REAL storage than
the 32K setting.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name IP 0 device_name
P2MP

IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

IP A constant.

0 A constant.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

P2MP
Treat this CLAW link as a point-to-multipoint link. The default is point-to-point.
Point-to-multipoint RIP neighbors with which OMPROUTE will exchange routing

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 57

|
|
|

information are learned through RIP_INTERFACE NEIGHBOR statements or
upon receipt of an RIP update from the same-subnet neighbor.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 100 000 000. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 100. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Examples
This example shows how you might code DEVICE, LINK, and related statements
for a RISC System/6000 connection.
DEVICE RS6K CLAW 6B2 HOST PSCA NONE
LINK IPLINK1 IP 0 RS6K
HOME

192.10.10.1 IPLINK1

GATEWAY
;
; Network First hop Driver Packet size Subnet mask Subnet value

192.10.10.2 = IPLINK1 DEFAULTSIZE HOST
DEFAULTNET 192.10.10.2 IPLINK1 DEFAULTSIZE 0

; The following BSDROUTINGPARMS statement would be used if running OROUTED
;
; link maxmtu metric subnet mask dest addr
BSDROUTINGPARMS false

IPLINK1 2000 0 255.255.255.0 192.10.10.2
ENDBSDROUTINGPARMS
;

START RS6K

Usage notes
v At the time of this writing, the Cisco 7200 series routers with Channel Port

Adapters (ECPAs or PCPAs) and the Cisco 7500 series routers with Channel
Interface Processors (CIPs) support CLAW in packed mode. Refer to the Cisco
configuration documentation to determine how to configure CLAW in packed
mode on the channel interface.

The prerequisite microcode from Cisco is cip26-17 or xcpa26-17 for 12.0 IOS
releases and cip27-11 or xcpa27-11 for 12.1 IOS releases; also, any future image
that has the following problems resolved: CSCds19174 and CSCds24793.

v If PACKED operation is specified, z/OS CS ensures READ and WRITE buffer
sizes of at least 32K, and enforces an MTU of 4096 bytes on the z/OS side of
the channel.

v If the z/OS server running the CLAW device driver is a second-level (Virtual not
equal Real) guest on a VM system, certain elements of the CLAW protocol will

58 z/OS V1R4.0 CS: IP Configuration Reference

|
|

be transparently disabled. In particular, the effects of extending the channel
program will not be seen, and this may result in a higher interrupt rate with
potentially lower throughput. Other than this slightly degraded performance, the
CLAW device driver will be functional in a Virtual-Not-Equal-Real guest.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 59

DEVICE and LINK statement—CTC devices
Use the DEVICE statement to specify the name and hexadecimal device number of
the channel-to-channel (CTC) devices that you use. Use the LINK statement to
define a network interface link associated with the CTC devices. You must use a
separate DEVICE statement for each device you use. The same is true for the LINK
statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name CTC base_device_number
IOBUFFERSIZE 32768

IOBUFFERSIZE buffer_size
�

�
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

CTC
Specifies the device is a channel-to-channel (CTC) device.

base_device_number
The hexadecimal base device number associated with the CTC adapter. Two
numbers are used by TCP/IP: the base_device_number and
base_device_number+1.

IOBUFFERSIZE buffer_size
Specifies the I/O buffer size. The buffer size must be 32K (minimum), 32 768
(default), or 65 535 (maximum).

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name CTC adapter_addr device_name
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

60 z/OS V1R4.0 CS: IP Configuration Reference

|
|

Parameters
link_name

The name of the link. The maximum length is 16 characters.

CTC
Specifies that the link is a channel-to-channel link.

adapter_addr
An integer used to specify whether the DEVICE statement’s parameter,
base_device_number, is the read device number or the write device number.
Use 0 to indicate that the base device number is the read device and 1 to
indicate that the base_device_number is the write device.

device_name
The device_name must be the same as specified in the DEVICE statement.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed for a CTC link is 0; the
maximum value is 2 147 483 647. The default is 4 500 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed for a CTC
link is 0; the maximum value is 2147. The default is 4. This value is accessible
to SNMP for management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Usage notes
The configured I/O buffer sizes at each end of the CTC connection must match. A
buffer size mismatch can cause packet loss or I/O errors, resulting in deactivation of
the CTC connection. CTC I/O buffer size can be explicitly specified with the
IOBUFFERSIZE parameter.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

v z/OS Communications Server: IP System Administrator’s Commands

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 61

DEVICE and LINK statement—HYPERchannel A220 devices
Use the DEVICE statement to specify the name and hexadecimal device number of
the HYPERchannel A220 device.

Use the LINK statement to define the link to the HYPERchannel A220 adapter.

The TRANSLATE statement is required for HYPERchannel A220 devices.

Some token-ring hardware does not recognize the RFC 1469 mandated functional
MAC address for multicast. The TRANSLATE statement can be used to configure a
token-ring link to broadcast multicast datagrams as an alternative to using the
functional MAC address. Use the reserved class D address 224.0.0.0 with one of
the following special physical addresses:

v FFFFFFFFFFFF for all rings broadcast

v C00000040000 to reset back to the default functional address

The following are examples of how to specify each method:

v All rings:
TRANSLATE

224.0.0.0 IBMTR FFFFFFFFFFFF linkname

v Assigned functional address:
TRANSLATE

224.0.0.0 IBMTR C00000040000 linkname

Note: The TRANSLATE statement is effective on a per link basis. You do not have
to code a TRANSLATE statement if you want the assigned functional
address, as it is the default method.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVICE device_name HCH base_device_number
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

HCH
Specifies the device is a HYPERchannel A220.

base_device_number
The hexadecimal base device number (in the range of 0-FFFF) associated with
the A220 adapter. Two addresses are used by TCP/IP: the
base_device_number and base_device_number+1.

AUTORestart
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

62 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

NOAUTORestart
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name HCH adapter_addr device_name
IFSPEED 50000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

HCH
Specifies that the link is a HYPERchannel A220.

adapter_addr
Must be an integer, but the value is ignored. This parameter is included for
consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed for a hyperchannel link is 0; the
maximum value is 2 147 483 647. The default is 50 000 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed for a
hyperchannel link is 0; the maximum value is 2147. The default is 50. This
value is accessible to SNMP for management queries, but has no effect on
operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Usage notes
v The ATTENTION+BUSY and unit check conditions are normally handled in the

background and can affect performance without any visible evidence. The
recommendations on HYPERchannel A222 and A223 Mode Switch Settings are:

– The Disable Attentions setting on the HYPERchannel box eliminates the
ATTENTION+BUSY status in response to read commands, which reduces
overhead.

– The Enable Command Retry setting reduces the number of unit checks
needed because of trunk contention. This setting improves performance,
because the TCP/IP device driver waits 10 milliseconds before retrying a

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 63

command that produced a unit check. This setting also eliminates the need to
perform sense operations and retry commands.

v To use dynamic routing with this device, see the NBMA subnetworks information
(Non_Broadcast parameter) in “OSPF_INTERFACE statement” on page 265 and
refer to z/OS Communications Server: IP Configuration Guide for examples.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

v “TRANSLATE statement” on page 179

v z/OS Communications Server: IP System Administrator’s Commands

64 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

DEVICE and LINK statement—LAN Channel Station and OSA devices
Use the DEVICE statement to specify the name and hexadecimal device number of
an IBM 8232 LAN Channel Station (LCS) device, an IBM 3172 Interconnect
Controller, an IBM 2216 Multiaccess Connector Model 400, an IBM FDDI, Ethernet,
Token-Ring OSA, or an IBM ATM OSA-2 in LAN emulation mode.

Use the LINK statement to define a network interface link associated with an LCS
device. The LINK statements used are the Ethernet Network LCS LINK statement,
the Token-Ring Network or PC Network LCS LINK statement, and the FDDI LCS
LINK statement.

You must use a separate LINK statement for each link associated with an LCS
device.

Note: Each network interface on the OSA adapter is considered a separate
DEVICE. For example, if you are using both ports on the OSA-2 card, you
need to code a DEVICE and LINK pair for each port.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name LCS device_number
NONETMAN

NETMAN
�

�
IOBUFFERSIZE 20480

IOBUFFERSIZE buffer_size

NOAUTORESTART

AUTORESTART
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified on the LINK statements.

LCS
Specifies the device is a LAN Channel Station.

device_number
The hexadecimal device number (in the range of 0–FFFF) of the LCS.
device_number +1 is also used by the TCP/IP address space.

NETMAN
Specifies that this device is a 3172 that supports the IBM Enterprise-specific
MIB variables for 3172.

Note: NETMAN must be coded before IOBUFFERSIZE.

NONETMAN
Specifies that this device is not used for NETMAN data retrieval.

IOBUFFERSIZE buffer_size
Specifies the I/O buffer size. The buffer size must be 20K, 20480, 32K, or
32 768.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 65

|
|

Notes:

1. The configured I/O buffer sizes for the host and for the device must match.
A buffer size mismatch can cause packet loss or I/O errors, which results in
the deactivation of the LCS connection.

2. If the LCS device supports an option to configure a 32K buffer size, then
configuring both the device and the TCP/IP profile to 32K provides the best
performance. If the device does not support this option, then specify (or
default) to 20K in the TCP/IP profile.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

LINK statement for ethernet network LCS
This LINK statement is used to define an Ethernet link on an IBM 3172 Interconnect
Controller and IBM 8232 LAN Channel Station (LCS) or OSA device.

Syntax

�� LINK link_name ETHERNet
802.3
ETHEROR802.3

link_number device_name �

�
IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

ETHERNET
Standard Ethernet protocol only.

802.3
IEEE 802.3 protocol only.

ETHERor802.3
Both standard Ethernet and IEEE 802.3 protocols.

Note: When ETHERor802.3 is specified, address resolution packets (ARP) for
both protocols are generated. All devices on the network must be able to
process or discard these packets.

link_number
The relative adapter number (0 for the first Ethernet protocol network in the
LCS, 1 for the second Ethernet protocol network, and so on). If defining OSA,
this value is the port number on the OSA adapter.

66 z/OS V1R4.0 CS: IP Configuration Reference

device_name
The device_name must be the same name as specified in the DEVICE
statement. The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed for an LCS link is 0, the
maximum value is 2 147 483 647. The default is 4 000 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed for an LCS
link is 0, the maximum value is 2147. The default is 4. This value is accessible
to SNMP for management queries, but has no effect on operation of the device.

LINK statement for token-ring network or PC network LCS
The token-ring LCS LINK statement is used to define the token-ring link to the LCS
(IBM 8232 or IBM 3172) or OSA device previously defined by the LCS DEVICE
statement. By default, the token-ring LCS LINK statement is also used to define the
PC Network link.

Medium Access Control (MAC) addresses in the Address Resolution Protocol (ARP)
packets on this token-ring network are in the more common, noncanonical format.

Note: All TCPIP hosts and gateways on a given token-ring network must be
configured to use the same form for MAC addresses in ARP packets, either
canonical or noncanonical. For more information about the terms, canonical
and noncanonical, see IEEE standards 802.3 and 802.5.

Syntax

�� LINK link_name IBMTR link_number device_name �

�

1

NONCANONical ALLRINGsbcast

CANONical
NONCANONical
ALLRINGsbcast
LOCALBcast

IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

IBMTR
Specifies that the link is to an IBM Token-Ring.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 67

link_number
The relative adapter number (0 for the first token-ring adapter in the LCS, 1 for
the second token-ring, and so on). If defining OSA, this value is the port
number on the OSA adapter.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

CANONical
MAC addresses in Address Resolution Protocol (ARP) packets on this
token-ring network are in the canonical IEEE 802.5 form.

NONCANONical
MAC addresses in ARP packets on this token-ring network are in the more
common noncanonical format. This is the default.

ALLRINGsbcast
All IP and ARP broadcasts are sent as all-rings broadcasts, which are
propagated through token-ring bridges (Source Route Bridging). This is the
default.

LOCALBcast
All IP and ARP broadcasts are sent only on the local ring and are not
propagated through token-ring bridges (Transparent Bridging).

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second.
This value is accessible to SNMP for management queries, but has no effect on
operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. This value is accessible to SNMP for management queries, but
has no effect on operation of the device.

LINK statement for FDDI LCS
This LINK statement is used to define the Fiber Distributed Data Interface (FDDI)
link to the LCS (IBM 3172 Models 002 and 003) or OSA device defined by the LCS
DEVICE statement.

Syntax

�� LINK link_name FDDI link_number device_name
IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

FDDI
Specifies that the link is to an FDDI network.

link_number
The relative adapter number (0 for the first FDDI adapter in the LCS, 1 for the
second FDDI adapter, and so on). If defining OSA, this value is the port number
on the OSA adapter.

68 z/OS V1R4.0 CS: IP Configuration Reference

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second.
This value is accessible to SNMP for management queries, but has no effect on
operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. This value is accessible to SNMP for management queries, but
has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Examples
v In this example, LCS1 is a 3172 model 1 with a Token-Ring and Ethernet

adapter.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
LINK ETH1 ETHERNET 1 LCS1

v In this example, LCS2 is a 3172 model 2 with an FDDI adapter.
DEVICE LCS2 LCS BE0
LINK FDDI1 FDDI 0 LCS2

v This example shows how you might code DEVICE, LINK, and related statements
for an LCS connection.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
LINK TR2 IBMTR 1 LCS1 LOCALBCAST
LINK ETH1 ETHERNET 0 LCS1
HOME

192.10.10.10 TR1
9.67.43.10 TR2
128.50.17.1 ETH1

GATEWAY
;
; Network First hop Driver Packet size Subnet mask Subnet value

192.10.10 = TR1 2000 0
9 = TR2 2000 0.255.255.0 0.67.43.0
128.50 = ETH1 1500 0.0.240.0 0.0.16.0
DEFAULTNET 9.67.43.1 TR2 DEFAULTSIZE 0

; The following BSDROUTINGPARMS statement would be used if running OROUTED.
; If not running OROUTED, use prior gateway stats.
;
; ; link maxmtu metric subnet mask dest addr
; BSDROUTINGPARMS false
; TR1 2000 0 255.255.255.0 0
; TR2 2000 0 255.255.255.0 0
; ETH1 1500 0 255.255.240.0 0
; ENDBSDROUTINGPARMS
;

START LCS1

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 69

v In this example of an OSA-2 card, LCS1 is Token-Ring Port 0 and LCS2 is an
ETHERNET Port 1.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
DEVICE LCS2 LCS BA2
LINK ETH1 ETHERNET 1 LCS1

Usage notes
v An OSA Address Table (OAT) Entry containing the HOME IP address for each

potential OSA backup link should be defined in the OAT, when fault tolerance is
achieved on the LAN without a dynamic routing protocol.

v Some environments implement OSA Port Sharing. In those environments,
decisions about OAT configuration are needed. Specifically, in Port Sharing
Mode, configure the OAT so that all destination IP addresses that are to be
handled by the TCP/IP stacks share the port. Datagrams and ARP packets that
do not match these configured IP addresses are either:

– Discarded by the adapter

– If a PRIMARY or SECONDARY entry is defined in the OAT, the unrecognized
packets are presented to the PRIMARY or SECONDARY TCP/IP Stacks.

Refer to OSA Planning for more information.

IBM recommends the OSA Address Table be configured as follows:

– Always configure an OAT Entry containing the TCP/IP HOME address
associated with the LINK defined in the TCP/IP Profile.

– If Virtual IP Addressing (VIPA) is in use on the LAN, configure OAT Entries
that contain the TCP/IP stack’s Virtual IP Addresses.

– OSA-2 allows two TCP/IP Stacks sharing the port to act as IP routers: a
PRIMARY Stack and a SECONDARY Stack. When a packet with an
unrecognized (not configured) destination IP address is received, OSA-2
presents the packet to the TCP/IP stack configured as PRIMARY (if that stack
is available). If the PRIMARY stack is not available, OSA-2 presents the
packet to the stack configured as SECONDARY (if that stack is available).

To enable a TCP/IP stack to act as a router, then, one of the OAT entries defined
in step 1 must be defined as PRIMARY, and the TCP/IP stack acting as
PRIMARY must enable IP FORWARDING (IPCONFIG DATAGRAMFWD in the
TCP/IP Profile). Likewise, if a second stack is to back up the PRIMARY z/OS
router, one of the OAT entries defined in step 1 must be configured as
SECONDARY, and the stack acting as SECONDARY must enable IP
FORWARDING.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

v “TRANSLATE statement” on page 179

70 z/OS V1R4.0 CS: IP Configuration Reference

DEVICE and LINK statement—MPCIPA devices
When defining an MPCIPA device, use the DEVICE statement to specify the PORT
name contained in the TRLE definition for the QDIO interface. The TRLE must be
defined as MPCLEVEL=QDIO. For details on defining a TRLE, refer to the z/OS
Communications Server: SNA Resource Definition Reference.

Use the LINK statement to define a network interface link associated with the QDIO
interface. Only one LINK statement can be specified for each MPCIPA device.

When you start an MPCIPA device, TCP/IP registers the entire set of local (home)
IPv4 addresses for this TCP/IP instance to OSA-Express. This allows the device to
route datagrams destined for those IPv4 addresses to this TCP/IP instance. If a
datagram is received at this device for an unknown IP address, the device routes
the datagram to the TCP/IP instance defined as PRIROUTER. If there is no active
TCP/IP instance defined as PRIROUTER, the device routes the datagram to one of
the TCP/IP instances that successfully activated as SECROUTER. If no active
TCP/IP instance using this device is defined as PRIROUTER or SECROUTER, the
device discards the datagram.

If you subsequently add, delete, or change any home IPv4 addresses on this
TCP/IP instance, TCP/IP dynamically registers the changes to OSA-Express.

For OSA-Express Gigabit or OSA-Express QDIO Fast Ethernet adapters, the
presence of DEVICE and LINK MPCIPA statements in your PROFILE.TCPIP
enables SNMP Network Management support for Ethernet data. This Ethernet
SNMP support is not available for OSA-Express ATM155 QDIO adapters in LAN
Emulation mode that are defined to TCP/IP as IPAQENET links. Even if the device
is not being used by this TCP/IP, specifying DEVICE and LINK statements enables
you to retrieve SNMP network management data for the device. The link interface
must be active for the management data to be retrieved. Enabling of SNMP network
management data for the device also requires specification of the OSAENABLED
parameter on the SACONFIG Profile statement.

For detailed instructions on setting up an OSA-Express feature, see the S/390:
OSA-Express Customer’s Guide and Reference.

To determine the OSA-Express microcode level, use the DISPLAY TRL command.
For more information, refer to z/OS Communications Server: SNA Operation.

For more information about configuring SNMP devices, refer to the SNMP
information in z/OS Communications Server: IP Configuration Guide.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name MPCIPA
NONRouter

PRIRouter
SECRouter

NOAUTORestart

AUTORestart
�

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 71

|
|
|
|
|
|
|
|
|

|
|

Parameters
device_name

The name of the device. The device name must be the PORT name of the LAN
adapter defined in a TRLE for a QDIO connection. The maximum length is eight
characters.

MPCIPA
Specifies the device belongs to the MPC family of interfaces and uses the IP
Assist based interface.

NONROUTER
If a datagram is received at this device for an unknown IP address, the
datagram is not routed to this TCP/IP instance. This is the default.

PRIROUTER
If a datagram is received at this device for an unknown IP address, the
datagram is routed to this TCP/IP instance.

SECROUTER
If a datagram is received at this device for an unknown IP address and there is
no active TCP/IP instance defined as PRIROUTER, then the datagram can be
routed to this TCP/IP instance. In this case, OSA will only route to one of the
active TCP/IP instances that is defined with SECROUTER. This parameter
indicates the OSA will consider this TCP/IP instance to be one of the secondary
routers.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

LINK statement for OSA-Express Gigabit Ethernet and QDIO Fast Ethernet

Syntax

�� LINK link_name IPAQENET device_name
IPBCAST

IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

IPAQENET
Indicates that the link uses the IP Assist based interface, belongs to the QDIO
family of interfaces, and uses the Gigabit Ethernet or Fast Ethernet protocol.

Note: IPAQGNET is accepted for migration purposes.

device_name
The device_name must be the same as specified in the DEVICE statement.

72 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|

IPBCAST
Specifies that the link will both send and receive IP broadcast packets. If this
parameter is not specified, no IP broadcast packets will be sent or received on
this link.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed for an MPCIPA link is 0; the
maximum value is 2 147 483 647. The default is 100 000 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed for an
MPCIPA link is 0; the maximum value is 2147. The default is 100. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

Syntax

�� LINK link_name IPAQTR device_name
NONCANONical

CANONical

ALLRINGsbcast

LOCALBcast
�

�
IPBCAST

IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

IPAQTR
Indicates that the link uses the IP Assist based interface, belongs to the QDIO
family of interfaces, and uses the Token Ring protocol.

device_name
The device_name must be the same as specified in the DEVICE statement.

CANONICAL
MAC addresses in Address Resolution Protocol (ARP) packets on this
token-ring network are in the canonical IEEE 802.5 form.

NONCANONICAL
MAC addresses in ARP packets on this token-ring network are in the more
common non-canonical format. This is the default.

ALLRINGSBCAST
All IP and ARP broadcasts are sent as all-rings broadcasts, which are
propagated through token-ring bridges (Source Route Bridging). This is the
default.

LOCALBCAST
All IP and ARP broadcasts are sent only on the local ring and are not
propagated through token-ring bridges (Transparent Bridging).

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 73

|
|
|
|

IPBCAST
Specifies that the link will both send and receive IP broadcast packets. If this
parameter is not specified, no IP broadcast packets will be sent or received on
this link.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second.
This value is accessible to SNMP for management queries, but has no effect on
operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. This value is accessible to SNMP for management queries, but
has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Usage notes
v In order to configure a single physical device for both IPv4 and IPv6 traffic, you

must use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for the
IPv6 definition, such that the PORTNAME value on the INTERFACE statement
matches the device_name on the DEVICE statement.

v If using VIPA and when connecting an OSA-Express Gigabit Ethernet device to a
intelligent bridge or switch, ensure that the (STP) Spanning Tree Protocol is
enabled (for example, PORTFAST feature on Cisco devices) on the intelligent
bridge or switch. This prevents failures during recovery giveback of a previously
failed link. With VIPA, a takeover occurs when a link is severed, and the IP
address and workload are taken over by another OSA-Express Ethernet device.
However, when the original path is returned to operation, the traffic is taken back.
When STP is disabled, packets can get lost in the network and VIPA does not
work properly. Although STP can cause a network to fail as result of a physical
looping condition, use care in the bridge or switch configuration to avoid or
minimize this condition. For more information using STP, refer to the bridge or
switch operational manual.

v Across one central processor complex (CPC), PRIROUTER can only be specified
in the profile of one TCP/IP instance for the same MPCIPA device. If
PRIROUTER is specified for an MPCIPA device but was already specified for the
same device in the profile of another active TCP/IP instance, a warning message
is issued during START DEVICE processing for the device. Depending on the
level of OSA-Express being started, either only one or multiple TCP/IP instances
may be allowed to have SECROUTER specified. If OSA only allows one
secondary router, any TCP/IP instance subsequently starting that device with
SECROUTER will receive a warning message during START processing for the
device. If OSA allows multiple secondary routers, then OSA may select any
TCP/IP instance which specifies SECROUTER as the secondary router. There is
no requirement that the same TCP/IP instance be specified PRIROUTER or
SECROUTER for all OSA-Express adapters attached to the CPC.

v MPCIPA devices have an ARP offload function that offloads all ARP processing to
the OSA-Express adapter. For some MPCIPA devices, TCP/IP cannot display any
ARP cache information or ARP counter statistics because OSA-Express does not
provide this data to TCP/IP.

74 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

Note: For more information about devices that support ARP offload, refer to
z/OS Communications Server: IP Configuration Guide.

v When an MPCIPA device is started, TCP/IP updates the IFSPEED and
IFHSPEED value with the actual link speed of the interface.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “INTERFACE statement—IPAQENET6 interfaces” on page 114

v “SACONFIG statement” on page 163

v “START statement” on page 173

v “STOP statement” on page 175

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 75

|

DEVICE and LINK statement—MPCIPA HiperSockets devices
When defining an MPCIPA HiperSocket device, also known as an iQDIO device,
use the DEVICE statement to specify the IQD CHPID hexadecimal value. The
reserved device name using prefix IUTIQDxx must be specified. The suffix xx
indicates the hexadecimal value of the corresponding IQD CHPID that was
configured within HCD. MPCIPA iQDIO devices do not have a corresponding TRLE.
Instead, the TRLE is dynamically built when the device is started. There is no
PORT name used for iQDIO MPCIPA devices. The NONROUTER, PRIROUTER,
SECROUTER parameters do not apply to an iQDIO device and will be ignored if
specified on the MPCIPA statement.

To determine the HiperSockets microcode level, use the DISPLAY TRL command.
For more information, refer to z/OS Communications Server: SNA Operation.

The hexadecimal value specified here cannot be the same value that is used for the
Dynamic XCF iQDIO interface. Refer to the IQDCHPID start option in the z/OS
Communications Server: SNA Resource Definition Reference.

Use the LINK statement to define a network interface link associated with the iQDIO
interface. Only one LINK statement can be specified for each MPCIPA iQDIO
device.

Syntax

�� DEVice device_name MPCIPA
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device must use the following convention:

v Prefix is IUTIQD.

v Suffix xx [hexadecimal value (00x - FFx) of the corresponding IQD CHPID].
This value cannot conflict with the IQD CHPID used for dynamic XCF.

MPCIPA
Specifies the device belongs to the MPC family of interfaces and uses the IP
Assist based interface.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name IPAQIDIO device_name �

76 z/OS V1R4.0 CS: IP Configuration Reference

Parameters
link_name

The name of the link. The maximum length is 16 characters.

IPAQIDIO
Indicates that the link uses the IP Assist based interface, belongs to the QDIO
family of interfaces, and uses the iQDIO protocol.

device_name
The device_name must be the same as specified in the DEVICE statement.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “SACONFIG statement” on page 163

v “START statement” on page 173

v “STOP statement” on page 175

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 77

DEVICE and LINK statement—MPCOSA devices
When defining a multipath channel MPCOSA connection, use the DEVICE
statement to specify the TRLE name of an HPDT connection. Use the LINK
statement to specify Fast Ethernet OSA-2 or FDDI OSA-2.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name MPCOSA
NOAUTORestart

AUTORestart
�

Parameters
device_name

For MPCOSA connections, the device_name must be the name of the TRLE
definition that corresponds to the OSA-2 configuration. You need to use
OSA/SF to configure the OSA-2 to run in HPDT MPC mode. The TRLE is
defined in a VTAM TRL major node and must be active to start the device. For
details on defining a TRLE, see the z/OS Communications Server: SNA
Resource Definition Reference.

The maximum length is eight characters.

MPCOSA
Specifies that the device is a multipath channel MCPOSA device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name OSAFDDI link_number device_name
OSAENET

�

�
IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters. The link name is
associated with a home address on the HOME statement.

78 z/OS V1R4.0 CS: IP Configuration Reference

OSAFDDI
Specifies that the link is for MPCOSA FDDI OSA-2.

OSAENET
Specifies that the link is for MPCOSA Fast Ethernet OSA-2.

link_number
Specifies the OSA link_number of this interface and identifies the external
attachment to a LAN supported by the OSA using the IP protocol.

Note: The only link number supported is 0.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is eight characters.

IFSPEED ifspeed
An optional estimate of the interfaces current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 100 000 000. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interfaces current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 100. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Usage notes
v MPCOSA devices have an ARP offload function that offloads all ARP processing

to the OSA-2 adapter. TCP/IP cannot display any ARP cache information or ARP
counter statistics for these devices because OSA-2 does not provide this data to
TCP/IP.

v MPCOSA devices cannot be configured to accept IP packets destined to an IP
address other than the IP address of the OSA-2 adapter. For example, IP
packets destined to a Virtual IP Address (VIPA) owned by this TCP/IP is not
delivered by the OSA-2 adapter.

v MPCOSA devices do not support multicast or broadcast.

v To use dynamic routing with this device, refer to the NBMA subnetworks
information in z/OS Communications Server: IP Configuration Guide.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

v z/OS Communications Server: IP System Administrator’s Commands

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 79

DEVICE and LINK statement—MPCPTP devices
When defining a High Performance Data Transfer (HPDT) connection, use the
DEVICE statement to specify the name of the TRLE definition for the multipath
channel (MPC) group. Also, the TRLE must be defined as MPCLEVEL=HPDT.

When defining an Enterprise Extender connection to the VTAM instance running on
this host, use the DEVICE statement to define an IUTSAMEH interface. IUTSAMEH
can also be used to define a connection between two TCP/IP stacks on the same
system, and the MPCPTP device and link statements can be used to define XCF
connections between two TCP/IP stacks in the same sysplex. For more information
on configuring Enterprise Extender, refer to z/OS Communications Server: SNA
Network Implementation Guide.

Use the LINK statement to define a network interface link associated with an MPC
group when defining an HPDT connection, or a network interface link associated
with the IUTSAMEH interface when defining an Enterprise Extender connection.

The recommended way to define XCF and IUTSAMEH connections is to use the
IPCONFIG DYNAMICXCF statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVice device_name MPCPTP
NOAUTORestart

AUTORestart
�

Parameters
device_name

For HPDT MPC connections to an IBM 2216 Multiaccess Connector Model 400,
an IBM RS/6000®, or another z/OS host, the device_name must be the TRLE
name of an HPDT connection. The TRLE is defined in a VTAM TRL major node
and must be active to start the device. For details on defining a TRLE, see the
z/OS Communications Server: SNA Resource Definition Reference.

The maximum length is eight characters.

The reserved TRLE name IUTSAMEH can be used to bring up an MPCPTP
connection between two TCP/IP stacks on the same system without the need
for a physical device connection between the two stacks. The reserved TRLE
name IUTSAMEH can also be used to define an Enterprise Extender
connection to the VTAM instance running on this host. If you are defining an
Enterprise Extender connection, the device name must be IUTSAMEH.

Note: VTAM automatically activates the IUTSAMEH TRLE.

For XCF connections, the device_name must be the cpname of the target
VTAM on the other side of the XCF connection, and the VTAM ISTLSXCF
major node must be active in both nodes to start the device. If connectivity is to
a pre-R8 node, the XCF TRLE must also be active.

Note: The ISTLSXCF major node is created by VTAM dynamically.

80 z/OS V1R4.0 CS: IP Configuration Reference

This value is also specified for device_name in the MPCPTP LINK statement.

MPCPTP
Specifies the device is a multipath channel point-to-point device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name MPCPTP device_name
CHECKSUM

NOCHECKSUM
�

�
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters. The link name is
associated with a home address on the HOME statement.

MPCPTP
Specifies that the link is for MPCPTP.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is eight characters.

CHECKSUM
Inbound checksum calculation is performed for all packets received on this
interface. This is the default.

NOCHECKSUM
Inbound checksum calculation is not performed for any packets received on this
interface.

The CHECKSUM or NOCHECKSUM setting affects only the inbound TCP/IP
data path. This setting has no effect upon the outbound path (checksum
calculation is always performed outbound).

While a performance gain can be achieved by specifying NOCHECKSUM, it is
recommended that NOCHECKSUM be specified only for single-hop MPCPTP
links (that is, where application traffic terminates in the adjacent node), such as
z/OS to RS/6000 point-to-point connections. In such a configuration, the z/OS
channel provides a reliable data path, thereby minimizing the need for TCP/IP
checksum in detecting transmission errors.

Note also that the TCP/IP checksum is useful in detecting software errors at the
sending side, so it is further recommended that NOCHECKSUM be specified
only when the sending-side software is considered reliable.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 81

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value for ifspeed is 0; the maximum value is 2 147 483 647. The
default is 4 500 000. This value is accessible to SNMP for management
queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 4. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Usage notes
v IUTSAMEH definition is required if you plan to use the Enterprise Extender

function and the TCP/IP stack you are configuring is used for access to the IP
network by VTAM on this host.

v If you start an MPCPTP device and the device does not become active and
TCP/IP issues no messages in response to the start request, ensure that the
remote end of this HPDT MPC connection is active. Even though the TRLE is
active and a start device request was initiated, VTAM holds the TCP/IP start
request waiting for the remote side of the HPDT MPC connection to become
active.

v For installations that plan on dedicating the MPC group for exclusive use by a
single TCP/IP stack, improved performance can be achieved by explicitly defining
the MPC group as MPCUSAGE=EXC. For additional information on the
MPCUSAGE keyword, see the z/OS Communications Server: SNA Resource
Definition Reference.

v For information about direct route restrictions, see “GATEWAY statement” on
page 96.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v DYNAMICXCF in “IPCONFIG statement” on page 123

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

82 z/OS V1R4.0 CS: IP Configuration Reference

DEVICE and LINK statement—SNA LU0 links
Use the DEVICE statement to specify the name of the address space running the
SNALINK program and the remote SNA LU name of the 3745 Communications
Controller to which an Ethernet or token-ring is attached. These statements are
required for NCPROUTE.

Use the LINK statement to define the link on the SNA LU type 0 DEVICE
statement.

Note: Use this method to configure TCP/IP to access the 3745 adapter through
SNALINK.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVICE device_name SNAIUCV SNALINK lu_name proc_name �

�
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

SNAIUCV SNALINK
Specifies that the connection operates as an SNA LU type 0.

lu_name
The logical unit (LU) name of the remote end. The maximum length is eight
characters.

proc_name
The name of the SNALINK started procedure that runs on the host end. The
maximum length is eight characters.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 83

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

There must be only one LINK statement for each SNA LU type 0 device statement.

Parameters
link_name

The name of the link. The maximum length is 16 characters.

SAMEHOST
Specifies that the DEVICE for SNA LU type 0 support uses a SAMEHOST
connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
Must be an integer, but its value is ignored. This parameter is included for
consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 56 000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Examples
In this example, SNALU0 is an SNA Link.
DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINK
LINK SNA1 SAMEHOST 1 SNALU0

Usage notes
You can specify multiple LU0 DEVICE statements for the same SNALINK started
procedure. A single LU0 address space can support multiple SAMEHOST links. A
SAMEHOST link is created for each pair of LU0 DEVICE and LINK statements.

However, you must specify a different lu_name for each DEVICE statement. This
value is passed to the LU0 application to establish a session with a remote LU of
that name.

84 z/OS V1R4.0 CS: IP Configuration Reference

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 85

DEVICE and LINK statement—SNA LU 6.2 links
Use the DEVICE statement to specify the name of the started procedure running
the SNALINK LU 6.2 interface program.

Use the LINK statement to define the link to the SNALINK LU 6.2 Interface
program. There must be only one LINK statement for each SNA LU type 6.2
DEVICE statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVICE device_name SNALU62 proc_name
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

SNALU62
Specifies that the connection operates by an SNA LU type 6.2 session.

proc_name
The name of the SNALINK started procedure (on this node) that controls the
device. The maximum length is eight characters.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

86 z/OS V1R4.0 CS: IP Configuration Reference

Parameters
link_name

The name of the link. The maximum length is eight characters. The same name
is specified in the SNALINK LU 6.2 configuration data set (hlq.PROFILE.TCPIP)
to identify this link.

SAMEHOST
A constant that specifies that the device for SNA LU type 6.2 support uses a
SAMEHOST connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
Must be an integer, but the value is ignored. This parameter is included for
consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 56 000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “START statement” on page 173

v “STOP statement” on page 175

v z/OS Communications Server: IP System Administrator’s Commands

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 87

DEVICE and LINK statement—X.25 NPSI connections
Use the DEVICE statement to specify the name and address of the X.25 NPSI
interface program devices that you use. Use the LINK statement to define a
network interface link associated with the X.25 NPSI interface program devices.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVICE device_name X25NPSI proc_name
NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

X25NPSI
Specifies that the device is an X.25 NPSI.

proc_name
The name of the X.25 NPSI server started procedure. The maximum length is
eight characters.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Note: Only one DEVICE and LINK statement per TCPIPX25 address space is
allowed.

Syntax

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

88 z/OS V1R4.0 CS: IP Configuration Reference

SAMEHOST
Specifies that the connection to X.25 NPSI is established using a SAMEHOST
connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
Must be an integer, but its value is ignored. This parameter is included for
consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 56000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Examples
This example shows how you might code DEVICE, LINK, and related statements
for an X.25 connection.
DEVICE X25DEV X25NPSI TCPIPX25
LINK X25LINK SAMEHOST 1 X25DEV
;
HOME

199.005.058.23 X25LINK
;
GATEWAY
;
; Network First Hop Link name Packet size Subnet mask Subnet Value

192.005 = X25LINK 2000 0.0.255.0 0.0.58.0
;
START X25DEV
;

Usage notes
To use dynamic routing with this device, refer to the NBMA subnetworks information
in z/OS Communications Server: IP Configuration Guide.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 89

v “START statement” on page 173

v “STOP statement” on page 175

v Chapter 11, “TN3270 Telnet Server” on page 333

90 z/OS V1R4.0 CS: IP Configuration Reference

DEVICE and LINK statement—VIRTUAL devices
Use the DEVICE statement to specify the device name of a static virtual device,
and use the LINK statement to define the link on the DEVICE statement.

More than one virtual DEVICE/LINK statement can be defined to allow for multiple
virtual IP addresses on one TCP/IP image in one MVS system.

This statement applies to IPv4. See “INTERFACE statements” on page 113 for this
function in IPv6.

Syntax

�� DEVice device_name VIRTual device_number �

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

VIRTUAL
Specifies that the device is not associated with real hardware and is used for
fault tolerance support. The static virtual devices always stay active and are
never subject to physical failure.

device_number
Must be a hexadecimal number, but the value is ignored. This parameter is
included for consistency with the DEVICE statements for other device types.

Syntax

�� LINK link_name VIRTual adapter_address device_name �

Only one LINK statement can be defined for each virtual device.

Parameters
link_name

The name of the link. The maximum length is 16 characters. The same name is
specified in the HOME statement.

VIRTUAL
Specifies that the link is a virtual link that is not associated with real hardware
and is used for fault tolerance support.

adapter_address
Must be an integer, but the value is ignored. This parameter is included for
consistency with the LINK statements for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 91

|
|

Note: The steps in this section which talk about stopping and starting the device do
not apply to virtual devices.″

Examples
DEVICE VDEV1 VIRTUAL 0
LINK VLINK1 VIRTUAL 0 VDEV1
DEVICE VDEV2 VIRTUAL 1
LINK VLINK2 VIRTUAL 0 VDEV2

Usage notes
v A virtual LINK cannot be coded on the START, BEGINROUTES, GATEWAY or

TRANSLATE statements, but can be coded on a BSDROUTINGPARMS
statement for interface characteristics such as subnet mask.

v For rules on defining virtual IP addresses for virtual links, see “HOME statement”
on page 107.

v If you are running with 3172s configured for multihost connectivity (release 3.5
and later) and wish to use VIPA addresses on the host, then you must configure
the 3172 as one of the following:

– As a default router (routes all IP addresses)

– Configure all VIPA addresses in the 3172

Related topics
v “BSDROUTINGPARMS statement” on page 37

v “HOME statement” on page 107

v “IPCONFIG statement” on page 123

v “VIPADYNAMIC statement” on page 185

92 z/OS V1R4.0 CS: IP Configuration Reference

DEVICE and LINK statement—3745/46 channel DLC devices
Use the DEVICE statement to specify the name and hexadecimal device number of
the channel data link control (CDLC) devices that you use. Use the LINK statement
to define a network interface link associated with the CDLC devices.

If the device is running NCP V7R3 and dynamic routing is to be performed,
SNALINK must be configured to carry RIP transport PDUs:

v NCP V7R3 does not support native IP transmission across the channel of the
transport PDUs associated with RIP traffic (NCP V7R3 expects these PDUs to be
carried in SNA Frames). SNALINK is still required in environments where
dynamic routing is performed with the NCP V7R3 (using NCPROUTE).

To minimize the amount of data sent across the SNALINK (LUO) connection (as
SNALINK consumes more CPU than does IP over CDLC), it is recommended
that the RIP Filter be used to cause RIP updates to be sent across the channel,
while the associated transport PDUs (Route Table Management, for example,
Handshaking, Add Route Request, Delete Route Request) are carried over the
SNALINK connection.

v If the device is running NCP V7R3 or above, or if the device is a 3746 model
950, SNALINK is not required (all IP and RIP traffic can be transported over
TCP/IP’s direct CDLC link).

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler (MIH) considerations” on page 49.

Syntax

�� DEVICE device_name CDLC device_number
15

read_buffers
�

�
15

write_buffers

4096

read_size

4096

write_size

NOAUTORestart

AUTORestart
�

Parameters
device_name

The name of the device. The maximum length is 16 characters. The same
name is specified in the LINK statement.

CDLC
Specifies that this device is to run the CDLC protocol.

device_number
The hexadecimal device number (in the range of 0–FFFF) of the CDLC device.

read_buffers
The decimal number of buffers to allocate to the read channel program. The
default is 15. The minimum is 1 and the maximum is 63. The product of
read_buffers times read_size must be less than or equal to 65 535. If the
product of these configured variables exceeds 65 535, TCP/IP reduces
read_buffers to the integer 65 535/read_size.

write_buffers
The decimal number of buffers to allocate to the write channel program. The
minimum is 1 and the maximum is 63. The product of write_buffers times

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 93

|

write_size must be less than or equal to 65 535. The default is 15. If the
product of these configured variables exceeds 65 535, TCP/IP reduces
write_buffers to the integer 65 535/write_size.

read_size
The size in bytes (decimal) of the read buffers. The default is 4096. Valid values
are 1024, 2048, 4096, 6144, 8192.

write_size
The size in bytes (decimal) of the write buffers. The default is 4096. Valid
values are 1024, 2048, 4096, 6144, 8192.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovery from device failures”
on page 49.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that the
TCP/IP address space does not attempt to reactivate this device.

Syntax

�� LINK link_name CDLC adapter_addr device_name
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Parameters
link_name

The name of the link. The maximum length is 16 characters.

CDLC
Specifies that the link is a channel DLC.

adapter_addr
Must be an integer, but the value is ignored. This parameter is included for
consistency with the LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.

IFSPEED ifspeed
An optional estimate of the interface’s current bandwidth in bits per second. The
minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 4 500 000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface’s current bandwidth in one million bits per
second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 4. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Modifying
See “Modifying DEVICE and LINK statements” on page 51 for modifying
information.

94 z/OS V1R4.0 CS: IP Configuration Reference

Usage notes
For a buffer size of 8192, the maximum number of buffers is 7. For a buffer size of
6144, the maximum number of buffers is 10. For a buffer size of 4096, the
maximum number of buffers is 15. For a buffer size of 2048, the maximum number
of buffers is 31. For a buffer size of 1024, the maximum number of buffers is 63.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “HOME statement” on page 107

v “STOP statement” on page 175

v “START statement” on page 173

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 95

GATEWAY statement

Note: The GATEWAY statement applies to IPv4 only.

Use the GATEWAY statement to add static routes to the IP Route Table. If you
prefer to specify static routes in BSD style syntax or need to define IPv6 routes, see
the “BEGINROUTES statement” on page 28.

Note: A GATEWAY statement and a BEGINRoutes-ENDRoutes block cannot be
intermixed in the same configuration data set. If they are intermixed, the first
type found is used and the other type is discarded with warning messages
being issued to the console. You can use a GATEWAY statement in the initial
profile and a BEGINRoutes-ENDRoutes block in a later OBEYFILE data set,
and vice versa.

The IP route table can be modified in the following ways:

v Replace the routing table using the VARY OBEY command.

v Use incoming ICMP redirect packets if redirects have not been disabled on
IPCONFIG statement.

v Incoming ICMP Fragmentation Needed packets can replace IPv4 static routes if
PathMTUDiscovery was enabled on IPCONFIG.

v Dynamic routing daemons (OMPROUTE, OROUTED) can replace IPv4
replaceable static routes (add by way of the BEGINROUTES statement) as well
as add dynamic routes to the routing table.

The first GATEWAY statement of each configuration data set executed replaces all
the static routes in the existing routing table with the new gateway information. All
static routes are deleted as well as any dynamic route added due to ICMP redirect
or ICMP Fragmentation Needed, but routes created by OMPROUTE or OROUTED
are not deleted. Subsequent GATEWAY statements in the same data set add
entries to the routing table.

Notes:

1. If OMPROUTE or OROUTED is running, static routes defined by the GATEWAY
statement cannot be deleted by OMPROUTE or OROUTED. If you want
OMPROUTE or OROUTED to manage all routes, an empty GATEWAY
statement can be used to eliminate the static routes. OMPROUTE or
OROUTED discover them dynamically. If you want to define static routes to be
replaceable by OMPROUTE with dynamic routes, use the BEGINROUTES
statement.

2. VIPA links are not allowed on the GATEWAY statement.

3. When an incorrect entry in a GATEWAY statement is encountered, it is
discarded along with the remaining entries in the GATEWAY statement. All
routes defined before the incorrect entry will be added to the IP Route Table.
Subsequent GATEWAY statements are processed normally. When an incorrect
GATEWAY statement entry is encountered, the remaining entries are ignored.
Subsequent GATEWAY statements in the same profile or obeyfile are
processed.

4. A specific host route takes precedence over a subnetwork route, followed by a
network route, followed by a supernetwork route, and finally, a default route.

5. The only direct route that can be used with an MPCPTP link is one where the
destination host address is the IP address of the remote MPCPTP link. To add a
route to another IP address on the remote host (which can be VIPA) over this
MPCPTP link, you need to add an indirect route. This indirect route should be a

96 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

destination equal to another IP address, where the first_hop is equal to the IP
address of the remote MPCPTP link and link_name is the name of the local
MPCPTP link.

6. GATEWAY statements can only be coded for LINK names that exist when the
statement is processed.

Syntax

�� GATEWAY 1 Gateway List Entry �

Gateway List Entry:

Gateway Network Specification
Gateway Host Specification
Gateway Default Network Specification

�

� Gateway List Entry Options

Gateway Network Specification:

network first_hop
=

link_name max_packet_size
DEFAULTSIZE

�

� subnet_mask subnet_value
0

Gateway Host Specification:

host first_hop link_name max_packet_size HOST
= DEFAULTSIZE

Gateway Default Network Specification:

DEFAULT
first_hop link_name max_packet_size

DEFAULTSIZE
0

Gateway List Entry Options:

MAXImumretransmittime 120.00

MAXImumretransmittime seconds

MINImumretransmittime 0.50

MINImumretransmittime seconds
�

�
ROUNDTRIPGain 0.125

ROUNDTRIPGain value

VARIANCEGain 0.25

VARIANCEGain value
�

�
VARIANCEMultiplier 2.00

VARIANCEMultiplier value

DELAYAcks

NODELAYAcks

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 97

|
|

Parameters
network

The IP address in dotted-decimal form.
v An example of a class A network is 9.0.0.0.
v An example of a class B network is 129.34.0.0.
v An example of a class C network is 192.9.100.0.

Use the subnet_mask and subnet_value fields to completely define the route.
Multiple network routes having an identical destination IP address and address
mask can be specified. When multiple routes are specified, all of them are used
when multipath is enabled on IPCONFIG statement; otherwise, only the first
route specified is used.

first_hop
Specify one of the following:

v An equal sign (=), meaning that datagrams are routed directly to destinations
on that network or directly to that host. This is not supported for DEFAULT.

v The Internet address of a gateway or router that you can reach directly, and
that forwards datagrams for the destination network or host. The address
must be a host address that uniquely identifies the gateway or router. The IP
address must be a fully qualified address in the form a.b.c.d.

link_name
The name of the link through which packets are sent to the specified network.
The link name is defined in a LINK statement.

max_packet_size
The maximum transmission unit (MTU) in bytes for the network or host. This
value can be up to 65 535.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each interface.

The DEFAULTSIZE keyword sets the max_packet_size to 576. This value is the
minimum MTU that an IPv4 network should use.

subnet_mask
A bit mask (expressed in dotted-decimal form) having bits in the network
portions or host portions, or both, that defines the subnet mask associated with
the route. If a route to the network is not subnetted, specify a subnet_mask of 0
and omit the subnet_value. For a specific host route, specify a subnet_mask of
HOST and omit the subnet_value. For subnetted and supernetted routes, the
subnet mask can be in several forms depending upon the VARSUBNETTING
setting in the ASSORTEDPARMS or IPCONFIG statement as follows:

v VARSUBNETTING

Variable-length subnet masks can be used in a single network; that is,
multiple subnets having the same network number can have different subnet
masks. For a subnet route, specify the network portion as zeros, the
subnet_mask in the host portion, and the subnet_value. The bits in the
subnet mask must be contiguous from left to right.

A supernet route is the grouping of several network routes together. The
supernet_mask is a bit mask of the low-order bits that are removed from the
network class mask when forming the supernet. For example, to group
together all Class C networks that have the same first two octets, 192.208,
take the Class C network mask, 255.255.255.0, determine the low order bits
to be removed from the network mask (in this case, the third octet) and use
that to form the supernet_mask, 0.0.255.0.

98 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

Note: The mask bits of all ones in the host portion cannot be used for the
subnet mask.

The valid values are:

v A dotted decimal bit mask

v 0

v Host

subnet_value
Value of the subnet. Each subnet should have a unique dotted-decimal
representation. Do not include the subnet_value field if the subnet_mask is 0,
HOST, or contains a supernet mask.

If the network has one or more subnets, specify a separate entry in the
GATEWAY statement for each subnet. The network part of each GATEWAY
entry is identical (contains the IP network address as if the network has no
subnets). The subnet_mask part of each GATEWAY entry might be identical,
but the subnet_value varies.

host
The host address, specified as 4 octets (192.9.100.3, for example). If a host
address is specified, the keyword HOST must be specified in place of the
subnet_mask field, and the subnet_value field must be omitted. Multiple host
routes having an identical destination IP address and address mask can be
specified. When multiple routes are specified, all of them are used when
multipath is enabled on IPCONFIG statement; otherwise, only the first route
specified is used.

DEFAULT
Multiple DEFAULT entries can be specified, allowing for multiple default routes.
When multiple routes are specified, all of them are used when multipath is
enabled on IPCONFIG statement; otherwise, only the first route specified is
used.

Retransmit Parameters

The following parameters affect the TCP retransmit algorithms. When TCP packets
are not acknowledged, TCP begins to retransmit these packets at certain time
intervals. If these packets are not acknowledged after a certain number of
retransmits, TCP closes the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets. For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet will be
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and will be
retransmitted 15 times before the connection is timed out. All of the parameters
listed below affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

MAXIMUMRETRANSMITTIME
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 99

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

MINIMUMRETRANSMITTIME
Sets a minimum retransmit interval. Increasing this value may increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
999.990. The default is 0.5 (500 milliseconds).

ROUNDTRIPGAIN
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be
specified for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is
0.125. This parameter does not affect initial connection retransmission.

VARIANCEGAIN
This value is the percentage of the latest RTT variance from the RTT average
to be applied to the RTT variance average. The higher this value, the more
influence the latest packet’s RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25 . This parameter does not affect initial connection
retransmission.

VARIANCEMULTIPLIER
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2. This parameter does not affect initial connection retransmission.

DELAYACKS
Delays transmission of acknowledgments when a packet is received with the
PUSH bit on in the TCP header. The DELAYACKS parameter on the GATEWAY
statement only applies to the TCP protocol and only affects acknowledgments
returned to the foreign host. To delay acknowledgments on a TCP/IP port
connection, use the DELAYACKS parameter on the PORT statement. This is
the default.

NODELAYACKS
Specifies that an acknowledgment is returned immediately.

Modifying
To modify any values on the GATEWAY statement, use a VARY TCPIP command
with an OBEYFILE that contains a new GATEWAY statement. All existing static
routes are deleted along with all routes learned by way of ICMP Redirects and
ICMP Fragmentation Needed, but routes created by OMPROUTE and OROUTED
are not deleted. To remove all static routes from the IP routing table, specify an
empty GATEWAY statement. Refer to z/OS Communications Server: IP System
Administrator’s Commands for more information about the VARY TCPIP commands.

Notes:

1. If any links in a HOME statement are deleted, all routes that correspond with
the LINK names are deleted.

2. If a LINK becomes inactive, then all routes that are associated with that link will
be marked inactive.

100 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

3. If a LINK becomes active, then all static routes that are associated with that link
will be marked active.

Usage notes
v The first GATEWAY statement of each profile or OBEYFILE deletes only IPv4

routes. If there are IPv6 static routes added in a previous profile/obeyfile, they
are not deleted.

v Packet size considerations:

– The max_packet_size varies for different networks. For example, the largest
packet size for the Ethernet protocol network is 1500 bytes while the largest
packet size for the IEEE 802.3 protocol network is 1492 bytes.

– The actual packet size is determined by the total network connection.

- If a locally attached host has a packet size smaller than yours, transfers to
that host use the smaller size.

- The TCP maximum segment size for the 3172 Interconnect Controller
Program is 4096. Any packet specifications over 4096 are limited by this
restriction. For example, if you specified a packet size of 4352, the resulting
packet size would still only be 4096 + the header = 4132.

– Large packets can be fragmented by intervening gateways. Fragmentation
and reassembly of packets are expensive in their use of bandwidth and CPU
time. Therefore, packets sent through gateways to other networks should use
the default size, DEFAULTSIZE, unless all intervening gateways and networks
are known to accept larger packets or unless you enable
PATHMTUDISCOVERY on IPCONFIG which will dynamically learn the
maximum MTU for the total network connection.

– You cannot specify an MTU smaller than the default MTU size. For IPv4, the
default MTU is 576.

– For example, the router to network 192.8.4 is reached through router
14.0.0.10., and somewhere along the path, packets larger than 576 bytes are
fragmented. You can improve throughput by using the following GATEWAY
statement:

GATEWAY
; Network first-hop link packet-size subnet-mask

192.8.4 14.0.0.10 LINK1 576 0

v Considerations for retransmission parameters:

The retransmission parameters allow system administrators who are familiar with
TCP/IP transmission performance to alter the flow of TCP/IP data packets and
acknowledgments. Normally,
– TCP typically waits to receive two packets before sending one ACK to

acknowledge the data within them.
– When TCP sends a packet, it waits for an acknowledgment. If it times out

before getting an acknowledgment, it resends the packet.

With the following parameters you can adjust the retransmission time out
calculations to allow for slower transmission so that packets are not resent as
quickly.

DELAYACKS
MAXIMUMRETRANSMITTIME
MINIMUMRETRANSMITTIME
NODELAYACKS
ROUNDTRIPGAIN
VARIANCEGAIN
VARIANCEMULTIPLIER

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 101

|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

TCP uses these values in an algorithm called the TCP Retransmission Timeout
Calculation to calculate the average round-trip time. As a result of this
calculation, TCP/IP:

– Uses the minimum round-trip time if the calculated round-trip time is less than
the MINIMUMRETRANSMITTIME.

– Uses the average round-trip time if round-trip time is greater than or equal to
the MINIMUMRETRANSMITTIME but less than or equal to the
MAXIMUMRETRANSMITTIME.

– Uses the maximum round-trip time if round-trip time is greater than the
MAXIMUMRETRANSMITTIME.

You can specify ROUNDTRIPGAIN, VARIANCEGAIN, and
VARIANCEMULTIPLIER to tell TCP how heavily it should weigh the most recent
behavior of the network versus the long term behavior. If you specify smaller
values for these parameters, then TCP attempts to correct for congestion only if
the congestion is sustained. With larger values, TCP corrects for congestion
more quickly, and the system is more sensitive to variations in network
performance. It is recommended that you use the default values (unless you find
your retransmission rate is too high).

Use DELAYACKS to delay the acknowledgments so that they can be combined
with data sent to the foreign host.

v If the routing table is empty, all addresses in the HOME list are still
route-capable. For information on testing commands with LOOPBACK, see the
z/OS Communications Server: IP User’s Guide and Commands.

v The subnet_mask must follow the Classless Inter-Domain Routing (CIDR)
convention that requires the actual mask to be one or more on-bits followed by
zero or more off-bits. You cannot have on-bits followed by off-bits followed by
on-bits. Therefore, a class A subnet mask of 0.255.254.0 is valid (an actual mask
of 255.255.254.0 or FFFFE00), but a class A subnet mask of 0.255.253.0 is not
valid (an actual mask of 255.255.253.0 or FFFFD00) because 253 is 11111101.

v Static indirect routes cannot be added to the routing table if the route does not
exist to the first hop. To ensure that the indirect static routes are processed
correctly, code the direct route for the first hop gateway first:
GATEWAY
9 = U42TR 4096 0.255.192.0 0.67.0.0
9.67.128.87 9.67.17.10 U42TR 4096 HOST
9.67.128.117 9.67.17.10 U42TR 4096 HOST
9.67.134.212 9.67.17.10 U42TR 4096 HOST

The static direct route allows the stack to process the indirect routes during
initialization.

v There is no limit on the number of equal-cost multipath routes to a destination.

v Multicast routes can be specified using host specification. A general multicast
default route can be specified using the multicast group address of 224.0.0.0:
GATEWAY

;Host First hop Link packet size

224.0.0.0 = LINK1 DEFAULTSIZE HOST

Specific multicast group routes can also be specified:

102 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

GATEWAY

;Host First hop Link packet size

224.1.1.1 = LINK2 DEFAULTSIZE HOST

The order of precedence for determining the route of an outbound multicast
datagram is as follows:

1. Application uses setsockopt() IP_MULTICAST_IF to specify the interface to
use.

2. Specific multicast group route specified.

3. Multicast network or prefix route.

4. General multicast default group address specified (224.0.0.0). This is for IPv4
only.

5. If DEFAULT is specified and the link or interface is multicast capable, this
route is used.

Given the preceding two sample GATEWAY statements and assuming the
application does not code the setsockopt() IP_MULTICAST_IF, one of the
following occurs:

– If an application sends a datagram to 224.2.2.2, LINK1 is used.

– If an application sends a datagram to 224.1.1.1, LINK2 is used.

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “IPCONFIG statement” on page 123

v z/OS Communications Server: IP System Administrator’s Commands

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 103

|
|

|
|

|

GLOBALCONFIG statement
Use the GLOBALCONFIG statement to pass global configuration parameters to
TCP/IP.

Note: It is recommended that the ASSORTEDPARMS statement not be used with
GLOBALCONFIG; otherwise, unintended settings might occur. See the
following parameter descriptions for more information.

Syntax

�� GLOBALCONFig 1

ECSALimit 0K

ECSALimit ecsa_limitK
ECSALimit ecsa_limitM

POOLLimit 0K

POOLimit pool_limitK
POOLLimit pool_limitM

NOTCPIPStatistics

TCPIPStatistics

�

Parameters
ECSALimit escalimit K | M

Specifies the maximum amount of extended common service area (ECSA) that
TCP/IP can use. This limit can be expressed as a number followed by a K
(which represents 1024 bytes), or a number followed by an M (which represents
1 048 576 bytes). If the K suffix is used, ecsa_limit must be in the range of
10240K and 2 096 128K inclusive or 0. If the M suffix is used, ecsa_limit must
be in the range of 10M and 2047M inclusive or 0. The default is no limit, and it
can be specified as 0 K or 0 M. The minimum value for ECSALIMIT and
POOLLIMIT is not allowed to be set to a value if the current storage in use
would be greater than or equal to 80% of that value (for example, not allowed
to set it such that there is an immediate storage shortage).

ECSALIMIT ensures that TCP/IP does not overuse common storage. It is
intended to improve system reliability by limiting TCP/IP’s storage usage. The
limit must account for peak storage usage during periods of high system activity
or TCP/IP storage abends might occur. The limit does not include storage used
by communications storage manager (CSM). CSM ECSA storage is managed
independently of the TCP/IP ECSALIMIT. Refer to z/OS Communications
Server: SNA Network Implementation Guide for more information about CSM.

Specifying a nonzero ECSALIMIT enables warning messages EZZ4360I,
EZZ4361I, and EZZ4362I to appear if a storage shortage occurs.

POOLLimit poollimit K | M
Specifies the maximum amount of authorized private storage that TCP/IP can
use within the TCP/IP address space. This limit can be expressed as a number
followed by a K (which represents 1024 bytes), or a number followed by an M
(which represents 1 048 576 bytes). If the K suffix is used, pool_limit must be in
the range of 10240K and 2 096 128K inclusive or 0. If the M suffix is used,

104 z/OS V1R4.0 CS: IP Configuration Reference

|
|

pool_limit must be in the range of 10M and 2047M inclusive or 0. The default is
no limit, and it can be specified as 0K or 0M. The minimum value for
ECSALIMIT and POOLLIMIT is not allowed to be set to a value if the current
storage in use would be greater than or equal to 80% of that value (for
example, not allowed to set it such that there is an immediate storage
shortage).

POOLLIMIT ensures that TCP/IP does not overuse its authorized private
storage. Most systems can use the default POOLLIMIT (no limit). Systems with
limited paging capacity can use POOLLIMIT to help limit TCP/IP storage usage.
If the limit is used, it must account for peak storage usage during periods of
high system activity or TCP/IP storage abends might occur.

Note: POOLLIMIT can be higher than the REGION size on the TCP/IP start
procedure because POOLLIMIT applies to authorized storage, whereas
REGION applies to unauthorized storage.

Specifying a nonzero POOLLIMIT enables warning messages EZZ4364I,
EZZ4365I, and EZZ4366I to appear if a storage shortage occurs.

TCPIPSTATISTICS
Prints the values of several TCP/IP counters to the output data set designated
by the CFGPRINT JCL statement. These counters include number of TCP
retransmissions and the total number of TCP segments sent from the MVS
TCP/IP system.

The TCPIPSTATISTICS parameter is confirmed by the message:
EZZ0613I TCPIPSTATISTICS IS ENABLED

Note: This parameter is identical to the ASSORTEDPARMS TCPIPSTATISTICS
parameter (see “ASSORTEDPARMS statement” on page 15). The
SMFCONFIG TCPIPSTATISTICS parameter (see “SMFCONFIG
statement” on page 166) serves a different purpose. It requests that SMF
records of subtype 5 containing TCP/IP statistics be created. These
statistics are recorded in SMF type 118 or 119, subtype 5 records.

If TCPIPSTATISTICS is also specified on an ASSORTEDPARMS statement, the
setting from the last statement processed is used. For example, if
NOTCPIPSTATISTICS is specified on a GLOBALCONFIG statement, but
TCPIPSTATISTICS is specified on a subsequent ASSORTEDPARMS statement,
the values of the statistical TCP/IP counters are printed to the output data set
specified by the CFGPRINT JCL statement.

NOTCPIPSTATISTICS
Indicates that the TCP/IP counter values are not to be written to the output data
set designated by the CFGPRINT JCL statement.

The NOTCPIPSTATISTICS parameter is confirmed by the message:
EZZ0613I TCPIPSTATISTICS IS DISABLED

This is the default.

Modifying
To modify parameters for the GLOBALCONFIG statement, you must respecify the
statement with the new parameters.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 105

|
|

|

|
|
|
|
|
|

|

Examples
This example shows the use of the NOTCPIPSTATISTICS parameter on the
GLOBALCONFIG statement.
GLOBALCONFIG NOTCPIPSTATISTICS

Related topics
v “ASSORTEDPARMS statement” on page 15

v “SMFCONFIG statement” on page 166

106 z/OS V1R4.0 CS: IP Configuration Reference

HOME statement
The HOME statement provides the list of home IPv4 addresses and associated link
names.

Notes:

1. The HOME statement applies to IPv4 only. Use the INTERFACE statement to
specify an IPv6 address. See “INTERFACE statements” on page 113 for more
information.

2. The HOME list is limited to 255 non-loopback, non-VIPA entries for the SMTP,
PASCAL API, OMPROUTE, and ORouteD applications.

Syntax

�� HOME 1

internet_addr link_name
�

Parameters
internet_addr

The Internet address valid for this host. The Internet address can be associated
with a physical or VIPA link. The Internet address must be specified in
dotted-decimal form.

link_name
The name of the link defined in a previous LINK statement (or the reserved
name LOOPBACK) that is associated with the home address.

Modifying
To modify the HOME statement, use a VARY TCPIP command with an OBEYFILE
that defines a new HOME statement.

Notes:

1. If you use the HOME statement to change the IP addresses of any links, you
should stop and restart the affected devices.

2. The first HOME statement of each configuration data set executed replaces the
existing HOME list with the new list; subsequent HOME statements in the same
data set add entries to the list. However, dynamically defined HOME list entries
created by XCF dynamics, or VIPADEFine, or by bind() specifying an IP address
within a currently valid VIPARange statement, are not deleted by a new HOME
statement. Dynamically created home list entries can be displayed with the
NETSTAT HOME command. The dynamic XCF home list entry can be
recognized by a linkname beginning with EZAXCF and EZASAMEMVS. The
dynamic VIPA home list entries can be recognized by a linkname beginning with
VIPL followed by the hex value of its IP address.

3. If any HOME statement values were dynamically changed, all static routes that
correspond with the LINK names in the GATEWAY or BEGINROUTES
statements are deleted.

4. If you respecify the HOME list by using the V TCPIP,,OBEYFILE command, and
you had previously specified the PRIMARYINTERFACE statement, and want to
preserve the PRIMARYINTERFACE that was previously specified, you must
include your PRIMARYINTERFACE statement in the same OBEYFILE data set
that contains the new HOME list. If you respecify the HOME list and do not

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 107

|
|

|
|
|

|
|
|
|
|

include the original PRIMARYINTERFACE statement, the primary interface is
reset to the first entry in the new HOME list.

Usage notes
v A HOME address used by an ATM LINK referencing an ATMLIS should be within

the logical IP subnetwork defined by the LIS subnet_value and subnet_mask. If it
is not within the subnetwork, the link cannot be used for sending or receiving any
ATM SVC traffic.

v Only one home address can be associated with a link. If the same link is
specified in more than one HOME list entry, only the home address in the last
entry is associated with the link. The only exception to this is the LOOPBACK
link. In addition to 127.0.0.1, multiple home entries are accepted for LOOPBACK.

A link_name of LOOPBACK defines the IP address to use for LOOPBACK. No
DEVICE or LINK statement is needed for LOOPBACK, and it cannot be started
or stopped (LOOPBACK is always active).

You can use LOOPBACK in the HOME list only to define additional LOOPBACK
addresses. If you try to redefine the default LOOPBACK address of 127.0.0.1, it
is flagged as a duplicate entry.

Notes:

1. To improve server application performance, use a non-loopback home
address instead of a loopback address. This can result in improved
throughput for applications that reside on the same MVS system and
communicate with one another on the same TCP/IP stack.

2. IP addresses from 127.0.0.128 through 127.0.0.255 are reserved for IBM use
and cannot be coded on the HOME statement as the IP address of any
interface, including LOOPBACK.

v The primary interface IP address is used as the source IP address in the IP
header of an outgoing packet if no other source IP address can be found. If the
PRIMARYINTERFACE statement is not specified, the first address in the HOME
list is the default local address. This default local address is a value obtained by
the GETHOSTID() function.

v If the first HOME statement of a profile contains no entries, then all IP addresses
that were specified in a HOME statement from a previous profile are removed
from the HOME list.

v When an incorrect HOME entry is encountered, all entries following that entry on
that HOME statement are ignored. Subsequent HOME statements are
processed.

v When defining static VIPA addresses, observe the following rules and
recommendations:

– It is recommended that a primary VIPA address be coded as first in the
HOME list or be coded on the PRIMARYINTERFACE statement to serve as
the default local address for use by the GETHOSTID() function.

In general, the static VIPA addresses can be coded in any order in the HOME
list; however, if you specify SOURCEVIPA on the ASSORTEDPARMS or
IPCONFIG statement, the order of the VIPA addresses is important in terms of
how source IP addresses are used for outbound datagrams originating at the
host. In this case, observe the following rules:

- In the HOME list, the static VIPA address that immediately precedes a
physical IP address is used as the source IP address.

- If static VIPA addresses are coded after all of the physical IP addresses, no
VIPA addresses are used as the source IP address.

108 z/OS V1R4.0 CS: IP Configuration Reference

|
|

– A static VIPA address must be a unique host address in the network and not
be a duplicate of any physical IP address in the network.

– If using RIP services (OMPROUTE, OROUTED) and Host Routing
Broadcasting is not supported by adjacent routers (that is, inability to learn
host routes), the following restrictions for VIPA addresses must be applied in
order to benefit from fault tolerance support:

- If you use subnetting and VIPA addresses are in the same network as the
physical IP addresses, the subnetwork portion of any VIPA addresses must
not be the subnetwork portion of any physical IP addresses in the network.
In this case, assign a new subnetwork for the VIPA address.

- If subnetting is not used on any physical interface, the network portion of
any VIPA address must not be the network portion of any physical IP
address in the network. In this case, assign a new network for the VIPA
address, preferably a class C network address.

– If using RIP services (OMPROUTE, OROUTED) and adjacent routers support
receiving host routes from the RIP responses for routing updates, the network
or subnetwork portions of VIPA addresses can be the same across multiple
z/OS TCP/IP stacks in the network. See Chapter 6, “OMPROUTE” on
page 255 or Appendix A, “OROUTED server” on page 887 for more
information about how to include the optional host routes in the RIP
responses for routing updates on the RIP services.

– More than one VIPA address can be defined in one network or subnetwork.

– You can use the VIPA address as the primary or only destination for the name
of a z/OS server on the domain name server. A workstation on the network
would use the z/OS server name (translated into the VIPA address) to access
applications on the z/OS server.

v While a VIPA address can be assigned to each TCP/IP stack in one z/OS image,
it is recommended that an internal point-to-point link (for example, CTC) be
defined between the stacks. This ensures that the VIPA address in one z/OS
TCP/IP stack attached to a failing adapter/controller (for example, 3172) can be
reached by way of another z/OS TCP/IP stack channel-attached to the same
controller through another adapter or to another controller across the
point-to-point link.

v For more information on what routing protocols to use to achieve nondisruptive
TCP-connection fault tolerance, refer to the VIPA information in z/OS
Communications Server: IP Configuration Guide.

v If you are using a name server to resolve host names by way of UDP and any
of the related resolver configuration files have only one name server address
coded that specifies a VIPA address, the host the name server is running on
must be configured to use SOURCEVIPA.

Examples
This example shows a HOME statement that defines the IP addresses of each link
in the host.
HOME

151.4.1.2 TR2
192.1.1.1 VIPA1
130.50.75.1 TR1
193.5.2.1 ETH1
192.2.1.1 VIPA2
9.67.43.110 FDDI1
193.7.2.1 SNA1

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 109

VIPA1 and VIPA2 are examples of static VIPA links associated with static VIPA
addresses, while others are examples of physical links associated with physical IP
addresses. If you specify SOURCEVIPA on the IPCONFIG or ASSORTEDPARMS
statement, VIPA1 serves as the VIPA address for TR1 and ETH1, and VIPA2 for
links FDDI1 and SNA1. TR2, because there is no VIPA definition preceding it in the
HOME list, is not affected by SOURCEVIPA. The VIPA addresses are used in the
outbound IP datagrams. For more information, see “IPCONFIG statement” on
page 123 and “ASSORTEDPARMS statement” on page 15.

The following example shows the definition of an additional LOOPBACK address:
HOME 9.67.113.105 CTCD00 ; CTC IP address for this system

14.0.0.0 LOOPBACK ; additional LOOPBACK address

If using the SOURCEVIPA option for the outbound datagrams originating at a z/OS
TCP/IP stack, see the following example.

Select a VIPA address in the HOME statement to provide as the local address. The
address that closely precedes a physical IP address is used as the local address.
For example:
HOME

172.2.1.1 VIPA1 ; <-- Source for ETH1 and TR1
151.2.3.1 ETH1
151.4.1.1 TR1
172.2.1.2 VIPA2 ; <-- Source for ETH2 and TR2
151.2.3.2 ETH2
151.4.1.2 TR2

Optionally, additional VIPA addresses can be defined to associate a group of
interfaces and serve as local addresses. In the example above, VIPA1 is associated
with ETH1 and TR1, and VIPA2 is associated with ETH2 and TR2.

If an outbound datagram is not to contain a SOURCEVIPA address for a particular
interface (that is, use a physical IP address), then use the following example:
HOME

151.4.1.1 TR1 ; <-- No SOURCEVIPA for outbound on TR1
172.2.1.1 VIPA ; <-- Source for ETH1 and TR2
151.2.3.1 ETH1
151.4.1.2 TR2

Figure 2 shows the various TCP/IP protocols when a SOURCEVIPA address is
used as a local address. Y indicates that the SOURCEVIPA address is used as the
local address, and N indicates that the SOURCEVIPA address is not used as the
local address.

Destination

Local Interface
Local network
Remote network

ICMP

N
Y
Y

TCP

N
Y
Y

RAW

N
Y*
Y*

UDP

N
Y*
Y*

'*' = Except for routing applications

Figure 2. Source VIPA usage chart

110 z/OS V1R4.0 CS: IP Configuration Reference

Related topics
v “BEGINROUTES statement” on page 28

v “BSDROUTINGPARMS statement” on page 37

v “GATEWAY statement” on page 96

v “PRIMARYINTERFACE statement” on page 161

v See the SOURCEVIPA information in “IPCONFIG statement” on page 123.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 111

INCLUDE statement
This statement causes profile statements from the named data set to be included at
the point that the INCLUDE statement is encountered. In general, a profile
statement must begin and end within the same data set. For example, the
statement beginning with BSDROUTINGPARMS and ending with
ENDBSDROUTINGPARMS must be contained within the same data set. There are
two exceptions to this requirement:

v INCLUDE statements can be used within the BEGINVTAM - ENDVTAM block of
statements.

v INCLUDE statements can be used within a list of LUNAMES.

Syntax

�� INCLude data_set_name �

Parameters
data_set_name

A fully qualified data set name that identifies a sequential file. The sequential
file can be a sequential data set or a PDS with the member name. It cannot be
an HFS file.

Modifying
Modification is not applicable to this statement.

112 z/OS V1R4.0 CS: IP Configuration Reference

INTERFACE statements
Use the INTERFACE statement to define an IPv6 interface. This statement
combines the definition of DEVICE, LINK, and HOME into a single statement for
IPv6.

See “DEVICE and LINK statements” on page 47 for IPv4 support.

The stack does not impose any limit on the number of IPv6 home addresses
allowed for a given interface.

Table 9 summarizes information about the IPv6 network interfaces supported by
TCP/IP.

Table 9. IPv6 network interfaces supported by TCP/IP

Interface
type

Connectivity ID in TCPIP
profile

MTU TRLE definition

IPAQENET6 LAN via
OSA-Express in
QDIO mode
(Gigabit
Ethernet or Fast
Ethernet)

OSA-Express
port name

8992 for Gigabit
Ethernet, 1492 for
Fast Ethernet

Required

Dependency
The INTERFACE statement is rejected unless the stack is enabled for IPv6. To
enable the stack for IPv6, refer to z/OS Communications Server: IPv6 Network and
Application Design Guide for information about defining TCP/IP as a UNIX System
Services physical file system (PFS).

Modifying
To modify INTERFACE statement values (other than IPADDR), follow these steps:

1. Stop the interface.

2. Use a VARY TCP/IP command with an OBEYFILE that contains:

INTERFACE interface_name DELETE statement

3. Use a VARY TCPIP command with an OBEYFILE that contains:

The changed INTERFACE statement

4. Start the interface.

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

To modify IPADDR values, you can use INTERFACE ADDADDR and INTERFACE
DELADDR.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 113

|
|

|
|
|

|

|
|

|
|

||

|
|
||
|
||

||
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

INTERFACE statement—IPAQENET6 interfaces
Use the INTERFACE statement to specify an OSA-Express QDIO Gigabit Ethernet
or Fast Ethernet interface.

To determine the OSA-Express microcode level, use the DISPLAY TRL command.
For more information, refer to z/OS Communications Server: SNA Operation.

When you start an interface, TCP/IP registers the entire set of local (home) IPv6
addresses for this TCP/IP instance to OSA-Express. This allows the interface to
route datagrams destined for those IPv6 addresses to this TCP/IP instance. If a
datagram is received at this interface for an unregistered IPv6 address, then
OSA-Express routes the datagram to the TCP/IP instance defined as PRIROUTER
for IPv6. If there is no active TCP/IP instance defined as PRIROUTER, then
OSA-Express routes the datagram to one of the TCP/IP instances that successfully
activated as SECROUTER. If no active TCP/IP instance using this interface is
defined as PRIROUTER or SECROUTER, then OSA-Express discards the
datagram.

If you subsequently add, delete, or change any home IPv6 addresses on this
TCP/IP instance, TCP/IP dynamically registers the changes to OSA-Express.

For detailed instructions on setting up an OSA-Express feature, see the S/390:
OSA-Express Customer’s Guide and Reference.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP interfaces, see “Missing interrupt handler (MIH) considerations” on page 49.

Note: This statement applies to only IPv6 IP addresses.

Syntax

�� INTERFace intf_name

1

1

1

DEFINE Interface Definition
DELEte

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

�

� Interface Definition �

Interface Definition:

IPAQENET6 intf_specific_values
SOURCEVIPAINTerface vipa_name

�

114 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

||
|

|
||||||||||||
|

|

|||||||||||||||||||
|

||

�

1IPADDR ipaddr_spec

ipaddr_spec:

ipv6_address
prefix/prefix_length

intf_specific_values:

PORTNAME portname
NONRouter

PRIRouter
SECRouter

DUPADDRDET 1

DUPADDRDET count MTU num

Parameters
intf_name

The name of the interface. The maximum length is 16 characters.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE will delete all home IP addresses
for the interface.

ADDADDR ipaddr_spec
Allows the customer to add IP addresses to an existing INTERFACE definition
(similar to an obeyfile to update the home list) without having to delete and
redefine the INTERFACE. This can be used to change the autoconfiguration
state of an interface. If ADDADDR is coded and this is the first manually
configured IP address for the interface, then TCP/IP will disable
autoconfiguration for the interface. The intf_name coded with ADDADDR must
be the name of an interface previously defined by an INTERFACE statement.

Any addresses that had previously been autoconfigured for the interface will be
deleted.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing INTERFACE definition. If
DELADDR is coded for the last or only manually configured IP address for an
interface, then TCP/IP enables autoconfiguration for the interface. DELADDR is
only valid for an IP address or prefix configured manually. The intf_name coded
with DELADDR must be the name of an interface previously defined by an
INTERFACE statement.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. DEPRADDR is only valid for an IP address or
prefix configured manually. If you use DEPRADDR to deprecate an IP address,
you can subsequently use ADDADDR again to make that IP address preferred.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 115

||||||||||||||||||||

|

|

||||||||||||||||

|

|

|||

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

For DEPRADDR, the interface_name must be the name of an interface
previously defined by an INTERFACE statement.

IPADDR ipaddr_spec

TCP/IP will always create the link_local IPv6 address. If IPADDR is not
specified, then TCP/IP will enable autoconfiguration for the interface.

Note: Autoconfiguration is enabled if there is a router or some other device that
provides a router advertisement.

If ADDADDR, DELADDR, DEPADDR, or IPADDR is specified, then ipaddr_spec
can be one of the following:

v ipv6_addr (A fully qualified IPv6 address is colon-hexadecimal format.)

v prefix/prefix_length [The digits (in colon-hexadecimal format) before the /
represent the prefix. The prefix length represents the length of the prefix in
bits. If a prefix length is coded, it must be equal to 64. When a prefix is
specified, TCP/IP constructs the IPv6 address by appending the interface ID
to it.]

Note: If you code a prefix that is longer than 64 bits, it is truncated to 64 bits,
and no error messages are issued.

If no address or prefix is specified, it is obtained from a router on the LAN by
way of an IPv6 stateless autoconfiguration. For more information, refer to the IP
Network Design Guide.

The following IPv6 addresses are not accepted for ipaddr_spec:

v Link local IP addresses

v Multicast IP addresses

v IPv4-mapped IPv6 addresses

v IPv4-compatible IPv6 addresses

v Default loopback address (::1)

v Unspecified address (::)

IPAQENET6
Indicates that the interface uses the IP Assist based interface, belongs to the
QDIO family of interfaces, and uses the Gigabit Ethernet or Fast Ethernet
protocol.

SOURCEVIPAINTERFACE vipa_name
SOURCEVIPAINTERFACE is optional and allows the customer to specify which
VIPA interface is to be used for SOURCEVIPA (when IPCONFIG6
SOURCEVIPA is in effect). The vipa_name is the interface name for a
VIRTUAL6 interface. If the VIPA has multiple IP addresses, then the sourcevipa
address for outbound packets will be selected from among these addresses
according to the default source address selection algorithm.

The following interface-specific values can be specified for IPAQENET6.

PORTNAME portname_name
Use this parameter to specify the PORT name contained in the TRLE definition
for the QDIO interface. The TRLE must be defined as MPCLEVEL=QDIO. For
details on defining a TRLE, refer to the z/OS Communications Server: SNA
Resource Definition Reference.

116 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

NONROUTER
If a datagram is received at this interface for an unknown IP address, the
datagram is not routed to this TCP/IP instance. This is the default.

PRIROUTER
If a datagram is received at this interface for an unknown IP address, the
datagram is routed to this TCP/IP instance.

SECROUTER
If a datagram is received at this interface for an unknown IP address and there
is no active TCP/IP instance defined as PRIROUTER, then the datagram is
routed to this TCP/IP instance.

DUPADDRDET count
Use this parameter to specify the number of times to attempt duplicate address
detection. The minimum value is 0, maximum is 2 and default is 1. This is an
optional parameter.

Note: A value of 0 means that TCP/IP does not perform duplicate address
detection for this interface.

MTU num
The maximum transmission unit (MTU) in bytes. This value can be up to 8992.
The minimum MTU for IPv6 is 1280. The stack will take the minimum of the
configured value and the value supported by the device (returned by OSA).

The MTU default, which depends on value supported by device:

v Gigibit ethernet default MTU = 8992

v Fast ethernet default MTU = 1492

Examples
INTERFACE OSAQDIO26 ; OSA QDIO (Fast Ethernet)
DEFINE IPAQENET6
PORTNAME OSAQDIO2
SOURCEVIPAINT VIPAV6
IPADDR FEC0::1:9:67:115:66 ; (Site_Local Address)

Usage notes
v In order to configure a single physical device for both IPv4 and IPv6 traffic, you

must use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for the
IPv6 definition, such that the PORTNAME value on the INTERFACE statement
matches the device_name on the DEVICE statement.

v For each interface, the PRIROUTER and SECROUTER attributes can only be in
effect for one TCP/IP instance within a central processor complex (CPC). If
PRIROUTER is specified for an IPAQENET6 interface, but the IPv6 primary
router attribute is already in effect on another TCP/IP instance for the same OSA,
then TCP/IP issues a warning message during interface activation and ignores
the PRIROUTER parameter. Therefore, only one TCP/IP instance can be the
primary router for the OSA. Depending on the level of OSA-Express being
started, either only one or multiple TCP/IP instances may be allowed to have
SECROUTER specified. If OSA only allows one secondary router, any TCP/IP
instance subsequently starting that interface with SECROUTER will receive a
warning message during START processing for the interface. If OSA allows
multiple secondary routers, then OSA may select any TCP/IP instance which
specifies SECROUTER as the secondary router. There is no requirement that the
same TCP/IP instance be specified PRIROUTER or SECROUTER for all
OSA-Express adapters attached to the CPC.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 117

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related topics
v “BEGINROUTES statement” on page 28

v “DEVICE and LINK statement—MPCIPA devices” on page 71

v “START statement” on page 173

v “STOP statement” on page 175

118 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|

|

INTERFACE statement—LOOPBACK6 interface
There is only one LOOPBACK6 interface. The default LOOPBACK6 address ::1 is
generated automatically and cannot be deleted. Therefore, you cannot DEFINE or
DELETE the LOOPBACK6 interface. However, you can add additional IP addresses
for LOOPBACK6 in the initial profile or in an obeyfile. Additionally, you can delete
and deprecate one or more of these additional IP addresses in a vary obeyfile.

Syntax

�� INTERFace LOOPBACK6 1

1

1

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

�

ipaddr_spec:

ipv6_address
prefix/prefix_length

Parameters
ADDADDR

Allows the customer to add IP addresses to an existing LOOPBACK6 definition
(similar to an obeyfile to update the home list) without having to delete and
redefine the INTERFACE.

If ADDADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

ipaddr_spec
The following IPv6 addresses are not accepted for ipaddr_spec:

v Link local IP address

v Multicast IP address

v IPv4-mapped IPv6 address

v IPv4-compatible IPv6 address

v Default loopback address (::1)

v Unspecified address (::)

The following values can be specified for ipaddr_spec:

ipv6_address
IPv6 address in colon-hexadecimal format.

prefix/prefix_length
The digits before the / represent the prefix and the prefix_length
represents the length of the prefix (in bits). If a prefix length is coded, it
must be equal to 64. When a prefix is specified, TCP/IP constructs the
IP address by appending the interface ID to it.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 119

|
|

|
|
|
|
|

|

|||||||||||||||||||||||||||||||||||||||

|

|

||||||||||||||||

|

|

|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing LOOPBACK6 definition.

If DELADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

Note: You cannot code DELADDR to delete the default LOOPBACK6 address
::1.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. If you use DEPRADDR to deprecate an IP
address, you can subsequently use ADDADDR again to make that IP address
preferred.

DEPRADDR is only valid for an IP address or prefix configured manually.

Examples
INTERFACE LOOPBACK6 ADDADDR ::0014:0

120 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

|
|
|
|
|

|

|

|

INTERFACE statement—VIRTUAL6 interfaces
Use the INTERFACE statement to specify a static virtual interface.

You can define multiple virtual IPv6 addresses on one TCP/IP image either by
specifying multiple addresses on one VIRTUAL6 INTERFACE statement or by
specifying multiple VIRTUAL6 INTERFACE statements.

Syntax

�� INTERFace intf_name

1

1

1

DEFINE Interface Definition
DELEte

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

�

Interface Definition:

VIRTUAL6 1IPADDR ipaddr_spec

Parameters
intf_name

The name of the interface. The maximum length is 16 characters.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses
for the interface.

ADDADDR ipaddr_spec
Allows the customer to add IP addresses to an existing INTERFACE definition
(similar to an obeyfile to update the home list) without having to delete and
redefine the INTERFACE. The intf_name coded with ADDADDR must be the
name of an interface previously defined by an INTERFACE statement.

If ADDADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

ipaddr_spec
The following IPv6 addresses are not accepted for ipaddr_spec:

v Link local IP addresses

v Multicast IP addresses

v IPv4-mapped IPv6 addresses

v IPv4-compatible IPv6 addresses

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 121

|
|

|

|
|
|

|

||

|

|

||||||||||||||||||

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

v Default loopback address (::1)

v Unspecified address (::)

This parameter is a IPV6 address in colon-hexadecimal format.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing INTERFACE definition. The
intf_name coded with DELADDR must be the name of an interface previously
defined by an INTERFACE statement.

If DELADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

Note: You cannot code DELADDR and delete the last IP address for a
VIRTUAL6 interface.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. If you use DEPRADDR to deprecate an IP
address, you can subsequently use ADDADDR again to make that IP address
preferred. For DEPRADDR, the interface_name must be the name of an
interface previously defined by an INTERFACE statement.

IPADDR ipaddr_spec
Is required and must be one or more full IPv6 addresses (no prefix is allowed).

The following IP addresses are not accepted:

v Link local IP addresses

v Multicast IP addresses

v IPv4–mapped IPv6 addresses

v IPv4–compatible IPv6 addresses

v Default loopback address (::1)

v Unspecified address (::)

VIRTUAL6
Indicates that the interface is not associated with real hardware and is used for
fault tolerance support.

Examples
INTERFACE VIPAV6 DEFINE
VIRTUAL6
IPADDR 12AB::1
12AB::2

Usage notes
v The TCP/IP stack does not maintain interface counters for VIRTUAL6 interfaces.

v A virtual Interface statement cannot be coded on the BEGINROUTES name.

Related topics
v “BEGINROUTES statement” on page 28

v “IPCONFIG6 statement” on page 135

122 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|

|

|

|

|

|

|

IPCONFIG statement
Use the IPCONFIG statement to update the IPv4 IP layer of TCP/IP.

Note: It is recommended that the ASSORTEDPARMS statement not be used with
IPCONFIG; otherwise, unintended settings might occur. See the following
parameter descriptions for more information.

Syntax

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 123

|

�� IPCONFig 1

ARPTO 1200

ARPTO ARP_cache_timeout

CLAWUSEDoublenop
NOFWDMULTipath

DATAGRamfwd
FWDMULTipath PERPacket

NODATAGRamfwd
DEVRETRYDURation 90

DEVRETRYDURation dev_retry_duration
NODYNAMICXCF

DYNAMICXCF internet_addr subnet_mask cost_metric

FIREWALL
DVIPsec

FORMat LONG
SHORT

IGNORERedirect
NOIQDIORouting

QDIOPriority 1
IQDIORouting

QDIOPriority priority
NOMULTIPATH

PERConnection
MULTIPATH

PERPacket
NOPATHMTUDISCovery

PATHMTUDISCovery
REASSEMBLytimeout 60

REASSEMBLytimeout reassembly_timeout
NOSOURCEVIPA

SOURCEVIPA

STOPONclawerror
NOSYSPLEXRouting

SYSPLEXRouting
NOTCPSTACKSOURCEVipa

TCPSTACKSOURCEVipa internet_addr
TTL 64

TTL time_to_live
NOVARSUbnetting

VARSUbnetting

�

124 z/OS V1R4.0 CS: IP Configuration Reference

Parameters
ARPTO ARP_cache_timeout

Use ARPTO to specify the number of seconds between creation or revalidation
and deletion of ARP table entries. The default is 1200 seconds. An LCS ARP
table entry is revalidated when another ARP packet is received from the same
host specifying the same hardware address. The minimum value is 60, and the
maximum value is 86400.

This parameter serves the same purpose as the ARPAGE statement, but the
value specified on ARPAGE is in minutes while the value specified on the
ARPTO parameter is in seconds.

Because ARP cache entries for MPCIPA and MPCOSA interfaces are not
managed by the TCP/IP stack, they are not affected by the ARPTO statement.
For more information about devices that support ARP Offload, refer to z/OS
Communications Server: IP Configuration Guide.

CLAWUSEDOUBLENOP
Forces channel programs for CLAW devices to have two NOP CCWs to end the
channel programs. This is required for some vendor devices, and applies to
only first-level MVS systems. The CLAWUSEDOUBLENOP parameter is
confirmed by the message:
EZZ0337I CLAWUSEDOUBLENOP IS SET

DATAGRAMFWD
Enables the transfer of data between networks.

Note: The FWDMULTIPATH and NOFWDMULTIPATH keywords used with
DATAGRAMFWD are independent of the MULTIPATH keyword on the
IPCONFIG statement.

NOFWDMULTIPATH
In transferring data between networks, if there are multiple equal-cost paths
to a destination and NOFWDMULTIPATH is specified, TCP/IP uses the first
active route found for forwarding each IP packet. This is the default. The
NOFWDMULTIPATH parameter is confirmed by the message:
EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED

FWDMULTIPATH PERPACKET
In transferring data between networks, if there are multiple equal-cost
routes to a destination network or host, TCP/IP, upon forwarding an IP
packet to a given host in that destination network, selects a route on an
approximate round-robin basis from a multipath routing list to that
destination host. The selected route is used for routing that IP packet.
Connection or connectionless oriented IP packets using the same
destination address do not always use the same route, but they do use all
possible active routes to that destination host. All IP packets for a given
association with a destination host are spread across the multiple
equal-cost routes. The DATAGRAMFWD FWDMULTIPATH PERPACKET
parameter is confirmed by the message:
EZZ0641I IP FORWARDING FWDMULTIPATH PERPACKET SUPPORT IS ENABLED

NODATAGRAMFWD
Stops the transfer of data between networks by disabling IP datagram routing
between different network interfaces. This statement can be used for security or
to ensure correct usage of limited resources. The NODATAGRAMFWD
parameter is confirmed by the message:
EZZ0334I IP FORWARDING IS DISABLED

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 125

|
|

|

|
|
|

|

|

|

If either ASSORTEDPARMS NOFWD or IPCONFIG NODATAGRAMFWD is
specified in a profile, forwarding is disabled. If neither the ASSORTEDPARMS
nor the IPCONFIG statement is specified, or if the ASSORTEDPARMS or
IPCONFIG statement is specified and the NOFWD and NODATAGRAMFWD
parameters are not specified, forwarding is enabled.

DEVRETRYDURATION dev_retry_duration
Specifies the duration (in seconds) of the retry period for a failed device or
interface. TCP/IP performs reactivation attempts at 30 second intervals during
this retry period. The default for DEVRETRYDURation is 90 seconds. A
specification of 0 generates an infinite recovery period, which means
reactivation attempts are performed until the device or interface is either
successfully reactivated or manually stopped (by way of V TCPIP,STOP or
OBEYFILE). The maximum specifiable value is 4 294 967 295.

Note: Guidelines for setting DEVRETRYDURation: The default 90–seconds
retry duration is sufficient for transparent recovery following many types
of device or channel errors. However, certain ESCON-attached routers
cannot complete a microcode load in 90 seconds and installations might
want to increase the DEVRETRYDURation to automatically recover the
device following these longer outages. On the other hand, installations
running extensive automation built upon SNMP status and alerts can
choose to code a small (nonzero) value in DEVRETRYDURation, such
that device recovery is deferred to external automation software, rather
than a function of TCP/IP itself. For IPv4 interfaces, see also the
AUTORESTART parameter in “DEVICE and LINK statements” on
page 47. For IPv6 interfaces, the autorestart function is always active.

NODYNAMICXCF
Indicates XCF dynamic support is not enabled. The NODYNAMICXCF
parameter is confirmed by the message:
EZZ0624I DYNAMIC XCF DEFINITIONS ARE DISABLED

NODYNAMICXCF is the default.

DYNAMICXCF internet_addr subnet_mask cost_metric
Indicates that XCF dynamic support is enabled. Internet_addr is the IP address
used with the dynamically generated HOME statement entries for XCF, iQDIO
(HiperSockets), or same-host links. For more details about the use of
DYNAMICXCF, refer to the DYNAMICXCF section in the z/OS Communications
Server: IP Configuration Guide. The subnet_mask and cost_metric is used on a
BSDROUTINGPARMS entry for OROUTED. For XCF links, the device name is
the CPName of the remote VTAM, and the link name is EZAXCFnn (where nn
is the value of the MVS system symbol (SYSCLONE) for the MVS hosting the
VTAM with the device name). For iQDIO links, the device name is IUTIQDIO,
and the link name is IQDIOLNKnnnnnnnn (where nnnnnnnn is the hexadecimal
representation of the IP address specified on the IPCONFIG DYNAMICXCF
statement). For same-host links, the device name is IUTSAMEH, and the link
name is EZASAMEMVS.If dynamic routing is being provided by OMPROUTE,
the subnet_mask and cost_metric values must be configured to OMPROUTE
using the Interface, OSPF_Interface, or RIP_Interface configuration statements
in the OMPROUTE configuration file. The DYNAMICXCF parameter is
confirmed by the message:
EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED

v internet_addr is the IP address to be used for HOME statements for all
dynamically generated XCF or Same Host links.

126 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

v subnet_mask is the subnet mask to be provided to the routing daemon (in a
BSDROUTINGPARMS entry for ORouteD or by way of sockets notification
for OMPROUTE).

v cost_metric is the metric to be provided in the BSDROUTINGPARMS entry
for ORouteD. For more details about possible values for cost_metric, see
“BSDROUTINGPARMS statement” on page 37.

Notes:

1. The VTAM ISTLSXCF major node must be active for XCF dynamics to
work, except for TCPs on the same MVS image; a dynamic samehost
definition is generated regardless of whether ISTLSXCF is active or not. The
ISTLSXCF major node cannot be activated unless VTAM has been started
with an HPR level of RTP. For information on activating the ISTLSXCF
major node, refer to the z/OS Communications Server: SNA Resource
Definition Reference.

2. Dynamic XCF can be enabled even in a single system sysplex.
HiperSockets can be used between LPARs on the same central processor
complex (CEC) even when MVS images in those LPARs are not defined to
be part of the same sysplex. HiperSockets can also be used between
LPARS even when some of those other LPARs are running Linux, as long
as all of the stacks connecting to HiperSockets and needing to exchange IP
packets with each other, define IP addresses that are all in the same subnet
(as defined by the Dynamic XCF IP address and subnet mask in the
IPCONFIG DYNAMICXCF profile statement).

3. Define the OMPROUTE statements before coding DYNAMICXCF in the
profile. If you do not do this, the wrong subnet mask is used and an error
message is issued.

FIREWALL
Specifies that this TCP/IP host is to be used as a network firewall (filtering,
tunneling, or network address translation). The FIREWALL parameter is
confirmed by the message:
EZZ0349I FIREWALL SUPPORT IS ENABLED

Firewall functions can only be activated at initial activation of TCP/IP.

DVIPsec
Indicates that IPSEC tunnels associated with Dynamic VIPA addresses are
eligible to be distributed if the VIPA address is being distributed and are eligible
to be moved during VIPA takeover or giveback.

FORMAT
The FORMAT keyword is optional, and there is no default.

The FORMAT keyword is only meaningful for stacks that are not enabled for
IPv6. It controls the format of the command output. If FORMAT SHORT is
specified and the stack is enabled for IPv6, then an error message will be
displayed. If the stack is not enabled for IPv6 and the user specified LONG
format, the command output is displayed as if it could contain IPv6 addresses.
If the stack is not enabled for IPv6 and the user specified SHORT format or did
not specify the FORMAT keyword, then the command output is displayed as if it
could contain only IPv4 addresses and not the longer IPv6 addresses.

If the stack is enabled for IPv6, then specifying the FORMAT keyword does not
make any difference to the command format

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 127

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

IGNOREREDIRECT
Causes TCP/IP to ignore ICMP Redirect packets. The IGNOREREDIRECT
parameter is confirmed by the message:
EZZ0335I ICMP WILL IGNORE REDIRECTS

If you are using OMPROUTE and this option is not specified,
IGNOREREDIRECT is enabled automatically.

If you are using Intrusion Detection Services (IDS) policy to detect and discard
ICMP Redirects and this option is not specified, ICMP Redirects are discarded
anyway while the policy is active.

If this option is not specified, and we receive a REDIRECT for a destination for
which there is a HOST route in the routing table, the original route is deleted
and replaced by the redirect route. This applies to all routes, including static
routes.

Note: If ASSORTEDPARMS is specified without the IGNOREREDIRECT
parameter but is specified after IPCONFIG IGNOREREDIRECT, ICMP
Redirect packets are allowed.

NOIQDIOROUTING
Specifies that inbound packets which are to be forwarded by this TCP/IP stack
cannot be routed directly between a HiperSockets device and an OSA-Express
device in QDIO mode, and therefore will be processed and routed by this
TCP/IP stack.

NOIQDIOROUTING is the default. NOIQDIOROUTING is confirmed by the
message:
EZZ0688I IQDIO ROUTING IS DISABLED

IQDIOROUTING
Specifies that inbound packets which are to be forwarded by this TCP/IP stack
are eligible to be routed directly between a HiperSockets device and an
OSA-Express device in QDIO mode, and therefore can bypass this TCP/IP
stack entirely. This type of routing over a HiperSockets device (iQDIO) is called
HiperSockets Accelerator. HiperSockets Accelerator support can only be
enabled during initial profile processing. It can not be enabled during V
TCPIP,,OBEYFILE processing. If specified, iQDIO routes are created
dynamically as this TCP/IP stack learns of destination IP addresses that can be
routed to or from iQDIO links without needing to be forwarded to this TCP/IP
stack. HiperSockets Accelerator support cannot be enabled if FIREWALL is
active or NODATAGRAMFWD is active. IQDIOROUTING is confirmed by the
message:
EZZ0688I IQDIO ROUTING IS ENABLED

If HiperSockets Accelerator support cannot be enabled, message EZZ0689I will
be issued with the appropriate reason. This message is also issued during
VARY OBEYFILE processing if TCP/IP was activated with NOIQDIOROUTING
on the initial profile.

QDIOPriority priority
Specifies that for traffic being routed by way of HiperSockets Accelerator which
is received over a HiperSockets device and routed to an OSA-Express in QDIO
mode, the data is sent using the priority level specified by priority, where priority
can be 1-4. The default is to send data using priority level 1. Refer to the

128 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

OSA-Express documentation in z/OS Communications Server: SNA Network
Implementation Guide for an explanation of the outbound priority levels.

NOMULTIPATH
Disables the multipath routing selection algorithm for outbound IP traffic. If there
are multiple equal-cost routes to a destination and NOMULTIPATH is specified,
TCP/IP uses the first active route found to send each IP packet. The
NOMULTIPATH parameter is confirmed by the message:
EZZ0615I MULTIPATH SUPPORT IS DISABLED

NOMULTIPATH is the default.

MULTIPATH
Enables the multipath routing selection algorithm for outbound IP traffic. In
general, multipath routing provides the routing distribution necessary to balance
the network utilization of outbound packets by load splitting. Multipath routing
requires the definition of multiple equal-cost routes that are either defined
statically or added dynamically by routing protocols. If MULTIPATH is specified
without any subparameters, the default is PERCONNECTION. The MULTIPATH
parameter has no effect if there are no multipath routes in the TCP/IP
configuration.

Note: In some cases, it might appear data is not being equally distributed
among each of the equal-cost interfaces. This depends upon the
characteristics of the application that is sending or receiving data. For
example, when osnmp walk is issued, the application initially sends data
using a source IP address of INADDR_ANY. Subsequently, when the
application receives a response, all future sends use the source IP
address of the interface where data was just received. The result is that
all data is sent out on a single interface, independent of any multipath
setting.

PERCONNECTION
After a round-robin route is selected, connection or connectionless
oriented IP packets using the same association always use the same
route, as long as that route is active. The MULTIPATH
PERCONNECTION parameter is confirmed by the message:
EZZ0632I MULTIPATH PERCONNECTION SUPPORT IS ENABLED

Note: For more information about EE load balancing and standard
logic for a UDP application, refer to z/OS Communications
Server: SNA Network Implementation Guide.

PERPACKET
Connection or connectionless oriented IP packets using the same
source and destination address pair do not always use the same route,
but do use all possible active routes to that destination host. The
MULTIPATH PERPACKET parameter is confirmed by the message:
EZZ0632I MULTIPATH PERPACKET SUPPORT IS ENABLED

Notes:

1. Use this option only as an attempt to improve aggregate throughput
of IP traffic over multipath routes and for routes that potentially high
CPU consumption in reassembly of out-of-order packets at the
receiving end is not an issue. Performance varies according to
network configurations used.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 129

|
|

|

|
|
|
|

|

|
|
|

|
|
|
|
|

|

2. Care in using this option must be made with Firewall configurations.
Packet loss can occur over nonsecured routes in the multipath
routing list.

3. IP traffic on RSVP-based routes cannot use this option. Instead, the
PerConnection option is used for these routes.

4. Fragmented and packed IP datagrams cannot use this option.
These datagrams are being sent over one selected route to the
intended destination.

NOPATHMTUDISCOVERY
Indicates that TCP/IP is not to provide path MTU (PMTU) discovery support.
This is the default. The NOPATHMTUDISCOVERY parameter is confirmed by
the message:
EZZ0623I PATH MTU DISCOVERY SUPPORT IS DISABLED

NOPATHMTUDISCOVERY is the default.

PATHMTUDISCOVERY
Indicates that TCP/IP is to dynamically discover the PMTU, which is the
smallest MTUs of all the hops in the path. Use this parameter to prevent
fragmentation of datagrams. The PATHMTUDISCOVERY parameter is
confirmed by the message:
EZZ0623I PATH MTU DISCOVERY SUPPORT IS ENABLED

REASSEMBLYTIMEOUT reassembly_timeout
The amount of time (in seconds) allowed to receive all parts of a fragmented
packet before discarding the packets received. The minimum value is 1, the
maximum value is 240, and the default is 60.

NOSOURCEVIPA
Specifies that TCP/IP does not request to use the corresponding virtual IP
address in the HOME list as the source IP address for outbound datagrams.
The NOSOURCEVIPA parameter is confirmed by the message:
Source Vipa support is disabled.

NOSOURCEVIPA is the default.

SOURCEVIPA
Requests that TCP/IP use the corresponding virtual IP address in the HOME list
as the source IP address for outbound datagrams that do not have an explicit
source address. You must update the HOME statement in order for
SOURCEVIPA to take effect. For more information, see “HOME statement” on
page 107. This parameter has no effect on RIP packets used by RIP services
(OROUTED, NCPROUTE, or OMPROUTE) as well as OSPF packets used by
OSPF services (OMPROUTE). The SOURCEVIPA parameter is confirmed by
the message:
EZZ0351I SOURCEVIPA SUPPORT IS ENABLED

STOPONCLAWERROR
Stops channel programs (HALTIO and HALTSIO) when a device error is
detected. The STOPONCLAWERROR parameter is confirmed by the message:
EZZ0345I STOPONCLAWERROR IS ENABLED

If ASSORTEDPARMS is specified without the STOPONCLAWERROR
parameter but is specified after IPCONFIG STOPONCLAWERROR, no stop on
CLAW error is set.

130 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

NOSYSPLEXRouting
Specifies that this TCP/IP host is not part of an MVS sysplex domain. The
NOSYSPLEXROUTING parameter is confirmed by the message:
EZZ0350I SYSPLEX ROUTING SUPPORT IS DISABLED

NOSYSPLEXROUTING is the default.

SYSPLEXRouting
Specifies that this TCP/IP host is part of an MVS sysplex domain and should
communicate interface changes to the workload manager (WLM). The
SYSPLEXROUTING parameter is confirmed by the message:
EZZ0350I SYSPLEX ROUTING SUPPORT IS ENABLED

NOTCPSTACKSOURCEVIPA internet_addr
Specifies that TCP/IP will not use a stack-level IP address as the source
address for outbound TCP connections. The source IP address will be governed
by the IPCONFIG SOURCEVIPA setting.

TCPSTACKSOURCEVIPA internet_addr
The IPv4 address internet_addr is used as the source IP address for outbound
TCP connections if SOURCEVIPA has been enabled. internet_addr should be a
static VIPA, a Dynamic VIPA (DVIPA), or a Distributed Dynamic VIPA.

If SOURCEVIPA has not been enabled, TCPSTACKSOURCEVIPA will be
ignored and the following message will be issued:
EZZ0706I TCPSTACKSOURCEVIPA IS IGNORED - SOURCEVIPA IS NOT ENABLED

Notes:

1. After it is set, TCPSTACKSOURCEVIPA will not be disabled until a profile
explicitly adds NOTCPSTACKSOURCEVIPA to the IPCONFIG statement.

2. If you specify the same distributed DVIPA on multiple target stacks, you also
need to specify SYPLEXPORTS on the VIPADISTribute statement.
Otherwise, connections might be disrupted.

TTL time_to_live
Number of hops packets originating from this host can travel before reaching
the destination. If the destination is more hops away, the packet will never
reach the destination. The minimum value is 1, the maximum value is 255, and
the default is 64.

NOVARSUBNETTING
Specifies that variable subnetting is supported for OROUTED. Routes that are
added by other routing daemons or static routes always support variable
subnetting. The NOVARSUBNETTING parameter is confirmed by the message:
EZZ0352I VARIABLE SUBNETTING SUPPORT IS DISABLED FOR OROUTED

NOVARSUBNETTING is the default.

Note: This parameter is applicable to OROUTED only.

VARSUBNETTING
Specifies that variable subnetting is being used. Enables OROUTED to add
variable subnet/supernet routes. Variable-length subnet masks can be coded on
the BSDROUTINGPARMS statement. Also, this option allows OROUTED
applications to dynamically update the IP routing table with variable-length
subnet masks. If OROUTED is configured to use RIPv2, VARSUBNETTING
must be enabled. The VARSUBNETTING parameter is confirmed by the
message:
EZZ0352I VARIABLE SUBNETTING SUPPORT IS ENABLED FOR OROUTED

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 131

|

|

|
|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|

|

Note: This parameter is applicable to OROUTED only.

Modifying
To modify most parameters for the IPCONFIG statement, you must respecify the
statement with the new parameters. Additional actions are required to modify the
following parameters:

Firewall
z/OS Firewall functions cannot be activated using VARY OBEYFILE on an
active TCP/IP stack. To activate z/OS Firewall Technologies, halt all traffic
on the designated TCP/IP stack, stop the stack, modify the TCP profile to
include ’IPCONFIG FIREWALL’, and restart the stack.

DYNAMICXCF
To change the IP address, all the XCF devices must first be stopped. Issue
Display TCPIP,procname,NETSTAT,DEV to get a list of all of the currently
defined devices. The names of devices generated by XCF Dynamics can
either be IUTSAMEH or the cpname of another VTAM in the sysplex. After
all of the names have been determined, issue VARY TCPIP,,STOP
commands for each of the devices. After all the devices have been stopped,
respecify the IPCONFIG DYNAMICXCF statement with the new IP address.

Notes:

1. When DYNAMICXCF is coded in the profile, the purpose is to generate
those dynamic XCF devices or links, if possible. When TCP/IP is up, but
ISTLSXCF is not active, dynamic creation is deferred until later when
there is a TCP/IP command (for example, V OBEY, V start/stop
command) to start the internal profile processing. The dynamic devices
and links are generated at that time.

2. If dynamic XCF definitions have been enabled but a later V
TCPIP,,OBEYFILE command contains NODYNAMICXCF, only future
dynamic definitions are affected. Existing definitions and connectivity are
not affected.

3. Dynamic XCF definitions will not be generated if there is a DEVICE and
LINK definition with the same device or link name that dynamic XCF
would generate.

4. When using Dynamic XCF for Sysplex configuration, make sure that
XCFINIT=YES is coded in the VTAM start options. This ensures that
XCF connections will be established to other VTAMs in a sysplex at
VTAM initialization. Refer to z/OS Communications Server: SNA
Resource Definition Reference for directions for coding the XCFINIT
VTAM start option. The DISPLAY NET,VTAMOPTS can be used to
determine the XCFINIT setting.

IQDIOROUTING
HiperSockets Accelerator cannot be activated using VARY OBEYFILE on an
active TCP/IP stack. To dynamically activate Efficient Routing using
HiperSockets Accelerator, halt all traffic on the designated TCP/IP stack,
stop the stack, modify the TCPIP profile to include ’DYNAMICXCF
IQDIOROUTING’ on the IPCONFIG statement, and restart the stack.

If HiperSockets Accelerator is enabled and IP Forwarding is subsequently disabled
using NODATAGRAMFWD in a VARY OBEYFILE, HiperSockets Accelerator will
also be disabled. If HiperSockets Accelerator is disabled, and IPCONFIG

132 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|
|

|
|
|
|
|
|

IQDIOROUTING is subsequently specified on a V TCPIP,,OBEYFILE command for
an active TCP/IP stack where IP Forwarding is disabled, HiperSockets Accelerator
remains disabled.

If you modify multipath type (perconn to perpack or vice versa), the new parameter
only takes effect for new connections created after the modify is done, and existing
connections will stop multipathing altogether. If you modify to turn on multipath
when it was previously off, existing connections will not be affected, only new ones
will multipath.

Examples
This example shows an IPCONFIG statement that:

v Causes ARP table entries to be deleted 2400 seconds after creation or
revalidation

v Forces channel programs for CTC devices to have two NOP CCWs to end the
channel programs

v Disables IP forwarding

v Causes TCP/IP to halt on certain CLAW errors
IPCONFIG ARPTO 2400 CLAWUSED NODATAGR STOPON

Usage notes
v If the stack is enabled for IPv6 and the user specified LONG format, the

command output is displayed in IPv6 format.

v The FORMAT keyword is only meaningful for stacks that are not enabled for
IPv6. It controls the format of the command output. If FORMAT SHORT is
specified and the stack is enabled for IPv6, then the following error message will
be displayed:
EZZ0687I FORMAT SHORT IGNORED - IPV6 SUPPORT IS ENABLED

v If any of the IPCONFIG statement parameters are specified on other statements,
such as ASSORTEDPARMS, the settings from the last statement processed are
used. An appropriate message is displayed.

v Currently, you can also disable IP forwarding with the ASSORTEDPARMS
statement. If your profile contains the ASSORTEDPARMS statement,
configuration proceeds as if DATAGRAMFWD NOFWDMULTIPATH is specified
on IPCONFIG.

v NOVARSUBNETTING cannot be specified after a BSDROUTINGPARMS
statement is specified with supernetwork subnet masks.

v Firewall normally requires additional configuration. Refer to z/OS Security Server
Firewall Technologies (SC24-5835) for additional information.

v If you do not include any configuration data in the OMPROUTE configuration file
for the XCF links, OMPROUTE does not communicate a routing protocol (OSPF
or RIP) over the interfaces. OMPROUTE includes (in the data sent to other
routers) information relative to the XCF links or XCF links as long as
Send_Static_Routes=YES is configured for RIP Interfaces and
AS_Boundary_Routing(Import_Static_Routes=YES) is configured for OSPF.

v If you want to communicate the OSPF or RIP protocol over a subset of the XCF
links, you must configure the appropriate links in the OMPROUTE configuration
file using the OSPF_Interface or RIP_Interface statements. Doing this allows
OMPROUTE to communicate to other routers not only the information relative to
the XCF links, but also information relative to resources on the other side of the
host at the opposite end of the XCF links.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 133

|
|

|
|
|
|

|

|
|

To configure the appropriate links, you can explicitly configure each XCF link as
either an OSPF or RIP interface (including those that might become active in the
future). Alternatively, you can use the wildcard configuration capability of
OMPROUTE to configure your XCF links.

To use the wildcard configuration, use a wildcard address (for example,
9.67.100.*) on the OSPF_Interface or RIP_Interface statement instead of an
explicit address. In this way, any interface address falling within that wildcard
(9.67.100.1, 9.67.100.2, and so on) is configured using the parameters specified
on the wildcard definition statement.

Note: When adding links, XCF or otherwise, to both OMPROUTE and TCP/IP, it
is necessary to add them to OMPROUTE before adding them to TCP/IP
for proper routing protocol configuration.

134 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

IPCONFIG6 statement
Use the IPCONFIG6 statement to update the IP layer of TCP/IP with information
that pertains to IPv6.

If the stack is not configured for IPv6 and IPCONFIG6 is specified, the following
error message is generated, and TCP/IP startup processing continues.
EZZ0695I IPCONFIG6 NOT VALID - IPV6 SUPPORT IS NOT ENABLED

Syntax

�� IPCONFIG6 1

DATAGRamfwd NOFWDMULTipath

NODATAGRamfwd
NOFWDMULTipath

DATAGRamfwd
FWDMULTipath PERPacket

HOPLimit 255

HOPLimit hoplimit
ICMPErrorlimit 3

ICMPErrorlimit msgs_per_sec

IGNORERedirect
NOIGNOREROUTERHoplimit

IGNOREROUTERHoplimit
NOMULTIPATH

PERConnection
MULTIPATH

PERPacket
NOSOURCEVIPA

SOURCEVIPA

�

Parameters
NODATAGRAMFWD

Stops the transfer of data between networks by disabling IP datagram routing
between different network interfaces. This statement can be used for security or
to ensure correct usage of limited resources. The NODATAGRAMFWD
parameter is confirmed by the message:
EZZ0699I IPV6 FORWARDING IS DISABLED

DATAGRAMFWD
Enables the transfer of data between networks.

NOFWDMULTIPATH
In transferring data between networks, if there are multiple equal-cost paths
to a destination and NOFWDMULTIPATH is specified, TCP/IP uses the first
active route found for forwarding each IP packet. This is the default. The
NOFWDMULTIPATH parameter is confirmed by the message:
EZZ0700I IPV6 FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 135

|
|

|
|

|
|

|

|

|||

|

|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

This is the default.

FWDMULTIPATH PERPACKET
In transferring data between networks, if there are multiple equal-cost
routes to a destination network or host, TCP/IP, upon forwarding an IP
packet to a given host in that destination network, selects a route on an
approximate round-robin basis from a multipath routing list to that
destination host. The selected route is used for routing that IP packet.
Connection or connectionless oriented IP packets using the same
destination address do not always use the same route, but they do use all
possible active routes to that destination host. All IP packets for a given
association with a destination host are spread across the multiple
equal-cost routes. The DATAGRAMFWD FWDMULTIPATH PERPACKET
parameter is confirmed by the message:
EZZ0700I IPV6 FORWARDING FWDMULTIPATH PERPACKET SUPPORT IS ENABLED

IGNOREREDIRECT
Causes TCP/IP to ignore ICMP Redirect packets. The IGNOREREDIRECT
parameter is confirmed by the message:
EZZ0701I ICMPV6 REDIRECTS WILL BE IGNORED

NOSOURCEVIPA
Specifies that TCP/IP does not request to use a VIPA address as the source IP
address for outbound datagrams. The NOSOURCEVIPA parameter is confirmed
by the message:
EZZ0702I IPV6 SOURCEVIPA SUPPORT IS DISABLED

NOSOURCEVIPA is the default.

SOURCEVIPA
Requests that TCP/IP use a virtual IP address assigned to the
SOURCEVIPAINT interface as the source address for outbound datagrams that
do not have an explicit source address. If multiple addresses are assigned to
the SOURCEVIPAINT interface, the source address will be selected from
among these addresses according to the default source address selection
algorithm. You must specify the SOURCEVIPAINT keyword on the INTERFACE
statement for each interface on which you desire that SOURCEVIPA take effect.
The SOURCEVIPA parameter is confirmed by the message:
EZZ0702I IPV6 SOURCEVIPA SUPPORT IS ENABLED

NOMULTIPATH
Disables the multipath routing selection algorithm for outbound IP traffic. If there
are multiple equal-cost routes to a destination and NOMULTIPATH is specified,
TCP/IP uses the first active route found to send each IP packet. The
NOMULTIPATH parameter is confirmed by the message:
EZZ0703I IPV6 MULTIPATH SUPPORT IS DISABLED

NOMULTIPATH is the default.

MULTIPATH
Enables the multipath routing selection algorithm for outbound IP traffic. In
general, multipath routing provides the routing distribution necessary to balance
the network utilization of outbound packets by load splitting. Multipath routing
requires the definition of multiple equal-cost routes that are either defined
statically or added dynamically by routing protocols. If MULTIPATH is specified
without any subparameters, the default is PERCONNECTION. The MULTIPATH
parameter has no effect if there are no multipath routes in the TCP/IP
configuration.

136 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

PERCONNECTION
If there are multiple equal-cost routes to a destination and MULTIPATH
PERCONNECTION is specified, TCP/IP, upon first sending an IP packet
to a given destination, selects a route on a round-robin basis from a
multipath routing list to that destination host. The selected route is used
to route IP packets for a given connection or connectionless oriented
association to that destination host. Connection or connectionless
oriented IP packets using the same association always use the same
route, as long as that route is active. The MULTIPATH
PERCONNECTION parameter is confirmed by the message:
EZZ0704I IPV6 MULTIPATH PERCONNECTION SUPPORT IS ENABLED

PERPACKET
If there are multiple equal-cost routes to a destination, TCP/IP, upon
sending an IP packet in that destination, selects a route on an
approximate round-robin basis from a multipath routing list to that
destination host. The selected route is used for routing that IP packet.
Connection or connectionless oriented IP packets using the same
source and destination address pair do not always use the same route,
but do use all possible active routes to that destination host. All IP
packets for a given association with a destination host are spread
across the multiple equal-cost routes. The MULTIPATH PERPACKET
parameter is confirmed by the message:
EZZ0704I IPV6 MULTIPATH PERPACKET SUPPORT IS ENABLED

HOPLIMIT
Number of hops a packet originating at this host can travel enroute to the
destination. If the destination is more hops away, the packet will never reach
the destination. The valid range is between 1 and 255. The default is 255.

IGNOREROUTERHOPLIMIT
Although you can configure a global hop limit value for the stack (by way of
IPCONFIG6 HOPLIMIT), your stack might receive a router advertisement from a
router with a different hop limit value. This results in the configured global hop
limit value being overridden by the router advertisement value for all routes
using the interface on which the router advertisement was received.
IGNOREROUTERHOPLIMIT gives you a way to prevent this, ensuring that your
configured value is always used. The IGNOREROUTERHOPLIMIT parameter is
confirmed by the message:
EZZ0719I ROUTER ADVERTISEMENT HOP LIMIT VALUES WILL BE IGNORED

NOIGNOREROUTERHOPLIMIT
NOIGNOREROUTERHOPLIMIT causes TCP/IP to not ignore a hop limit value
received in a router advertisement from a router. This results in the configured
global hop limit value being overridden by the router advertisement value for all
routes using the interface on which the router advertisement was received. This
is the default. The NOIGNOREROUTERHOPLIMIT parameter is confirmed by
the message:
EZZ0720I ROUTER ADVERTISEMENT HOP LIMIT VALUES WILL NOT BE IGNORED

ICMPERRORLIMIT
This parameter controls the rate at which ICMP error messages can be sent to
a particular IPv6 destination address. The number specified is messages per
second. The default is 3 messages per second, and the valid range is 1-20
messages per second. A token bucket algorithm is used to allow bursts of ICMP
errors while limiting the long-term rate.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 137

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

Modifying
To modify most parameters for the IPCONFIG6 statement, you must respecify the
statement with the new parameters.

If you modify multipath type (perconn to perpack or vice versa), the new parameter
only takes effect for new connections created after the modify is done, and existing
connections will stop multipathing altogether. If you modify to turn on multipath
when it was previously off, existing connections will not be affected, only new ones
will multipath.

138 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

|
|
|
|
|

ITRACE statement
Use the ITRACE statement to control TCP/IP run-time tracing.

Syntax

�� ITRACE ON
SUBAGENt level
CONFig level

COMMAND level
AUTODAEMON
SUBAGENt
CONFig

OFF
COMMAND
AUTODAEMON

�

Parameters
ON

Select ON to establish run-time tracing. If specified with no parameters, the
trace defaults to level 1 tracing for CONFIG and SUBAGENT.

OFF
Select OFF to terminate run-time tracing. If specified with no parameters,
CONFIG and SUBAGENT tracing is turned off.

CONFIG
Turn internal trace for configuration ON or OFF.

SUBAGENT
Turn internal trace for SNMP subagent ON or OFF.

COMMAND
Turn internal trace for command ON or OFF.

AUTODAEMON
Turn internal trace for the autolog subtask ON or OFF.

level
Indicates the tracing level to be established. Levels are as follows:

Levels for CONFIG

1 ITRACE for all of config

2 General level of tracing for all of config

3 Tracing for configuration set commands

4 Tracing for configuration get commands

5 Tracing for syslog calls issued by config

100 Tracing for the parser

200 Tracing for scanner

300 Tracing for mainloop

400 Tracing for commands

Levels for SUBAGENT

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 139

1 General subagent tracing

2 General subagent tracing plus DPI traces

3 General subagent tracing plus extended storage dump traces

4 All trace levels

Levels for COMMAND

1 ITRACE for all commands

Modifying
To modify parameters for the ITRACE statement, you must respecify the statement
with the new parameters.

Examples
ITRACE ON CONFIG 3
ITRACE OFF SUBAGENT

Usage notes
v This statement is used primarily for diagnostic purposes.

v Subagent trace output is directed to the syslog daemon. This daemon is
configured by the /etc/syslog.conf HFS file and must be active.

v AUTOLOG trace output goes to ALGPRINT.

v CONFIG trace output goes to CFGPRINT. If CFGPRINT is not specified in
TCPIPROC, the Config component dynamically allocates a DDName CFGPRINT.

v Command trace output goes to the hardcopy console log.

v ITRACE ON commands are cumulative until an ITRACE OFF is issued.

Related topics
v z/OS Communications Server: IP Diagnosis

v “Specifying TCP/IP address space parameters” on page 195

140 z/OS V1R4.0 CS: IP Configuration Reference

KEEPALIVEOPTIONS statement
Use the KEEPALIVEOPTIONS statement to specify the operating parameters of the
TCP keepalive packets. The parameters apply to all TCP connections for which
keepalive has been activated through the setsockopt() call.

The following message is issued when a KEEPALIVEOPTIONS statement is
encountered:
EZZ0717I KEEPALIVEOPTIONS STATEMENT ON LINE xx WILL BE RETIRED IN A FUTURE RELEASE

Note: Support for the KEEPALIVEOPTIONS statement will be dropped in a future
release. It is recommended that you use the INTERVAL and
SENDGARBAGE parameters on the TCPCONFIG statement instead of
KEEPALIVEOPTIONS.

Syntax

�� 1
INTerval 120

KEEPAliveoptions
INTerval minutes
SENDGarbage FALSE

SENDGarbage FALSE
TRUE

ENDKEEPaliveoptions �

Parameters
INTERVAL minutes

The number of minutes TCP waits after receiving a packet for a connection
before it sends a keepalive packet for that connection. The range is from 0 to
35791 minutes. A value of 0 disables the keepalive function. The default is 120.

SENDGARBAGE
Specifies whether the keepalive packets sent by TCP contain 1 byte of random
data.

FALSE
Causes the packet to contain no data. This is the default.

TRUE
Causes the packet to contain 1 byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP.

Modifying
To change a parameter value, you must respecify the statement with the new
parameter value. Any parameters not specified are reset to their default value.

Dependency
KEEPALIVE INTERVAL is a global setting for the entire TCP stack. Each socket
can select keepalive with setsocketopt().

Usage notes
v KEEPALIVE INTERVAL 0 turns off TCP keepalive.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 141

|
|

|

|
|
|
|

v The ENDKEEPALIVEOPTIONS statement specifies the end of the
KEEPALIVEOPTIONS information. If it is omitted, subsequent entries generate
error messages.

142 z/OS V1R4.0 CS: IP Configuration Reference

NETACCESS statement
Use the NETACCESS statement to configure network access control. Specifically, it
allows for the one-to-one mapping between a destination network, subnetwork or
host and a Security Access Facility (SAF) resource name. The network
specifications are used to build an internal data structure that maps networks,
subnetworks and hosts to SAF resource names. The mapping is used to construct
a complete resource name that is passed to the Security Product to determine the
user’s permission to access the network resource. The most specific mapping is
used to determine the resource name for the SAF authorization check.

If the network resource does not have an assigned mapping, no SAF check is
performed. If the network resource does have an assigned mapping, the
SERVAUTH class must be active, the resource name must be defined, and the user
ID making the request must have at least read access to the resource.

Syntax

�� 1
NOINBound OUTBound

NETAccess ipaddr/num_mask_bits saf_resname ENDNETAccess
INBound NOOUTBound ipaddr address_mask

DEFAULT 0

�

Parameters
INBound

Specifies that Network Access Control checking is enabled for inbound socket
commands.

NOINBound
Specifies that Network Access Control checking is disabled for inbound socket
commands.

OUTBound
Specifies that Network Access Control checking is enabled for outbound socket
commands.

NOOUTBound
Specifies that Network Access Control checking is disabled for outbound socket
commands.

ipaddr/num_mask_bits
Specifies the network for which security product access control is required for
user requests. The num_mask_bits field is used to create an address mask that
is bit-contiguous from left to right. This address mask is logically ANDed with
the ipaddr value to create the network address for which access control is
required.

ipaddr address_mask
Specifies the network for which security product access control of user requests
is required. The address_mask value is a bit mask (expressed in dotted-decimal
form) that is bit-contiguous from left to right. The address_mask value is
logically ANDed with the ipaddr value to create the network address for which
access control is required.

DEFAULT
Specifies that security product access control of user requests is required for
any networks not specifically defined by other NETACCESS statement entries.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 143

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

saf_resname
Specifies the final qualifier of a security product profile name. The maximum
length is eight characters. The profile name has the following format:
EZB.NETACCESS.sysname.tcpname.saf_resname

where

v EZB.PORTACCESS is constant

v sysname is the value of the MVS &SYSNAME. system symbol.

v tcpname is the name of the procedure used to start the TCP stack.

v saf_resname is the 8-character value following the network specification.

If the installation’s SAF compliant security product (for example, RACF)
supports the SERVAUTH class, the installation has activated the SERVAUTH
class, a profile of this format has been created in the SERVAUTH class, and
the effective user ID is permitted to the resource, then it is allowed to access
the network.

Modifying
To modify any values on the NETACCESS statement, use a VARY TCPIP command
with an OBEYFILE that contains a new NETACCESS statement. All existing
network entries are deleted and replaced with the entries from the new
NETACCESS statement. Active connections are reauthorized whenever the user ID
the active connections are running under has changed or a new NETACCESS
statement is loaded. Refer to z/OS Communications Server: IP System
Administrator’s Commands for more information about the VARY TCPIP commands.

Dependency
v A security server must be running and the SERVAUTH class must be active or all

users will be denied access to all network addresses mapped to a security zone.

v A resource profile name must be defined for a security zone or all users will be
denied access to all network addresses mapped to that security zone.

v Each user must be authorized to the security zone containing their static or
Dynamic IP address.

v Servers such as HTTPD, FTPD, and INETD must have the user ID they accept
work under authorized to all security zones that contain their intended client’s
addresses.

v The FTP anonymous user (ANONYMO) must be authorized to the security zones
containing clients that are allowed anonymous access.

v Users must be authorized to the security zone containing the name server
address they use to avoid resolver failures.

v Users of iterative name servers must be authorized to the security zone of each
name server they are allowed to contact.

v The user ID that a recursive name server is running under must be authorized to
the security zones of all name servers it forwards requests to.

v To protect security zone definitions, authority to modify the initial PROFILE data
set and issue vary OBEYFILE must be controlled. When local addresses or
DEFAULT are specified and INBOUND checking is enabled, servers and other
applications that do explicit bind must be permitted to the bind address. Define
address 0.0.0.0/32 into a security zone to control binds to INADDRANY. Use
BIND parameter on PORT statement to override INADDRANY bind to specific
local address and permit job to security zone for that address.

144 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

Examples
NETACCESS INBOUND OUTBOUND ; check both ways

192.168.0.0/16 CORPNET ; Net address
192.168.113.19/32 HOST1 ; Specific host address
192.168.113.0 255.255.255.0 SUBNET1 ; Subnet address
192.168.112.0 255.255.248.0 SUBNET2 ; Subnet address
192.168.192.0/24 CAMPUS ; Subnet address
192.168.214.0/24 CAMPUS ; Subnet address
DEFAULT 0 DEFZONE ; Optional Default zone

ENDNETACCESS

Usage notes
v The NETACCESS statement is optional.

v The initial PROFILE or a vary OBEYFILE data set can contain multiple
NETACCESS statements.

v The first NETACCESS statement of each configuration data set executed resets
the flags to OUTBound and NOINBound and clears any existing NETACCESS
list prior to processing the flags and entries in that statement.

v Subsequent NETACCESS statements in the same configuration data set will
override any flags specified and will add or replace specified entries in the list.

v Specifying a DEFAULT is optional. If you do not specify a default, Network
Access Control applies only to the networks which are explicitly listed in
NETACCESS statements.

v When an incorrect NETACCESS entry is encountered, all entries following that
entry in that NETACCESS statement are ignored.

v If the new NETACCESS list is empty at the end of the configuration data set,
Network Access Control is disabled.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 145

|
|
|
|
|
|
|
|
|

|

|
|

PKTTRACE statement
Use the PKTTRACE statement to control the packet tracing facility in TCP/IP. You
can use this statement to select IP packets as candidates for tracing and
subsequent analysis. An IP packet must meet all the conditions specified on the
statement for it to be traced.

The PKTTRACE statement consists of two parts. The first part defines to TCP/IP
the network interfaces that are to be traced and characteristics of how they are to
be traced. The second part turns packet tracing ON or OFF or CLEARs packet
trace settings for the interfaces specified on prior PKTTRACE statements or for a
single interface if the LINKName/INTFName parameter is used.

Packet traces are recorded externally using the TRACE command CTRACE writer
instead of GTF. See z/OS Communications Server: IP Diagnosis for information on
the steps required to perform an IP packet trace.

Syntax

�� PKTTRACE

1

FULL LINKName=* PROT=* IP=* SRCPort=* DESTport=*

LINKName=*
ON
OFF LINKName=tcpip_linkname
CLEAR INTFName=*

INTFName=interface_name

FULL

=200
ABBREV
ABBREV=abbrev_length

LINKName=*

LINKName=tcpip_linkname
INTFName=*
INTFName=interface_name
INTFName=*

INTFName=interface_name
PROT=*

PROT=TCP
PROT=UDP
PROT=ICMP
PROT=ICMPv6
PROT=protocol_number
SRCPort=*

SRCPort=source_port
DESTport=*

DESTport=destination_port
IP=*

IP = IPv4_address
IPv6_address

�

146 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|

IPv4_address:

,SUBNet=255.255.255.255
ipv4_address

,SUBNet=subnet_mask
/num_mask_bits

IPv6_address:

/128
ipv6_address

/prefixLength

Parameters
ABBREV

Specifies that a truncated portion of the IP packet is to be traced. You can
specify a length between 0 and 65535 or use the default of 200. The ABBREV
parameter can be used to reduce the volume of data stored in the trace file. If
an error is produced by an incorrect ABBREV value, the ABBREV value is
changed to the default.

Note: The protocol headers are always included, even if they exceed the
ABBREV value.

CLEAR
Disables packet tracing for the interfaces specified and removes the
characteristics defining how they should be traced.

DESTPORT
Specifies a port number that will be compared with the destination port of
inbound and outbound packets. The port number is an integer between 1 and
65535. If the destination port of a packet is the same as the specified port
number, the packet will be traced. This comparison is only performed for
packets using either the TCP or UDP protocol; packets using other protocols
are not traced. If the DESTPORT parameter is omitted, there is no checking of
the destination port of packets. If an asterisk (*) is specified, packets of any
protocol and any source port will be traced.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port
number because the TCP or UDP headers are encrypted.

FULL
Specifies that the entire IP packet is to be traced.

IP Specifies an IPv4 or IPv6 address that will be compared with both the source
and destination addresses of inbound and outbound packets. If either the
source or destination address of a packet matches the specified IP address, the
packet will be traced. If the IP option is omitted, or an asterisk (*) is specified,
then all IP addresses will be traced.

Notes:

1. If an IPv6 address is specified, an optional prefix length in the range of 1 to
128 is allowed. The default prefix length is 128.

2. If an IPv4 address is specified, /num_mask_bits is allowed.

INTFName
Specifies the name of the network interface defined on a preceding

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 147

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|

|

|

LINK/INTERFACE statement. If the LINKNAME/INTFNAME parameter is
omitted or an asterisk (*) is specified for either parameter, the PKTTRACE
parameters will apply to all IPv4 and IPv6 interfaces prior to this statement.

To facilitate defining packet tracing when many interfaces are involved, use the
PKTTRACE statement with the LINKNAME=* or INTFNAME=* option to define
packet tracing characteristics for the majority of the interfaces. Then use
individual PKTTRACE statements with specific LINKNAME/INTFNAME
parameters for each interface that must be defined differently from the majority.

The PKTTRACE statement must appear after a valid LINK statement for the link
in the PROFILE.TCPIP data set.

z/OS CS allows a single TCP/IP address space to drive many devices,
including more than one instance of any particular device, to provide
connections to the TCP/IP network. The PKTTRACE statement supports this
capability through the LINKNAME option.

OFF
Disables packet tracing for the specified interfaces and removes the
characteristics defining how they should be traced.

If LINKNAME=* or INTFNAME=* and all other parameters are defaults, all trace
structures are deactivated and removed from all existing IPv4 and IPv6
interfaces.

If LINKNAME=* or INTFNAME=* and PROT=UDP, all trace structures for all
resources are analyzed; any matches are removed. If no trace structures
remain, trace is deactivated for that resource.

If LINKNAME=link_name or INTFNAME=interface_name and there are no other
parameters, all trace structures for link_name/interface_name are deactivated
and removed.

If LINKNAME=link_name and IP=127.0.0.1, or INTFNAME=interface_name and
IP=::1, then that particular trace structure is removed if it is found. If there is
only one trace structure, then that structure is removed and trace is deactivated
for that resource.

ON
Turns on packet tracing, clears all settings previously defined and refreshes just
the default settings.

If you use LINKNAME=* or INTFNAME=* and all other parameters are defaults,
even if the defaults are specified, the command results replaces any existing
trace structures for all existing IPv4 and IPv6 interfaces.

If you use LINKNAME=link_name or INTFNAME=interface_name and another
nondefault parameter, the command results are added to any existing trace
structures. However, if the existing trace structure for link_name/interface_name
is all defaults, the existing trace structure will be discarded.

PROT
Specifies the protocol type to be traced. This can be specified as one of the
literals TCP, UDP, ICMP, or ICMPV6, or as a number between 1 and 255
(ICMP=1, TCP=6, UDP=17, ICMPV6=58, and RAW=255). If the PROT
parameter is omitted or an asterisk (*) is specified, packets of any protocol will
be traced.

SRCPORT
Specifies a port number that will be compared with the source port of inbound
and outbound packets. The port number is an integer between 1 and 65535. If

148 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

the source port of a packet is the same as the specified port number, the
packet will be traced. This comparison is only performed for packets using
either the TCP or UDP protocol; packets using other protocols are not traced. If
the SRCPORT parameter is omitted, there is no checking of the source port of
packets. If an asterisk (*) is specified, packets of any protocol and any source
port are traced.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port
number because the TCP or UDP headers are encrypted.

SUBNET
Specifies a subnet mask that applies to the host and network portions of the IP
address specified on the accompanying IP parameter. The subnet mask must
be specified in dotted decimal notation and must be specified in conjunction
with the IP parameter. The default is 255.255.255.255.

/num_mask_bits
Specifies a numeric mask in a range between 1 and 32.

/prefixLength
Specifies a numeric prefix length in a range between 1 and 128.

Modifying
You can enter PKTTRACE commands into an OBEYFILE at any time. However, the
commands must be entered after the links have been defined. For example:
PKTTRACE ON,LINKNAME=*
LINK ...
DEVICE ...

In the above example, the trace is only done for the LOOPBACK interface.

For more information about changing PKTTRACE parameters, see the descriptions
for the ON and OFF parameters for PKTTRACE above.

You can also modify existing PKTTRACE settings by using the VARY
TCPIP,,PKTTRACE command. Refer to the z/OS Communications Server: IP
System Administrator’s Commands for more information.

To trace all the packets for a particular application port, enter two PKTTRACE
commands:
PKTTRACE ON,DESTport=21
PKTTRACE ON,SRCport=21

The two commands capture all the packets received and all the packets sent for a
particular port. If other options are specified, then they should be the same on both
commands.

Use the NETSTAT DEvlinks (netstat -d) command to display the results. An IP
packet will get traced according to the first trace structure that the packet matches.

Dependency
v INTFName and LINKName are mutually exclusive. An error message is displayed

if both are coded.

v The num_mask_bits and SUBNET= are mutually exclusive. An error message is
displayed if both are coded.

v IP=* implies IP=0.0.0.0 and SUBNET=255.255.255.255.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 149

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

v The IP address and SUBNET pair specified must be in the same network. If a
keyword on a given statement is specified multiple times, the last value specified
is used. If an option appears more than once on a statement, the value
associated with the last occurrence of the option is used. Options on the
statement can appear in any order.

v Tracing is not done for packets whose destination and source IP address match.
However, tracing is always done for packets using a loopback interface.

Usage notes
v Multiple PKTTRACE statements can be included in the PROFILE.TCPIP; the

results are cumulative.

v If a keyword on a given statement is specified multiple times, the last value
specified is used. If an option appears more than once on a statement, the value
associated with the last occurrence of the option is used.

v If no options are specified on the PKTTRACE command, all packets through all
devices are traced.

v If an error is found while parsing the PKTTRACE statement, an error message is
generated, the parameter in error is ignored, and the rest of the statement is
parsed. If an error is produced by an incorrect ABBREV value, the ABBREV
value is changed to the default.

v Each defined link has an associated trace profile. The trace profile stores the
effective values of each of the trace options for the link. When created or reset
using the CLEAR option, a link’s trace profile is set to the default values for the
trace options as follows:
PROT

All protocols
IP All IP addresses
SUBNET

No checking
SRCPORT

No checking
DESTPORT

No checking
FULL

Tracing of the whole IP packet

Examples
The following sample includes several examples of the PKTTRACE statement:
; CTC Device and Link
DEVICE CTC1 CTC D00
LINK CTCD00 CTC 1 CTC1
;
; CTC Device and Link
DEVICE CTC2 CTC D02
LINK CTCD02 CTC 1 CTC2
;
; CTC Device and Link
DEVICE CTC3 CTC D04
LINK CTCD04 CTC 1 CTC3
;
; LCS Device and Links
DEVICE LCS1 LCS 100
LINK TR1 IBMTR 1 LCS1
LINK LCSC00 ETHERNET 2 LCS1
LINK LCSF00 FDDI 3 LCS1
;

150 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|

|
|

|
|
|

DEVICE LCS2 LCS 102
LINK LCS802 802.3 1 LCS2
;
DEVICE LCS3 LCS 104
LINK LCSE802 ETHEROR802.3 1 LCS3
;
; start pkttrace
PKTTRACE ON LINKNAME=*
;
; set defaults for all links not specified below
PKTTRACE
; set for CTCD00
PKTTRACE FULL LINKNAME=CTCD00 PROT=* IP=* SRCPORT=* DESTPORT=*
; set for CTCD02
PKTTRACE ABBREV LINKNAME=CTCD02 PROT=TCP IP=9.67.116.124

SRCPORT=5000 DESTPORT=161
; set for CTCD04
PKTTRACE ABBREV=1 LINKNAME=CTCD04 PROT=UDP IP=9.67.116.124

SUBNET=255.255.255.255 SRCPORT=161 DESTPORT=5000
; set for TR1
PKTTRACE ABBREV=200 LINKNAME=TR1 PROT=ICMP IP=*

SRCPORT=5000 DESTPORT=161
; set for LCSC00
PKTTRACE ABBREV=65535 LINKNAME=LCSC00 PROT=1 IP=9.67.116.124

SUBNET=255.255.255.255 SRCPORT=* DESTPORT=*
; set for LCSF00 not to trace
PKTTRACE OFF LINKNAME=LCSF00

Related topics
v “DEVICE and LINK statements” on page 47

v Refer to z/OS Communications Server: IP Diagnosis.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 151

PORT statement
Use the PORT statement to reserve a port for a specified job name. The PORT
statement also specifies the protocol to be used, if the job name should not be
autologged, and if TCP protocol acknowledgments should be delayed.

The port options (for example, NOAUTOLOG, DELAYACKS, and so on) must be
specified in the order in which they appear on the syntax diagram shown below.

Syntax

�� 1Port num TCP Access Specifications
UDP

�

Access Specifications:

DELAYAcks
INTCLIEN

NODELAYAcks BIND ipaddr
RESERVED
jobname

Options

Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SHAREPort BIND ipaddr
�

�
SAF resname

Parameters
num

The number of the port to be reserved. The same port number can appear in
more than one PORT statement with different users or more than once in the
same PORT statement. This port cannot appear in a range specified by the
PORTRANGE statement. If a PORTRANGE statement including this port
number is specified prior to this statement, this port is ignored. If the
PORTRANGE statement follows this statement, the PORTRANGE statement is
ignored. An error message is generated in either case. num is a value in the
range 1–65535.

Note: For z/OS UNIX applications that are invoked by INETD, ensure that the
port number defined for the application in the /etc/services file is the
same as the port number reserved for the application on the PORT
statement.

INTCLIEN
If the PORT statement has a value of INTCLIEN, it assigns the port to the
internal Telnet server rather than assigning it to a client. Therefore, you must

152 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|

use the same port number as specified in the TELNETPARMS block. INTCLIEN
is valid only with the TCP protocol. SHAREPORT is not valid with INTCLIEN.

RESERVED
Indicates the port is not available for use by any user. Use RESERVED to lock
certain ports. This is optional and valid for TCP or UDP protocols.

jobname
This specifies the MVS job name that can use the port. For UDP, only one job
name can be associated with a port. For TCP, the same port can be reserved
multiple times for different job names. This can be useful if you have different
servers with different job names needing access to the port.

The environment in which the application is run determines the job name to be
associated with a particular client or server application.

Notes:

1. Applications run from batch use the batch job name.

2. Applications started from the MVS operator console use the started
procedure name as the job name.

3. Applications run from a TSO user ID use the TSO user ID as the job name.

4. Applications run from the z/OS shell normally have a job name that is the
logged on user ID plus a one-character suffix. Because this job name is not
predictable, you can use the special job name * to allow any application to
access the port.

5. Authorized users can run applications from the z/OS shell and use the
_BPX_JOBNAME environment variable to set the job name. In this case,
the value specified for the environment variable is the job name.

6. The name of the started JCL procedure for the UNIX System Services
Kernel Address Space can be used to allow almost any caller of the bind()
socket API (except for users of the Pascal API) to bind to the port. This
name is typically OMVS unless a different name is explicitly specified in the
STARTUP_PROC parameter of the BPXPRMxx parmlib member.

7. z/OS UNIX applications started by INETD use the jobname of the INETD
server.

NOAUTOLOG
Tells the TCP/IP address space not to restart the server if it was stopped
previously. Otherwise, the default is to restart the server if it was stopped
previously.

DELAYACKS
Allows you to alter the default TCP/IP behavior for acknowledgments and delay
their transmission so they can be combined with data sent to the foreign host.
This affects acknowledgments returned when a packet is received with the
PUSH bit on in the TCP header. This is the default.

The DELAYACKS parameter on the PORT or PORTRANGE statement only
applies to the TCP protocol and only affects acknowledgments on this port
connection.

NODELAYACKS
Specifies that an acknowledgment is returned immediately.

SHAREPORT
Required when reserving a port to be shared across multiple listeners on the
same interface.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 153

|
|

If the same port is reserved for multiple job names, SHAREPORT only needs to
be specified on one instance of the port reservation. SHAREPORT is only valid
for TCP ports.

When SHAREPORT is specified, TCP/IP allows multiple listeners to listen on
the same combination of port and interface. As incoming client connections
arrive for this port and interface, TCP/IP distributes them across the listeners.
TCP/IP selects the listener with the least number of connections (both active
and in the backlog) at the time the incoming client connection request is
received.

BIND ipaddr
Associates a job name with an IP address. When a job with the designated
name issues BIND(INADDR_ANY), the BIND is intercepted and converted to
BIND (specified IP Address). Subsequent BIND processing occurs as though
the server instance had issued the BIND to the selected IP address. The
SO_REUSEADDR socket option is automatically applied to the bound socket
when the protocol is TCP.

The address supplied can be either an IPv4 address (in dotted decimal
notation) or an IPv6 address (in hexadecimal notation). IPv4-mapped IPv6
addresses and IPv4-compatible IPv6 addresses are not supported.

Notes:

1. BIND ipaddr does not apply to the PORTRANGE statement.

2. When using the BIND statement with IPv6 addresses, it is recommended
that you use only manually configured addresses, because autoconfigured
addresses have the potential to change during recycling of the stack.

SAF resname
SAF resname indicates that the port is reserved for users that are permitted to
the RACF resource
EZB.PORTACCESS.sysname.tcpname.resname

where

v EZB.PORTACCESS is constant, sysname is the value of the MVS
&SYSNAME. system symbol

v tcpname is the name of the procedure used to start the TCP stack

v resname is the 8-character value following the SAF keyword

If the SAF keyword is specified and a user tries to bind to the port and is not
allowed access to the resource, the BIND socket call fails.

This is optional and valid for TCP or UDP protocols.

Note: If user name is specified as asterisk (*), any user ID that is RACF
permitted to the resname is allowed to bind to the port; APF or superuser
authority is not required.

This permits multiple users access to the protected port. However, the
stack only allows one user to actually BIND to the port at a time. Use
SHAREPORT to override this behavior for TCP ports.

Examples
The following example was used for test configuration and is provided here for
illustration only. The sample profile, SEZAINST(SAMPPROF), contains the most
current assignments.

154 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|

|
|
|

|

|

|
|
|

PORT
7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server
20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server
23 TCP INTCLIEN ; Telnet 3270 Server
23 TCP INETD1 BIND 9.67.113.3 ; OE telnet server
21 TCP FTPD2 BIND FEC0:AAAA::9000:D000 ; FTP listener on v6 address only
25 TCP SMTP ; SMTP Server
53 TCP NAMED ; Domain Name Server
53 UDP NAMED ; Domain Name Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)
111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
162 UDP SNMPQE ; SNMP Query Engine
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server
512 TCP * SAF OREXECD ; OE Remote Execution Server
514 TCP * SAF ORSHELLD ; OE Remote Shell Server
515 TCP LPSERVE ; LPD Server
520 UDP OROUTED ; OROUTED Server
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server
3000 TCP CICSTCP ; CICS Socket

Usage notes
v A port that is not reserved in this list or with the PORTRANGE statement can be

used by any user. If you have TCP/IP hosts in your network that use ports in the
range 1–1023 for privileged applications, you should reserve them with this
statement, the PORTRANGE statement, or the RESTRICTLOWPORTS
parameter on the ASSORTEDPARMS, TCPCONFIG, or UDPCONFIG
statements.

v For z/OS UNIX applications, you can reserve a port by specifying the job name
of the application or you can use the name of the started JCL procedure for the
z/OS UNIX Kernel Address Space to allow almost any caller of the bind() socket
API (except for users of the Pascal API) to bind to the port. This name is typically
OMVS unless a different name is explicitly specified in the STARTUP_PROC
parameter in the BPXPRMxx parmlib member. Refer to the z/OS MVS
Initialization and Tuning Reference for more details on the STARTUP_PROC
parameter.

v For syslogd, you must include the following PORT statement:
PORT

514 UDP OMVS ; syslogd Server

This port is required for syslogd to accept log data from remote syslogd servers.

Note: Instead of OMVS, you can also use the job name of the syslog daemon
on this port reservation statement. If your syslog daemon’s job name is
SYSLOGD1, you can specify:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 155

PORT 514 UDP SYSLOGD1

v If you want SNMP OSA Management support, refer to z/OS Communications
Server: IP Configuration Guide for more information about the PORT statement.

Related topics
v “AUTOLOG statement” on page 25

v “DELETE statement” on page 42

v “PORTRANGE statement” on page 157

v “TELNETPARMS statements” on page 333

156 z/OS V1R4.0 CS: IP Configuration Reference

PORTRANGE statement
Use the PORTRANGE statement to reserve a range of ports for specified user IDs,
procedures, or job names. The PORTRANGE statement also specifies the protocol
to be used if the user should not be autologged, and if TCP protocol
acknowledgments should be delayed or not.

The portrange options (NOAUTOLOG, DELAYACKS, and so on) must be specified
in the same order as they appear on the following syntax diagram.

Syntax

�� PORTRange 1st_port num_ports protocol
DELAYAcks

INTCLIEN
NODELAYAcks

RESERVED
jobname

Options

�

Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SAF resname

Parameters
1st_port

The starting port for a range of ports to reserve. The same port number cannot
appear in multiple PORTRANGE statements, nor can the port be specified on
both PORTRANGE and PORT statements. If the port is specified on a PORT
statement prior to this statement, this port range is ignored. If the port is
specified on a PORT statement that follows this statement, the port in the
PORT statement is ignored. An error message is generated in either case.
1st_port is a value in the range of 1 and 65535.

num_ports
The number of ports to reserve. The ports reserved cannot overlap other
ranges specified by a PORTRANGE statement. No ports within this range can
be specified on a PORT statement. If the port is specified on a PORT statement
prior to this statement, this port range is ignored. If the port is specified on a
PORT statement that follows this statement, the port in the PORT statement is
ignored. An error message is generated in either case. num_port is a value in
the range of 1 and 65535.

protocol
Specifies the protocol to be used, either TCP or UDP.

INTCLIEN
If the PORTRANGE statement has a value of INTCLIEN, it assigns the ports to
the internal Telnet server rather than to a client. Therefore, you must use the
same port numbers as specified in the TELNETPARMS block. INTCLIEN is only
valid with the TCP protocol.

RESERVED
Indicates that the port is not available for use by any user. Use this to lock
certain ports. This is optional and valid for TCP or UDP protocols.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 157

jobname
This specifies the MVS job name that can use the port. For UDP only one job
name can be associated with a port. For TCP, the same port can be reserved
multiple times for different job names. This can be useful if you have different
servers with different job names that need access to the port.

Determining the job name to be associated with a particular client or server
application depends on the environment in which the application is run.

Notes:

1. Applications run from batch use the batch job name.

2. Applications started from the MVS operator console use the started
procedure name as the job name.

3. Applications run from a TSO user ID use the TSO user ID as the job name.

4. Applications run from the z/OS shell normally have a job name that is the
logged on user ID plus a one-character suffix. Because this job name is not
predictable, you can use an asterisk (*) as a special job name to allow any
application to access the port.

5. Authorized users can run applications from the z/OS shell and use the
_BPX_JOBNAME environment variable to set the job name. In this case,
the value specified for the environment variable is the job name.

6. The name of the started JCL procedure for the UNIX System Services
Kernel Address Space can be used to allow almost any caller of the bind()
socket API (except for users of the Pascal API) to bind to the port. This
name is typically OMVS unless a different name is explicitly specified in the
STARTUP_PROC parameter in the BPXPRMxx parmlib member.

7. To reserve the port and not allow any application access to it use the name
RESERVED.

NOAUTOLOG
Tells the TCP/IP address space not to restart the server if it was stopped
previously. Otherwise, the default is to restart the server if it was stopped
previously.

DELAYACKS
Allows you to alter the default TCP/IP behavior for acknowledgments and delay
their transmission so that they can be combined with data sent to the foreign
host. This affects acknowledgments returned when a packet is received with the
PUSH bit on in the TCP header. This is the default.

The DELAYACKS parameter on the PORT or PORTRANGE statement only
applies to the TCP protocol and only affects acknowledgments on this port
connection.

NODELAYACKS
Specifies that an acknowledgment is returned immediately.

SAF resname
SAF resname indicates that the port is reserved for users that are permitted to
the RACF resource
EZB.PORTACCESS.sysname.tcpname.resname

where

v EZB.PORTACCESS is constant, sysname is the value of the MVS
&SYSNAME. system symbol

v tcpname is the name of the procedure used to start the TCP stack

v resname is the 8-character value following the SAF keyword

158 z/OS V1R4.0 CS: IP Configuration Reference

If the SAF keyword is specified and an application tries to bind to a port in the
port range, and the user ID associated with the application is not permitted to
the resource, the BIND socket call fails.

This is optional and valid for TCP or UDP protocols.

Note: If user name is specified as asterisk (*), any user ID that is RACF
permitted to the resname is allowed to bind to the port; APF or superuser
authority is not required.

Modifying
To change a parameter value, you must delete the existing PORTRANGE
statement, then redefine with the new PORTRANGE statement.

Examples
This example shows a PORTRANGE statement used to reserve a large number of
ports for a single test system.
PORTRANGE

4000 200 TCP TESTSYS

This example shows a PORTRANGE statement where port 111 is reserved for both
UDP and TCP for one user, and ports 500-504 are reserved for two different users,
one using UDP and one using TCP. Note that for multiple users to share the same
TCP port, a PORT statement is required. Multiple users cannot share the same
UDP port.
PORTRANGE

111 1 UDP PORTMAP
111 1 TCP PORTMAP
500 5 UDP USER1
500 5 TCP USER2

PORT 600 TCP USER1
601 TCP USER1
602 TCP USER1
600 TCP USER2
601 TCP USER2
602 TCP USER2
600 TCP USER3
601 TCP USER3
602 TCP USER3

Usage notes
v A range of ports defined in a VARY TCPIP,,CMD=OBEYFILE command data set

are added to the list of ports already defined. To delete a range of ports, you
must use the DELETE statement.

v A port that is not reserved by a PORT or PORTRANGE statement can be used
by any user. If you have TCP/IP hosts in your network that reserve ports in the
range 1-1023 for privileged applications, you should reserve them either with this
statement, the PORT statement, or the RESTRICTLOWPORTS parameter on the
ASSORTEDPARMS, TCPCONFIG, or UDPCONFIG statements.

v If you are reserving ports for the INADDRANYPORT() parameter in the
BPXPRMxx parmlib member, you need to specify the name of the started JCL
procedure for the z/OS UNIX Kernel Address Space to allow almost any caller of
the bind() socket API (except for users of the Pascal API) to bind to the port. This
name is typically OMVS unless a different name is explicitly specified in the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 159

STARTUP_PROC parameter in the BPXPRMxx parmlib member. Refer to the
z/OS MVS Initialization and Tuning Reference for more details on the
STARTUP_PROC parameter.

Related topics
v “DELETE statement” on page 42

v “PORT statement” on page 152

160 z/OS V1R4.0 CS: IP Configuration Reference

PRIMARYINTERFACE statement

Note: The PRIMARYINTERFACE statement applies to IPv4 links only.

Use the PRIMARYINTERFACE statement to specify which link is to be designated
as default local host for use by the GETHOSTID() function.

Except for the SOURCEVIPA option in the ASSORTEDPARMS or IPCONFIG
statements, the PRIMARYINTERFACE has no effect on outbound traffic to a
network when there are multiple network interfaces.

Syntax

�� PRImaryinterface link_name �

Parameters
link_name

The name of a link that is to be the primary interface. This link must have
already been defined to TCP/IP. If you specify the name of a Dynamic VIPA link,
the Dynamic VIPA must have been defined in a VIPADYNAMIC statement
block. You cannot specify a loopback link name.

Modifying
To modify parameters for the PRIMARYINTERFACE statement, you must respecify
the statement with the new parameters.

If you respecify the HOME list by using the V TCPIP,,OBEYFILE command, have
previously specified the PRIMARYINTERFACE statement, and want to preserve the
PRIMARYINTERFACE that was previously specified, you must include your
PRIMARYINTERFACE statement in the same OBEYFILE data set that contains the
new HOME list. If you respecify the HOME list and do not include the original
PRIMARYINTERFACE statement, the primary interface is reset to the first entry in
the new HOME list.

Examples
This example shows a PRIMARYINTERFACE statement specifying a token-ring:
PRIMARYINTERFACE TR1

You can verify which HOME entry is primary by using the Netstat HOME/-h
command:
Home address list:
Address Link Flg
9.67.113.61 TR1 P
9.67.116.125 CTCD00
127.0.0.1 LOOPBACK

Usage notes
v Because of the way Dynamic VIPA links are added to the TCP/IP stack, you can

not specify a PRIMARYINTERFACE statement for a Dynamic VIPA link in the
same Profile data set as the VIPADYNAMIC statement that defines the Dynamic
VIPA link. This is true for the initial Profile data set or a Profile data set specified
on a V TCPIP,,OBEYFILE command. In order to specify a Dynamic VIPA link on

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 161

|

|
|
|
|
|
|
|

|

|
|
|
|
|

a PRIMARYINTERFACE statement, the Dynamic VIPA link must have been
defined to the stack in a previous Profile data set.

v The primary interface is flagged in the onetstat -h display.

v The primary interface IP address is used as the source IP address in the IP
header of an outgoing packet if no other source IP address can be found. If the
PRIMARYINTERFACE statement is not specified, then the first address in the
HOME list is designated as the default local host.

Related topics
v “HOME statement” on page 107

162 z/OS V1R4.0 CS: IP Configuration Reference

|
|

SACONFIG statement
Use the SACONFIG statement to configure the SNMP TCP/IP subagent. If the
SACONFIG statement is not specified, the subagent is started by TCP/IP
initialization but SNMP SET support is disabled.

Syntax

�� SACONFig 1

AGENT 161

AGENT agent_port_number
COMMUNity public

COMMUNity community_string
ENABLed

DISABLed
OSADISabled

OSAENabled

OSASF osasf_port_number
SETSDISabled

SETSENAbled

�

Parameters
AGENT

A port number in the range of 1 and 65535 used in establishing communication
with the SNMP agent. For the TCP/IP SNMP subagent to communicate with the
z/OS CS SNMP agent, the port number specified must match the port number
specified (or defaulted) on the -p parameter when the SNMP agent is started.
The default value is 161 when processing the initial profile only. If SACONFIG is
specified in an OBEYFILE without the AGENT parameter, the value is
unchanged.

COMMUNITY
A character string of 1 to 32 characters used as the community name (or
password) in establishing contact with the SNMP agent. It is not converted to
uppercase by profile processing. It cannot contain any imbedded white space or
control characters (such as blank, tab, end of line, or end of file) and cannot
contain any imbedded semicolons (semicolons are treated as comment
delimiters). For the TCP/IP SNMP subagent to communicate with the z/OS CS
SNMP agent, the community name specified (or defaulted) on the COMMUNITY
keyword must match one that is defined in the PW.SRC or SNMPD.CONF data
set used by the SNMP agent or specified (or defaulted) on the -c parameter
when the SNMP agent is started. The default value is public when processing
the initial profile only. If SACONFIG is specified in an OBEYFILE without the
COMMUNITY parameter, the value is unchanged.

DISABLED
If specified in PROFILE.TCPIP at initialization, indicates that the SNMP
subagent should not be started. Specify this parameter if you do not require any

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 163

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

of the SNMP MIB data supported by the TCP/IP subagent. By default, the
SNMP subagent is started by TCP/IP initialization.

If specified using OBEYFILE, indicates that the currently active subagent task
should be terminated.

SNMP MIB objects supported by the z/OS CS SNMP agent and subagents
other than the TCP/IP SNMP subagent are still available. For information on
which MIB objects are supported by the SNMP agent and subagent, see the
z/OS Communications Server: IP User’s Guide and Commands.

ENABLED
Indicates that the SNMP subagent should be started at the completion of this
OBEYFILE or Profile.

OSAENABLED
Indicates that OSA Management support is required at this TCP/IP instance.
For optimal performance, specify OSAENABLED only at the TCP/IP instance
from which Management support is needed. By default, OSA data retrieval is
not enabled.

The SNMP subagent must be enabled, as it provides support for retrieval of
SNMP management data about OSA devices and links. Therefore, do not
specify the DISABLED parameter for this TCP/IP instance.

To retrieve the data, there must also be at least one TCP/IP instance active for
which the OSASF parameter and its port number have been specified in the
SACONFIG statement.

OSASF
A value between 0 and 65535. There is no default. A value of 1 through 65535
indicates a port number and marks the corresponding TCP/IP instance as a
candidate to communicate with OSA/SF for retrieval of SNMP management
data regarding ATM devices and links. A value of 0 indicates that the
corresponding TCP/IP instance is no longer a candidate to communicate with
OSA/SF, in the event that the OSA/SF-to-TCP/IP connection is restarted.

When multiple TCP/IP instances specify that OSA management data retrieval is
desired, it is recommended that all be configured with the same OSASF
parameter. Only one TCP/IP instance connects directly to OSA/SF. Other
instances connect to OSA/SF using this primary TCP/IP instance.

SETSDISABLED
Indicates the SNMP subagent should not process SNMP ’set’ requests.

SETSENABLED
Indicates that the SNMP subagent should process SNMP ’set’ requests. For
example, SETSENABLED allows a user who issued an SNMP ’set’ request to
cancel connections and start and stop devices using the SNMP agent security
instead of RACF security. By default, the processing of SNMP set requests is
disabled.

OSADISABLED
Indicates that OSA Management support is not required at this TCP/IP instance.
If this support was previously enabled, then specifying this parameter disables
the support.

Modifying
To modify parameters for the SACONFIG statement, you must respecify the
statement with the new parameters. If you modify any parameters, other than
DISABLED, you must recycle the subagent for the changes to take effect.

164 z/OS V1R4.0 CS: IP Configuration Reference

Examples
SACONFIG COMMUNITY USACCESS AGENT 528
SACONFIG DISABLED
SACONFIG SETSENABLED OSAENABLED OSASF 2026

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 165

SMFCONFIG statement
Use the SMFCONFIG statement to provide SMF logging for Telnet client, FTP
client, TCP API, and TCP stack activity.

Using SMFCONFIG to turn on SMF logging allows you to request that standard
subtypes are assigned to the TCP/IP SMF records. The SMFPARMS statement
provides a similar capability but requires the installation to select the subtype
numbers to be used. Use of the SMFCONFIG parameter is recommended instead
of SMFPARMS. Refer to z/OS Communications Server: IP Configuration Guide for
more information.

Syntax

�� SMFCONFIG
Type 118 Options

1

TYPE118 Type 118 Options
TYPE119 Type 119 Options

�

Type 118 Options:

1

NOTCPIPStatistics

TCPIPStatistics
NOTCPINIT

TCPINIT
NOTCPTERM

TCPTERM
NOFTPCLIENT

FTPCLIENT
NOTN3270CLIENT

TN3270CLIENT

Type 119 Options:

166 z/OS V1R4.0 CS: IP Configuration Reference

1

NOTCPIPStatistics

TCPIPStatistics
NOTCPINIT

TCPINIT
NOTCPTERM

TCPTERM
NOFTPCLIENT

FTPCLIENT
NOTN3270CLIENT

TN3270CLIENT
NOIFStatistics

IFStatistics
NOPORTStatistics

PORTStatistics
NOTCPSTACK

TCPSTACK
NOUDPTerm

UDPTerm

Parameters
TCPIPSTATISTICS

Requests that SMF records of subtype 5 containing TCP/IP statistics are
created. Note that these records are created periodically based on the SMF
interval in effect. The record format collected (Type 118 or Type 119) is
determined by the most recent setting of the TYPE118 or TYPE119 operand.

NOTCPIPSTATISTICS
Requests that SMF records of subtype 5 are not created. The record format
affected (Type 118 or Type 119) by this operand is determined by the most
recently specified setting of the TYPE118 or TYPE119 operand. This is the
default.

TCPINIT
Requests that SMF records of subtype 1 are created when TCP connections
are established. The record format collected (Type 118 or Type 119) is
determined by the most recently specified TYPE118 or TYPE119 operand.

NOTCPINIT
Requests that SMF records of subtype 1 are not created when TCP
connections are established. The record format affected (Type 118 or Type 119)
by this operand is determined by the most recent setting of the TYPE118 or
TYPE119 operand. This is the default.

TCPTERM
Requests that SMF records of subtype 2 are created when TCP connections
are terminated. The record format collected (Type 118 or Type 119) is
determined by the most recently specified TYPE118 or TYPE119 operand.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 167

NOTCPTERM
Requests that SMF records of subtype 2 are not created when TCP
connections are terminated. The record format affected (Type 118 or Type 119)
by this operand is determined by the most recently specified setting of the
TYPE118 or TYPE119 operand.

FTPCLIENT
Requests that SMF records of subtype 3 are created when a user invokes the
FTP client command. The record format affected (Type 118 or Type 119) by this
operand is determined by the most recently specified setting of the TYPE118 or
TYPE119 operand.

NOFTPCLIENT
Requests that SMF records of subtype 3 are not created when a user invokes
the FTP client command. The record format affected (Type 118 or Type 119) by
this operand is determined by the most recently specified setting of the
TYPE118 or TYPE119 operand.

TN3270CLIENT
Requests that SMF type 118 records of subtype 4, or type 119 records of
subtype 22 and 23 are created when the TSO Telnet Client code initiates or
terminates a connection (respectively for type 119). The record format collected
(Type 118 or Type 119) is determined by the most recently specified TYPE118
or TYPE119 operand.

NOTN3270CLIENT
Requests that SMF type 118 records of subtype 4, or type 119 records of
subtype 22 or 23 are not created. The record format affected (Type 118 or Type
119) by this operand is determined by the most recently specified setting of the
TYPE118 or TYPE119 operand.

IFSTATISTICS
Requests that SMF type 119 records of subtype 6 containing statistics related to
LINK utilization are created. Note that these records are created periodically
based on the SMF interval in effect. This operand is valid if the current record
type setting is TYPE119.

NOIFSTATISTICS
Requests that SMF type 119 records of subtype 6 are not created. This
operand is valid if the current record type setting is TYPE119. This is the
default.

PORTSTATISTICS
Requests that SMF type 119 records of subtype 7 containing statistics related to
reserved PORT utilization are created. Note that these records are created
periodically based on the SMF interval in effect. This operand is valid if the
current record type setting is TYPE119.

NOPORTSTATISTICS
Requests that SMF type 119 records of subtype 7 are not created. This
operand is valid if the current record type setting is TYPE119. This is the
default.

TCPSTACK
Requests that SMF type 119 records of subtype 8 are created when a TCP
stack is activated and when it is terminated. This operand is valid if the current
record type setting is TYPE119.

NOTCPSTACK
Requests that SMF type 119 records of subtype 8 are not created. This
operand is valid if the current record type setting is TYPE119.

168 z/OS V1R4.0 CS: IP Configuration Reference

UDPTERM
Requests that SMF type 119 records of subtype 10 are created when a UDP
Socket is closed. This operand is valid if the current record type setting is
TYPE119.

NOUDPTERM
Requests that SMF type 119 records of subtype 10 are not created. This
operand is valid if the current record type setting is TYPE119.

Modifying
To modify parameters for the SMFCONFIG statement, you must respecify the
statement with the new parameters.

VARY OBEYFILE processing does not reset previous settings to the default.

Dependency
v Use of SMFCONFIG is preferable to SMFPARMS to standardize subtypes. If

SMFPARMS is encountered after an SMFCONFIG statement, an error message
is displayed and the SMFPARMS parameters are ignored. If SMFCONFIG is not
coded, no SMF records are logged (assuming that SMFPARMS is not coded
either).

v SMFPARMS is only valid for Type 118 records. Type 119 records have default
subtype values that are not installation-configurable.

Examples
This example requests SMF records for TCP connection initialization, TCP
connection termination, FTP client, Telnet client, and TCP/IP statistics:
SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS

The format type default is TYPE118. If you use SMFCONFIG to activate SMF
recording, you do not need to make any changes to continue receiving the same
recording. If you want to use the new records, specify TYPE119, followed by any of
the SMF records that you want.

For example, if the following is specified:
SMFCONFIG FTPCLIENT TN3270CLIENT

TYPE119 FTPCLIENT TN3270CLIENT

The recording is Type 118 FTP, TN3270 client records and Type 119 FTP, TN3270
client records.

Usage notes
v SMF must be active and properly configured to allow the recording of Type 118

or Type 119 records, depending on which types are being used by the
configuration.

v The TYPE118 keyword can be omitted when designating Type 118 options as
long as they are specified before the Type 119 options.

Related topics
v Appendix C, “SMF type 118 records” on page 921

v Appendix D, “SMF type 119 records” on page 931

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 169

SMFPARMS statement
Use the SMFPARMS statement to log the use of TCP by applications using SMF
Type 118 log records. You can log Telnet and FTP client activity, and TCP API
activity.

Syntax

�� SMFPARMS inittype termtype clienttype �

Parameters
inittype

An integer in the range of 0 to 255 specifying the subtype field in the API
initialization records. The value 0 indicates no API initialization will be written.

termtype
An integer in the range of 0 to 255 specifying the subtype field in the API
termination records. The value 0 indicates no API termination records are
written.

clienttype
An integer in the range of 0 to 255 specifying the subtype field in the FTP or
Telnet client. The value 0 indicates that no FTP or Telnet client records are
written.

Modifying
To modify parameters for the SMFPARMS statement, you must respecify the
statement with the new parameters.

Dependency
SMFPARMS is only valid for Type 118 SMF records. Type 119 records have default
subtype values that are not installation-configurable. As such, the only way to
activate the recording of Type 119 records is by using SMFCONFIG.

Examples
v Either of the following statements would produce API initialization and termination

records but no FTP or Telnet client records:
SMFPARMS 3 4 0
SMFPARMS 3 4

v The following statement would produce client records only:
SMFPARMS 0 0 5

v Because one of the parameters is missing, this statement would generate an
error and not produce any records:
SMFPARMS 3

Usage notes
v The values for each subtype should be unique.

v If inittype, termtype, or clienttype have the value of 0, no attempt is made to write
the respective record.

v The format of the log information differs for Telnet and FTP client activity, and
TCP API activity.

170 z/OS V1R4.0 CS: IP Configuration Reference

Related topics
v Appendix C, “SMF type 118 records” on page 921

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 171

SOMAXCONN statement
Use the SOMAXCONN statement to specify the maximum number of connection
requests queued for the listening socket.

Syntax

��
SOMAXCONN 10

SOMAXCONN maximum_queue_depth
�

Parameters
maximum_queue_depth

The maximum number of pending connection requests queued for any listening
socket. The minimum value is 1, the maximum value is 2 147 483 647, and the
default is 10.

Modifying
To modify parameters for the SOMAXCONN statement, you must respecify the
statement with the new parameters.

Examples
This example shows a SOMAXCONN statement specifying the default number of
listening sockets.
SOMAXCONN 10

Usage notes
v This number is stored as a fullword integer, but most implementations of TCP/IP

hardcode a value in the range of 5–10.

v This number is the maximum depth for any listening stream socket, but the
programmer can specify a shorter queue length on each listen() socket call.

v There is a SOMAXCONN variable in the SOCKET.H file that is hard-coded at 10.
If your C socket programs use this variable to determine what the acceptable
maximum listen() backlog queue length is, remember to change the header file to
reflect the value you specified for TCP/IP in SOMAXCONN maximum queue
depth.

172 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

START statement
Use the START statement to start a device or interface that is currently stopped.
This statement is usually specified at the end of hlq.PROFILE.TCPIP.

Syntax

�� START
device_name
interface_name

�

Parameters
device_name

The name of the device to start. This should be the same device_name
specified in the DEVICE statement.

interface_name
The name of the interface to start. This should be the same interface_name
specified on the INTERFACE statement.

Modifying
Modification is not applicable to this statement.

Examples
This example shows START statements that start devices LCS1 and LCS2.
START LCS1
START LCS2

Usage notes
v You can also use the VARY TCPIP,,START command to start a device or

interface.

v VTAM must be active to START a device or interface with TCP/IP.

v Each device or interface to be started needs a separate START statement.

v The START statement can also be used in a VARY TCPIP command data set to
start:
– A newly-defined device or interface
– A device or interface stopped with the STOP statement
– A device or interface that was never successfully started

v TCP/IP has a maximum of 255 started devices (that is, non-VIPA). However, if
using OROUTED or OMPROUTE, the maximum number of interfaces is 255, and
this maximum does not include VIPA interfaces. There is no maximum for static
VIPA interfaces, but the maximum number of Dynamic VIPA interfaces is 256.

v The START statement is not valid for virtual devices or interfaces. For IPv4, a
virtual device is started automatically when a HOME entry is defined to it. For
IPv6, a virtual interface is started automatically when an INTERFACE entry is
defined to it. The virtual device or interface never leaves the started (active)
state.

v The START and STOP commands are processed after all other statements within
the Profile or OBEYFILE.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 173

|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Related topics
v “STOP statement” on page 175

v z/OS Communications Server: IP System Administrator’s Commands

174 z/OS V1R4.0 CS: IP Configuration Reference

STOP statement
Use the STOP statement in a VARY TCPIP command data set to stop a device or
interface that is currently started.

Syntax

�� STOP
device_name
interface_name

�

Parameters
device_name

The name of the device to be stopped. This should be the same device_name
specified in the DEVICE statement.

interface_name
The name of the interface to stop. This should be the same interface_name
specified on the INTERFACE statement.

Modifying
Modification is not applicable to this statement.

Examples
This example shows STOP statements that stop devices LCS1 and LCS2.
STOP LCS1
STOP LCS2

Usage notes
v You can also use the VARY TCPIP,,STOP command to stop a device or

interface.

v A virtual device or interface cannot be stopped.

v The START and STOP commands are processed after all other statements within
the Profile or OBEYFILE.

Related topics
v “START statement” on page 173

v z/OS Communications Server: IP System Administrator’s Commands

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 175

|
|
|

|
|

|

TCPCONFIG statement
Use the TCPCONFIG statement to update the TCP layer of TCP/IP.

Note: It is recommended that the ASSORTEDPARMS statement not be used with
TCPCONFIG; otherwise, unintended settings might occur. See the following
parameter descriptions for more information.

Syntax

�� TCPCONFIG �

� 1

FINWait2time 600

FINWait2time finwait2_seconds
INTerval 120

INTerval default_keepalive_interval

RESTRICTLowports
UNRESTRICTLowports
TCPSENDBfrsize 16384

TCPSENDBfrsize tcp_send_buffer_size
TCPRCVBufrsize 16384

TCPRCVBufrsize tcp_receive_buffer_size
TCPMAXRCVBufrsize 256K

TCPMAXRCVBufrsize tcp_max_receive_buffer_size
FALSE

SENDGarbage TRUE

TCPTIMEstamp
NOTCPTIMEstamp
DELAYAcks

NODELAYAcks

�

Parameters
FINWait2time

The number of seconds a TCP connection should remain in the FINWAIT2
state. The range is from 60 to 3600 seconds, and the default is 600 seconds.
When this timer expires, it is reset to 75 seconds and when it expires a second
time, the connection is dropped.

INTERVAL default_keepalive_interval
The number of minutes TCP waits after receiving a packet for a connection
before it sends a keepalive packet for that connection. The range is from 0 to
35791 minutes, and the default is 120. A value of 0 disables the keepalive
function.

RESTRICTLOWPORTS
When set, ports 1 through 1023 are reserved for users by the PORT and
PORTRANGE statements. The RESTRICTLOWPORTS parameter is confirmed
by the message:
EZZ0338I TCP PORTS 1 THRU 1023 ARE RESERVED

Note: When RESTRICTLOWPORTS is specified, an application cannot obtain
a port in the 0 through 1023 range unless it is authorized. Applications
can be authorized to low ports in the following ways:

176 z/OS V1R4.0 CS: IP Configuration Reference

|

v Using PORT or PORTRANGE with the appropriate job name or a
wildcard job name such as * or OMVS. If the SAF keyword is used on
PORT or PORTRANGE, additional access restrictions can be imposed
by a security product, such as RACF.

v APF authorized applications can access unreserved low ports.

v OMVS superuser (UID(0)) applications can access unreserved low
ports.

Applications with a dependency on being able to obtain an available port
in the 0 through 1023 range without having that port explicitly reserved
for its use should be run as APF authorized or superuser. The use of
RESTRICTLOWPORTS is recommended to increase system security.

If ASSORTEDPARMS is specified without the RESTRICTLOWPORTS
parameter but is specified after TCPCONFIG RESTRICTLOWPORTS,
UNRESTRICTLOWPORTS is set. If RESTRICTLOWPORTS is not specified on
ASSORTEDPARMS (and thus defaults to OFF) but is specified on a
subsequent TCPCONFIG statement, RESTRICTLOWPORTS is set for TCP
ports.

UNRESTRICTLOWPORTS
When set, ports 1 through 1023 are not reserved. The
UNRESTRICTLOWPORTS parameter is confirmed by the message:
EZZ0338I TCP PORTS 1 THRU 1023 ARE NOT RESERVED

TCPSENDBFRSIZE tcp_send_buffer_size
TCP send buffer size between 256 and 256K. The default is 16384 (16 K). This
value is used as the default send buffer size for those applications that do not
explicitly set the buffer size using SETSOCKOPT().

TCPRCVBUFRSIZE tcp_receive_buffer_size
TCP receive buffer size between 256 and TCPMAXRCVBUFRSIZE. The default
is 16384 (16K). This value is used as the default receive buffer size for those
applications which do not explicitly set the buffer size using SETSOCKOPT().

TCPMAXRCVBUFRSIZE tcp_max_receive_buffer_size
The TCP maximum receive buffer size is the maximum value an application can
set as its receive buffer size using SETSOCKOPT(). The minimum acceptable
value is the value coded on TCPRCVBUFRSIZE, the maximum is 512K, and
the default is 256K. If you do not have large bandwidth interfaces, you can use
this parameter to limit the receive buffer size an application can set.

SENDGARBAGE
Specifies whether the keepalive packets sent by TCP contain 1 byte of random
data.

FALSE
Causes the packet to contain no data. This is the default.

TRUE
Causes the packet to contain 1 byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP.

NOTCPTIMESTAMP
TCP Timestamp Option is disabled, and MVS does not participate in TCP
timestamp negotiation during connection setup and also during the entire life of
connection.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 177

|

TCPTIMESTAMP
TCP Timestamp Option is enabled. If MVS initiates a TCP connection, then a
TCP timestamp option is sent. During a passive connect, for example, if MVS
receives a TCP connection request with TCP timestamp option from a client
and this option is enabled, then MVS sends a SYN-ACK with its own TCP
timestamp option. This option should be enabled to help prevent wrapping of
sequence numbers or to prevent a connection from receiving a delayed
segment that was originally intended for an earlier incarnation of the connection.
The sequence numbers can wrap more quickly with higher bandwidth networks.
This is the default.

DELAYACKS
Allows you to alter the TCP/IP behavior for acknowledgments and delay their
transmission so that they can be combined with data sent to the foreign host.
This affects acknowledgments returned when a packet is received with the
PUSH bit on in the TCP header. This is the default, and the behavior can be
modified using NODELAYACKS on the PORT, PORTRANGE, and GATEWAY
statements.

NODELAYACKS
Specifies that an acknowledgment is returned immediately when data is
received that has the PUSH bit set on in the TCP header. NODELAYACKS in
TCPCONFIG cannot be modified with DELAYACKS coded on the PORT,
PORTRANGE or GATEWAY statements. That is, immediate acknowledgment
becomes the system default.

Modifying
To modify parameters for the TCPCONFIG statement, you must respecify the
statement with the new parameters.

The parameter changes do not affect existing connections. They only affect new
connections.

Examples
This example shows a TCPCONFIG statement that reserves ports 1 through 1023
for users by the PORT and PORTRANGE statements:
TCPCONFIG RESTRICTLOWPORTS

Usage notes
It is recommended that the ASSORTEDPARMS statement not be used with
IPCONFIG; otherwise, unintended settings might occur. See the parameter
descriptions for more information.

178 z/OS V1R4.0 CS: IP Configuration Reference

TRANSLATE statement

Note: The TRANSLATE statement applies to IPv4 links only.

Use the TRANSLATE statement to indicate the relationship between an Internet
address and the physical address, on a specified link. You can use the
TRANSLATE statement, with some limitations, for Ethernet, ATM, FDDI, and
token-ring hosts that do not support ARP.

The TRANSLATE statement is not valid for virtual devices, or point-to-point devices
like CTC.

Each configuration data set’s first TRANSLATE statement replaces the internal
translation tables (the ARP table), including information dynamically added by ARP,
with the new information. Subsequent TRANSLATE statements in the same data set
add entries to the table.

If the first TRANSLATE statement of a profile contains no Internet address or link
name, all addresses are removed from the TRANSLATE list.

Syntax

�� TRANSLATE 1 internet_addr NSAP physical_addr link_name
HCH
ETHERNet
IBMTR
FDDI

�

Parameters
internet_addr

The Internet address for which a translation is specified.

NSAP
Indicates the network address is an ATM address.

HCH
Indicates the network address is a HYPERchannel address.

ETHERNET
Indicates the network address is an Ethernet address.

IBMTR
Indicates the network address is a token-ring address.

FDDI
Indicates the network address is an FDDI address.

physical_addr
The network address corresponding to internet_addr and link_name. The format
depends on the network type.

v For NSAP, specify a 40-digit hexadecimal value.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 179

|

Note: If the TRANSLATE statement is defining an ATM address for a TCP/IP
stack on another z/OS system, then the last hex digit of the 40-digit
address cannot be 0. (Zero is reserved for High Performance Routing
(HPR) use by VTAM.)

v For HCH, specify a 12-digit hexadecimal number of the form ttxxxxxxhhcc.

tt The trunk mask. Use values other than FF only when advised to do so
by Network Systems Corporation or by a HYPERchannel expert.

xxxxxx
These 6 digits are ignored.

hh The remote adapter address.

cc The meaning depends on the type of remote adapter. If the remote
adapter is attached to a VM TCP/IP or MVS TCP/IP system, then cc is
the read port address (the lower of the two addresses that are attached
to TCP/IP).

v For ETHERNET, IBMTR, and FDDI, specify a 12-digit hexadecimal MAC
address of the remote adapter.

– For Ethernet, the remote host is assumed to use network headers DIX
Ethernet format, not the 802.3 format.

– For token-ring, the translation table entry should not contain a token-ring
source routed bridge path.

link_name
A network link name (from the LINK statement). The specified internet_addr is
translated to the specified net_addr only when sending on this link. You can
include multiple TRANSLATE statement entries for the same internet_addr with
a different link_name.

Modifying
To modify any values on the TRANSLATE statement, use a VARY TCPIP command
with an OBEYFILE that contains a new TRANSLATE statement. All existing ARP
entries are deleted. To remove all static ARP entries from the ARP table, specify an
empty TRANSLATE statement.

Notes:

1. If any HOME statement values were dynamically modified, all ARP static entries
that correspond with the LINK names in the TRANSLATE statement are deleted
and replaced.

2. If any DEVICE/LINK statement values were dynamically deleted, all static ARP
entries that correspond with the LINK names on the TRANSLATE statement are
deleted. In the OBEYFILE containing changed DEVICE/LINK statements and a
new HOME statement, include a new TRANSLATE statement for the VARY
TCPIP command.

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about the VARY TCPIP commands.

Examples
This example shows the TRANSLATE statement for FDDI:
TRANSLATE

9.67.51.3 FDDI FF0000006702 FDDI1
9.67.22.4 FDDI FF0000009A05 FDDI1

180 z/OS V1R4.0 CS: IP Configuration Reference

Usage notes
v When using TRANSLATE to define the ATM address of a TCP/IP stack on

another z/OS system, it is important that the correct ATM address be specified.
Start the ATM link on the other stack and use the onetstat -R ALL command to
display the ARP cache. The entry for the local IP address in this display show
exactly which ATM address must be specified in the TRANSLATE statement on
the first stack.

v Some token-ring hardware does not recognize the RFC 1469-mandated
functional MAC address for multicast. The TRANSLATE statement can be used
to configure a token-ring link to broadcast multicast datagrams as an alternative
to using the functional MAC address. Use the reserved class D address
224.0.0.0 with one of the following special physical addresses:

– FFFFFFFFFFFF for all rings broadcast

– C00000040000 to reset back to the default functional address

The following are OSPF implementation examples of how to specify each
method:

– All rings

- TRANSLATE

- 224.0.0.0 IBMTR FFFFFFFFFFFF linkname

– Assigned functional address:

- TRANSLATE 224.0.0.0 IBMTR

- C00000040000 linkname

Note: The TRANSLATE statement is effective on a per link basis. You do not
have to code a TRANSLATE statement if you want the assigned functional
address, as it is the default method.

Related topics
v “DEVICE and LINK statement—ATM devices” on page 52

v “DEVICE and LINK statement—LAN Channel Station and OSA devices” on
page 65

v “DEVICE and LINK statement—HYPERchannel A220 devices” on page 62

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 181

UDPCONFIG statement
Use the UDPCONFIG statement to update the UDP layer of TCP/IP.

Note: It is recommended that the ASSORTEDPARMS statement not be used with
UDPCONFIG; otherwise, unintended settings might occur. See the following
parameter descriptions for more information.

Syntax

�� UDPCONFIG 1

RESTRICTLowports
UNRESTRICTLowports

UDPCHKsum
NOUDPChksum

UDPSENDBfrsize udp_send_buffer_size
UDPRCVBufrsize udp_receive_buffer_size

UDPQueuelimit
NOUDPQueuelimit

�

Parameters
RESTRICTLOWPORTS

When set, ports 1 through 1023 are reserved for users by the PORT and
PORTRANGE statements. The RESTRICTLOWPORTS parameter is confirmed
by the message:
EZZ0338I UDP PORTS 1 THRU 1023 ARE RESERVED

Note: Applications can be authorized to low ports in the following ways:

v By way of PORT or PORTRANGE with the appropriate job name or a
wildcard job name such as * or OMVS. If the SAF keyword is used on
PORT or PORTRANGE, additional access restrictions can be imposed
by a security product (for example, RACF).

v APF authorized applications can access unreserved low ports.

v OMVS superuser (UID(0)) applications can access unreserved low
ports.

Applications that have a dependency on being able to obtain an
available port in the 0 through 1023 range without having that port
explicitly reserved for its use should be run as APF authorized or
superuser. The use of RESTRICTLOWPORTS is recommended to
increase system security.

If ASSORTEDPARMS is specified without the RESTRICTLOWPORTS
parameter but is specified after UDPCONFIG RESTRICTLOWPORTS,
UNRESTRICTLOWPORTS is set. If RESTRICTLOWPORTS is not specified on
ASSORTEDPARMS (and thus defaults to OFF) but is specified on a
subsequent UDPCONFIG statement, RESTRICTLOWPORTS is set for UDP
ports.

182 z/OS V1R4.0 CS: IP Configuration Reference

|

|

UNRESTRICTLOWPORTS
Ports 1 through 1023 are not reserved. The UNRESTRICTLOWPORTS
parameter is confirmed by the message:
EZZ0338I UDP PORTS 1 THRU 1023 ARE NOT RESERVED

UDPCHKSUM
Used to ensure UDP does check summing.

NOUDPCHKSUM
Used to ensure UDP does not do check summing. This option is ignored for
UDP datagrams flowing over an IPv6 network, as UDP Checksum is a required
function on an IPv6 network. If an AF_INET6 socket is used to send datagrams
over an IPv4 network, this option disables the UDP checksum function.

UDPSENDBFRSIZE udp_send_buffer_size
Set UDP send buffer size.

UDPRCVBUFRSIZE udp_receive_buffer_size
Set UDP receive buffer size.

UDPQUEUELIMIT
Used to set a queue limit for UDP. If set, then a maximum of 2000 incoming
datagrams will be queued on a UDP socket. The UDPQUEUELIMIT parameter
is confirmed by the message:
EZZ0336I A LIMIT ON INCOMING UDP DATAGRAM QUEUE SET

Note: If Intrusion Detection Services (IDS) Traffic Regulation (TR) policy is in
effect for a UDP port, the queue limit size is controlled by the policy for
that port.

NOUDPQUEUELIMIT
Used to specify that UDP should not have a queue limit. With
NOUDPQUEUELIMIT specified, it is possible for inbound datagrams to arrive
and be queued to a UDP application’s socket faster than the application can
receive the datagrams. If so, the amount of data queued could be substantial,
resulting in a possible shortage of system storage. For this reason, IBM
recommends setting a limit using UDPQUEUELIMIT or by using an IDS Traffic
Regulation policy. The NOUDPQUEUELIMIT parameter is confirmed by the
message:
EZZ0336I NO LIMIT ON INCOMING UDP DATAGRAM QUEUE SET

If ASSORTEDPARMS is specified without the NOUDPQUEUELIMIT parameter
but is specified after UDPCONFIG NOUDPQUEUELIMIT, UDP queue limit is
set.

If Intrusion Detection Services (IDS) Traffic Regulation (TR) policy is in effect for
a UDP port then NOUDPQUEUELIMIT is overridden for that port.

Modifying
To modify parameters for the UDPCONFIG statement, you must respecify the
statement with the new parameters.

Examples
This example shows a UDPCONFIG statement that uses check summing, sets no
queue limit, and sets the send buffer size to 8192:
UDPCONFIG UDPCHK NOUDPQ UDPSENDB 8192

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 183

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

Usage notes
It is recommended that the ASSORTEDPARMS statement not to be used with
UDPCONFIG; otherwise, unintended settings might occur. See the parameter
descriptions for more information.

184 z/OS V1R4.0 CS: IP Configuration Reference

VIPADYNAMIC statement

Note: The VIPADYNAMIC statement applies to IPv4 links only.

Use the VIPADYNAMIC statement to start a block of definitions related to Dynamic
VIPAs and Sysplex Distributor.

Syntax

�� VIPADynamic 1 Dynamic VIPA
Sysplex Distributor

ENDVIPADynamic �

Dynamic VIPA:

1

1

1

1
VIPABackup ipaddr

rank

MOVEable IMMEDiate
VIPADEFine address_mask ipaddr

MOVEable WHENIDLE SERVICEMGR

VIPADELete ipaddr
DEFINE MOVEable NONDISRUPTive

VIPARange address_mask ipaddr
DELEte MOVEable DISRUPTive

Sysplex Distributor:

1

1

DEFINE
VIPADISTribute ipaddr PORT num DESTIP ALL

DELEte SYSPLEXPorts

dynxcfip
VIPASMparms SMMCASTgroup ipaddr SMPORT port

SMPASSWORD password

Parameters
VIPABACKUP

Designates one or more Dynamic VIPAs for which this stack provides automatic
backup if the owning stack fails. Another stack is expected, but not required, to
have this same VIPA defined with a VIPADYNAMIC VIPADEFINE statement.

rank
Specifies the intended order of the VIPAs in this VIPABACKUP list in their
respective backup chains, relative to other stacks in those backup chains.
Larger numerical rank values move the respective stacks closer to the
beginning of the backup chain.

rank can be set to any integer from 1 (end of the backup chain) through
254 (start of the backup chain). Values 0 and 255 are reserved for use by
the stacks themselves to temporarily force stack entries to the start or the
end of the backup chain until an expected transition takes place.

The default is a rank of 1.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 185

|

ipaddr
Specifies the specific VIPA to be backed up. More than one ipaddr can be
specified on a single VIPABACKUP. All ipaddrs specified on a single
VIPABACKUP have the same rank. Use multiple VIPABACKUP addresses
to define different ranks for different ipaddrs.

The default LOOPBACK address (127.0.0.1) cannot be specified as the
ipaddr.

VIPADEFINE
Designates one or more Dynamic VIPAs that this stack should initially own and
support. Other stacks can provide backup for these VIPAs if this stack fails.

MOVEable IMMEDiate
Specifies an immediate nondisruptive movement of a dynamic VIPA from
one stack to another stack. This indicates that this dynamic VIPA can be
moved to another stack as soon as the other stack requests ownership of
the VIPA by executing a VIPADEFINE for the same dynamic VIPA. Any
existing connections on the current stack are maintained by the new owning
stack until the connections are closed. All new connection requests are
directed to the new owning stack.

Note: This is the default.

MOVEable WHENIDLE
Indicates that this Dynamic VIPA can be moved to another stack when
there are no connections for this DVIPA on the current stack. While there
are existing connections, any new connection requests continue to be
directed to the current stack.

Note: MOVEable WHENIDLE was the only behavior available for Version 2
Release 8.

SERVICEMGR
Indicates that Sysplex Distributor performs Multinode Load Balancing
(MNLB) by functioning as a Service Manager (in place of Cisco’s
LocalDirector) for these distributed dynamic VIPAs. SERVICEMGR has no
effect if a VIPADISTRIBUTE DEFINE statement does not exist for this VIPA.

address_mask
Provides the net mask that determines how many of the bits of the IP
address determine the net. All IP addresses in the same VIPADEFINE list
must belong to the same net. That is, if the address_mask is logically
ANDed with all the ipaddrs in the list, the resulting values must all be the
same. The first IP address in the list determines the NAddress.

This value must meet the normal mask definition rules:
v When converted to binary, the most significant bit must be 1.
v When converted to binary, all bits less significant than (to the right of) the

first 0 encountered must also be 0.

In other words, the IP addresses in the subnet must be a single contiguous
range of IP addresses.

ipaddr
Specifies the specific VIPA to be defined. More than one ipaddr can be
specified on a single VIPADEFINE.

If a VIPA in this VIPADEFINE list is already active on another stack as a
Dynamic VIPA that was activated by VIPADEFINE or VIPABACKUP, the

186 z/OS V1R4.0 CS: IP Configuration Reference

result of this VIPADEFINE statement depends on the level of each stack
and how the VIPA was originally defined.

If both stacks are running V2R10 or higher, and the VIPA was originally
defined with MOVE IMMEDIATE, then the original owning stack immediately
gives up the VIPA and the VIPA is activated on this stack. If there were any
connections to the VIPA on the original owning stack, the newly owning
stack forwards packets to the original stack in order that the existing
connections are not disturbed. However, if either stack is running V2R8, or
if the VIPA was originally defined with MOVE WHENIDLE, then the original
owning stack gives the VIPA to this stack only when there are no active
connections to the VIPA on the original stack.

If two or more stacks in the sysplex have the same VIPA in VIPADYNAMIC
VIPADEFINE statements, with different address masks, the stack that ends
up with the active VIPA determines the address mask.

If a VIPA in this VIPADEFINE list is already active on this stack or another
stack either as an IP address in a HOME statement or as a Dynamic VIPA
activated by way of an IOCTL or a BIND implicit activation, the VIPA in the
VIPADEFINE list is rejected and an error message is issued.

VIPADELETE
Removes one or more Dynamic VIPAs from the VIPADEFINE or VIPABACKUP
list in which each occurs. You can also use VIPADELETE to delete a VIPA that
was established by implicit request using a BIND to a specific address, or using
a SIOCSVIPA IOCTL.

ipaddr
Specifies the specific VIPA to be deleted from the stack. More than one
ipaddr can be specified on a single VIPADELETE.

Notes:

1. If you qualify a dynamic VIPA with a VIPADISTRIBUTE DEFINE statement,
you must issue VIPADISTRIBUTE DELETE for each existing distribution
definition for that DVIPA before deleting it (VIPADELETE).

2. When a VIPADELETE is issued on an owning stack to remove a DVIPA, the
connections on that stack associated with the DVIPA are not removed.

VIPADISTribute
Enables (VIPADISTribute DEFINE) or disables (VIPADISTribute DELETE) the
Sysplex Distributor function for a dynamic VIPA (defined on the same stack by
VIPADEFINE or VIPABACKUP) for which new connection requests can be
distributed to other stacks in the sysplex. If you want to distribute FTP traffic,
specify both port 20 and 21 (or another designation according to which ports
you are using for FTP) on the PORT parameter.

DEFINE
Adds or replaces the designation of this dynamic VIPA (defined on the
same stack by VIPADEFINE or VIPABACKUP) as distributable. This is the
default.

DELETE
Deletes a previous designation of a dynamic VIPA as distributable.

SYSPLEXPorts
Causes coordinated sysplex-wide ephemeral port assignment to be
activated for the Distributed DVIPA on all stacks where the DVIPA is
defined, including all active candidate target stacks and the routing stack,
for all TCP connection requests.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 187

|
|

|
|
|
|
|

SYSPLEXPORTS must be specified on the first VIPADISTRIBUTE for a
DVIPA. It cannot be enabled after a DVIPA has been marked for
distribution. Once enabled, it cannot be disabled until all distribution has
been deleted for the DIVPA (except for quiescing the DVIPA on the target
stacks).

ipaddr
The specific IP address for which the designation as distributable is to be
defined or deleted.

PORT num
Limits the scope of this VIPADISTRIBUTE to the specified ports. At least
one port must be specified and no more than four different ports can be
specified for a single dynamic VIPA IP address. The number is a value in
the range 1–65535.

DESTIP dynxcfip
Specifies the dynamic XCF address (IPCONFIG DYNAMICXCF) of the
TCP/IP stacks in the sysplex that are to be target stacks for the dynamic
VIPA and ports specified on this profile statement. The target stacks are
candidates to receive new incoming connection requests for the specified
DVIPA/Port pairs. A target stack is eligible to receive such connection
requests if the stack is active and there is at least one application listening
on the requested port. A maximum of 32 destination (target) dynamic XCF
addresses can be specified.

DESTIP ALL
All TCP/IP stacks in the sysplex that have defined a dynamic XCF address
to be target stacks for their dynamic VIPA and ports specified on this profile
statement.

VIPARANGE
Defines a net in which requests for activating a Dynamic VIPA, by way of a
BIND or SIOCSVIPA IOCTL, are honored; or it removes the definition for such a
net.

Note: VIPARANGE definitions that are common to more than one stack should
be defined in a common file and included in the appropriate stack
profiles. This can help you avoid keying errors that could result in a
failure to activate an application on a stack.

DEFINE
Specifies that this definition is to be added to the list of defined
VIPARANGEs. DEFINE is the default.

DELETE
Specifies that this net (with the same address_mask and NAddress) is to be
removed from the list of allowable ranges for IOCTL or BIND implicit
Dynamic VIPA activation.

Note: VIPARANGE DELETE does not affect currently existing dynamic
VIPAs in the range being deleted.

MOVEable NONDISRUPTive
Specifies an immediate nondisruptive movement of a dynamic VIPA from
one stack to another stack. This indicates that this dynamic VIPA can be
moved to another stack as soon as the other stack requests ownership of
the VIPA by creating the same BIND(IOCTL) VIPA using a subsequent
BIND(SIOCSVIPA IOCTL). Any existing connections on the current stack

188 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

are maintained by the new owning stack until the connections are closed.
All new connection requests are directed to the new owning stack.

Notes:

1. For nondisruptive movement of a BIND or IOCTL VIPA, both stacks
must be running CS for OS/390 V2R10 or above. If not, behavior is as
described for MOVEABLE DISRUPTIVE.

2. This is the default.

MOVEable DISRUPTive
Indicates that nondisruptive movement does not occur for dynamic VIPAs
created within this range on this stack.

In the case of subsequent BIND, no movement occurs and the second
application is presumably disrupted because it does not get the DVIPA, and
the bind fails. (The first application is unaware that another bind occurred.)

In the case of subsequent ioctl, the DVIPA moves to the second stack, but
connections to the DVIPA on the first stack are broken.

A subsequent BIND on another stack for the same VIPA address fails. The
VIPA on the original stack remains unchanged.

A subsequent SIOCSVIPA ioctl on another stack succeeds, and the VIPA on
this stack is deleted. Any connections to the VIPA on this stack are broken.

address_mask
Provides the net mask that determines how many of the bits of the IP
address determine the net.

This value must meet the normal mask definition rules:
v When converted to binary, the most significant bit must be a 1.
v When converted to binary, all bits less significant than (to the right of) the

first 0 encountered must also be 0.

In other words, the IP addresses in the subnet must be a single contiguous
range of IP addresses.

ipaddr
This determines a VIPARANGE net value when ANDed with the specified
address mask. Any Dynamic VIPA requested by way of IOCTL or by implicit
BIND to a specific address must match some defined VIPARANGE net
value, after the Dynamic VIPA has been logically ANDed with the
corresponding address mask.

VIPASMparms
Defines service manager parameters. Refer to z/OS Communications Server: IP
Configuration Guide for more information about setting up Sysplex Distributor to
be the Service Manager for CISCO’s MNLB.

Notes:

1. VIPASMparms is required when any VIPADEFINE statement in the profile
contains the SERVICEMGR keyword, and it is permitted even if no active
VIPADEFINE statement in the profile currently contains the SERVICEMGR
keyword.

2. If VIPASMparms is included without any VIPADEFINE statements
designated as SERVICEMGR, the values specified in this statement are
saved and displayed in Netstat configuration displays.

3. If a Distributed DVIPA is designated as SERVICEMGR on its VIPADEFINE
statement, but one or both of SMMCAST group and SMPORT are not valid
at the conclusion of profile processing, a console message is issued, and

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 189

the Distributed DVIPA is not treated as SERVICEMGR at that point.
However, the designation is saved in order that a subsequent VARY OBEY
that adds valid SMMCAST group and SMPORT values allows the cluster
address to be treated as SERVICEMGR for all subsequent TCP connection
requests.

4. VIPASMparms and SERVICEMGR (on VIPADEFINE) must be specified on
the primary routing stack (the stack with VIPADEFINE) for the cluster
address. The information is communicated to all backup stacks through
expansion of the MVS XCF messaging messages used for normal VIPA
takeover processing. These parameters cannot be overridden on the backup
stack.

5. If a backup stack detects that inconsistent VIPASMparms values have been
specified (by two different Sysplex stacks, for both of which this backup
stack is backup for Distributed DVIPAs), this is considered a Sysplex
configuration error, and the backup stack issues a console warning
message.

SMMCAST ip_addr
Specifies the multicast address used for communications between the
Sysplex Distributor and the Cisco routers acting as forwarding agents.

SMPORT num
Specifies the UDP port used for communications between the Sysplex
Distributor and Cisco forwarding agents.

The number is in the range of 1-65535.

SMPORT usage begins when the first Dynamic VIPA with the service
manager attribute is defined as distributable. At that point, a console
message is issued if the same port value is already specified on an active
PORT statement for that UDP port. Similarly, if a subsequent PORT
statement is encountered after SMPORT usage begins for that same port,
the subsequent PORT statement is rejected with a console message.

SMPASSword string
Specifies the password to enable MD5 encryption for all communication
between Sysplex Distributor and forwarding agents. This is a 1– to 64–
character alphanumeric string. The password must match the one
configured on Cisco forwarding agents.

Modifying
To modify a VIPADISTRIBUTE statement, follow these steps:

1. To add ports or destination stacks for a distributed VIPA, use another
VIPADISTRIBUTE statement to specify the additional port or ports and
destination stacks. Ports and destination stacks for a distributed VIPA are
cumulative, up to the maximum number allowed (4 for ports and 32 for
destination stacks).

2. To remove a port or a destination stack, or both, for a distributed VIPA, use one
of the following:
VIPADISTRIBUTE DELETE ipaddr PORT port_num ... DESTIP dynxcfip ...

or
VIPADISTRIBUTE DELETE ipaddr PORT port_num DESTIP ALL

3. To end distribution for a VIPA, use one or more VIPADISTRIBUTE DELETE
statements to delete every port and destination stack that is currently configured
for this VIPA.

190 z/OS V1R4.0 CS: IP Configuration Reference

To modify the VIPADEFINE statement, follow these steps:

1. To remove one or more of the IP addresses, use:
VIPADELETE ipaddr [ipaddr ...]

Note: If a VIPA is being distributed, use one or more VIPADISTRIBUTE
DELETE statements to end distribution before you can use the
VIPADELETE statement to delete the VIPA. The VIPADISTRIBUTE
DELETE and VIPADELETE statements can appear in the same VARY
OBEY file.

2. To change the mask for one or more of the IP addresses, use:
VIPADELETE ipaddr [ipaddr ...]
VIPADEFINE new_mask ipaddr [ipaddr ...]

Note: If ipaddr is active, VIPADELETE breaks any existing connections and
causes the Dynamic VIPA to be activated elsewhere in the sysplex if
there is another stack prepared to activate it.

To modify the VIPABACKUP statement to remove an ipaddr as a Dynamic VIPA
backup, use:
VIPADELETE ipaddr

To change the rank (if the ipaddr is not currently active on this stack) use:
VIPABACKUP new_rank ipadd

However, if the ipaddr is currently active, you must first delete it and then configure
it with the new rank by using:
VIPADELETE ipaddr
VIPABACKUP new_rank ipaddr

Note: If ipaddr is currently active, VIPADELETE breaks any existing connections
and cause the Dynamic VIPA to activate elsewhere in the sysplex if there is
another stack prepared to activate it.

To modify the VIPARANGE to remove a VIPARANGE, use:
VIPARANGE DELETE mask ipaddr

To change the subnet for a VIPARANGE, you can replace the subnet by using:
VIPARANGE DELETE original_mask original_ipaddr
VIPARANGE new_mask new_ipaddr

Alternatively, you can enlarge the subnet by using:
VIPARANGE mask2 ipaddr2

This configures a VIPARANGE where Mask2 ANDed with ipaddr determines a
subnet that overlaps or includes the original one.

VIPADELETE is used only to remove an existing Dynamic VIPA from the
configuration. Modification is not applicable.

Examples
This example shows the use of the VIPADEFINE, VIPADISTRIBUTE, and
VIPABACKUP statements with a VIPADYNAMIC/ENDVIPADYNAMIC block.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 191

VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.11 201.2.10.12
VIPADISTRIBUTE DEFINE 201.2.10.11 PORT 20 21
DESTIP 201.3.10.10 201.3.10.11
VIPABACKUP 100 201.2.10.13

ENDVIPADYNAMIC

Usage notes
v The TCP/IP stack does not maintain interface counters for Dynamic VIPA

interfaces.

v A stack is limited to no more than 256 configured or target VIPAs at any one
time. A configured Dynamic VIPA is one that was created in any of the following
ways, and might or might not be active:
– Using VIPADEFINE
– Using VIPABACKUP
– Using an IOCTL SIOCSVIPA DEFINE when this stack had a covering

VIPARANGE
– Using a BIND when this stack had a covering VIPARANGE

v A target (or destination) VIPA is one that was created on this stack as a result of
a VIPADISTRIBUTE for an active VIPA on another stack. These addresses are
identified by Flag I (Internal only) in the netstat -h (home) output.

Related topics
v For more information about configuring the Cisco MNLB, refer to the MNLB and

MNLB forwarding agent configuration information in Multinode Load Balancing
Feature Set for LocalDirector User Guide, which can be found at
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/localdir/mnlb/index.htm .

v Refer to z/OS Communications Server: IP Configuration Guide for more
information about Virtual IP Addressing.

192 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 3. TCP/IP cataloged procedure (TCPIPROC)

Copy the TCP/IP cataloged procedure in hlq.SEZAINST(TCPIPROC) to your system
or recognized PROCLIB and modify it to suit your local conditions. Specify TCPIP
parameters and remove or change the DD statements as required. The jobname
associated with the started task of the TCP/IP system address space must match
the NAME parameter on the SUBFILESYSTYPE statement in the BPXPRMxx
member of ’SYS1.PARMLIB’ used to start z/OS UNIX.

Note: Configuring the stack for IPv6 is done in BPXPRM. For more information
about configuring the stack to support IPv6, refer z/OS Communications
Server: IP Configuration Guide or IPv6 Network and Application Design
Guide.

If you need to customize TCPIPROC, refer to z/OS Communications Server: IP
Configuration Guide.

TCP/IP cataloged procedure (TCPIPROC)
The following is an example of a TCP/IP cataloged procedure that defines the
component tracing and Intrusion Detection Services tracing that is to be in effect for
the TCP/IP address space.
//TCPIP PROC PARMS=’CTRACE(CTIEZB00),IDS=00’
//*TCPIP PROC PARMS=’TRC=00,IDS=00’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* Licensed Materials - Property of IBM
//* 5694-A01
//* (C) Copyright IBM Corp. 1991, 2002
//* Status = CSV1R4
//*
//TCPIP EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,
// PARM=’&PARMS’
//* PARM=(’&PARMS’,
//* ’ENVAR("RESOLVER_CONFIG=//’’TCPIVP.TCPPARMS(TCPDATA)’’")’)
//*
//*PARMS ...
//*
//* Valid options for the PARMS procedure operand are:
//*
//* 1) CTRACE(nnnnnnnn)
//*
//* Specifies the SYS1.PARMLIB member to be used for SYSTCPIP
//* CTRACE initialization. The default value is "CTIEZB00".
//*
//* 2) TRC=xx
//*
//* Specifies the suffix of the SYS1.PARMLIB member to be used
//* for SYSTCPIP CTRACE initialization. The full member name
//* will be "CTIEZBxx". The default value is "00".
//*
//* 3) IDS=xx
//*
//* Specifies the suffix of the SYS1.PARMLIB member to be used
//* for SYSTCPIS CTRACE initialization. The full member name
//* will be "CTIIDSxx". The default value is "00".
//*
//* Multiple options may be specified. If both the CTRACE and

//* TRC options are specified, whichever appears last in the
//* parameter string will be used.
//*
//* To enable tracing of Configuration component processing which
//* occurs before the ITRACE profile statement is processed,
//* specify the -d (or -D) parameter as follows:
//* PARM=(’&PARMS’,

© Copyright IBM Corp. 2000, 2002 193

|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* ’ENVAR("RESOLVER_CONFIG=//’’TCPIVP.TCPPARMS(TCPDATA)’’")’,
//* ’/ -d’)
//* This option is the equivalent of the ITRACE ON CONFIG 1
//* Profile statement and can be disabled with ITRACE OFF CONFIG.
//***
//* The C runtime libraries should be in the system’s link list
//* or add them via a STEPLIB definition here. If you add
//* them via a STEPLIB, they must be APF authorized with DISP=SHR
//*
//*STEPLIB DD ...
//*
//* SYSPRINT contains Resolver run-time diagnostics (TRACE RESOLVER
//* output). It can be directed to SYSOUT or a data set.
//* We recommend directing the output to SYSOUT due to
//* data set size restraints.
//* ALGPRINT contains run-time diagnostics from TCP/IP’s Autolog

//* task. It can be directed to SYSOUT or a data set. We
//* recommend directing the output to SYSOUT due to data set size
//* restraints.
//* CFGPRINT contains run-time diagnostics from TCP/IP’s Config
//* task and TCPIPSTATISTICS counter output.
//* It can be directed to SYSOUT or a data set. We recommend
//* directing the output to SYSOUT due to data set size
//* restraints.
//* SYSERROR contains console messages issued by TCP/IP’s Config
//* task while processing a PROFILE or OBEYFILE.
//*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CFGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSERROR DD SYSOUT=*
//*
//* TNDBCSCN is the configuration data set for TELNET DBCS
//* transform mode.
//*
//*TNDBCSCN DD DSN=TCPIP.SEZAINST(TNDBCSCN),DISP=SHR
//*

//* TNDBCSXL contains binary DBCS translation table codefiles
//* used by TELNET DBCS Transform mode.
//*
//*TNDBCSXL DD DSN=TCPIP.SEZAXLD2,DISP=SHR
//*
//* TNDBCSER receives debug output from TELNET DBCS Transform
//* mode, when TRACE TELNET is specified in the PROFILE data set.
//*
//*TNDBCSER DD SYSOUT=*
//*
//*
//*PROFILE DD ...
//* The PROFILE DD statement specifies the data set containing the
//* TCP/IP configuration parameters. If the PROFILE DD statement
//* is not supplied, a default search order is used to find
//* the PROFILE data set. See the IP Configuration Guide for
//* a description of the search order for PROFILE.TCPIP. A
//* sample profile is included in member SAMPPROF of the
//* SEZAINST data set.
//*
//*PROFILE DD DISP=SHR,DSN=TCPIVP.TCPPARMS(PROFILE)
//*PROFILE DD DISP=SHR,DSN=TCPIP.PROFILE.TCPIP
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//*SYSTCPD DD DSN=TCPIVP.TCPPARMS(TCPDATA),DISP=SHR
//*SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 3. TCP/IP cataloged procedure (TCPIPROC)

194 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Using output data sets
In the TCP/IP address space, the SYSPRINT and SYSERROR data sets defined
with a DD statement must have a variable blocked (VB) format. Block size
(BLKSIZE) for a VB RECFM must be at least 4 bytes larger than the logical record
length (LRECL). You can allocate these as partitioned or sequential data sets, but
be aware that partitioned data sets cannot be reused if they have filled or if the
members already exist.

Specifying TCP/IP address space parameters
The SYS1.PARMLIB members for the two CTRACE components, SYSTCPIP and
SYSTCPIS, are specified through the PARMS keyword of the EXEC JCL statement
in the TCP/IP started procedure.

v The SYSTCPIP component trace provides tracing of the TCP/IP stack. Its
SYS1.PARMLIB member is specified either by the CTRACE(CTIEZBxx) or the
TRC=xx parameters, where xx is the suffix appended to CTIEZB to form the
member name, CTIEZBxx.

v The SYSTCPIS component trace provides tracing for Intrusion Detection
Services. Its SYS1.PARMLIB member is specified with the IDS=xx parameter
where xx is the suffix appended to CTIIDS to form the member name, CTIIDSxx.

You can find a description of the TCP/IP Component Trace support in z/OS
Communications Server: IP Diagnosis.

Specify the ENVAR parameter on the PARMS= keyword to override the resolver
file.

Specify the -d (or -D) parameter to enable full Configuration component tracing.
This option is useful when trying to diagnose a problem in the Configuration
component which occurs before tracing can be turned on with the ITRACE profile
statement. This option is the equivalent of the ITRACE ON CONFIG 1 statement. It
can be disabled with the ITRACE OFF CONFIG statement. This parameter must
follow any Language Environment run-time options and must be immediately
preceded by a slash (/) character.

Chapter 3. TCP/IP cataloged procedure (TCPIPROC) 195

|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

196 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 4. Protocol number and port assignments

Protocol assignments
The protocol file or data set is used to map protocol names to protocol numbers.
Some applications use getprotobyname() and other socket calls to look up protocol
numbers or names. If the protocol file or data set is not present or does not contain
the required definitions, certain applications may not function properly.

The sample protocol file or data set provided with z/OS CS shown in the following
example contains the definitions required by most applications. See Chapter 1,
“Configuration data sets” on page 3 for information about the search order used by
the resolvers for locating this file or data set. It is recommended that both
hlq.ETC.PROTO and /etc/protocol be kept in sync.

Port assignments
Port numbers are used on various socket calls. They are also included in both the
header of a TCP segment and a UDP datagram. You can assign port numbers to
your own server applications by adding entries to the HFS file or to the data set.

#
Licensed Materials - Property of IBM
5694-A01
(C) Copyright IBM Corp. 1995, 2002
Status = CSV1R4
#
sample protocol file or dataset, installed in
#
/usr/lpp/tcpip/samples/protocol
/usr/lpp/tcpip/samples/IBM/EZAOEPRO
hlq.SEZAINST(PROTO)
#
Refer to IP Configuration Reference for the search
order used by the resolver to find this file.
#
offical name, protocol number, aliases

ip 0 # dummy for IP
icmp 1 # control message protocol
ggp 2 # gateway¬2 (deprecated)
tcp 6 # tcp
egp 8 # exterior gateway protocol
pup 12 # pup
udp 17 # user datagram protocol
idp 22 # xns idp
ipv6 41 # ipv6
ipv6-icmp 58 # icmpv6
ipv6-route 43 IPv6-Route # Routing Header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment Header for IPv6
ipv6-crypt 50 IPv6-Crypt # Encryption Header for IPv6
ipv6-auth 51 IPv6-Auth # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # ICMP for IPv6
ipv6-nonxt 59 IPv6-NoNxt # No Next Header for IPv6
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6
ospf 89 # Open Shortest Path First protocol

Figure 4. Sample protocol file or data set provided with z/OS CS

© Copyright IBM Corp. 2000, 2002 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The recommended convention for assigning ports is to assign a standard port
number and use the Server Bind Control function of the PROFILE.TCPIP PORT
statement to assign each server to a separate IP address. It is recommended that
the IP address used on the PORT BIND be a VIPA address known to the domain
name server (DNS) as a host name that users understand. For example, the
RXSERVE procedure is assigned to ports 512 and 514, the orexecd and orshd
daemons are assigned to ports 512 and 514, and two IP addresses (host names
MVS97 and MVS97USS) 9.67.113.1 and 9.67.113.2 are available.

This example reflects a situation where more than one application needs to listen
on the same port, and the application or applications bind to INADDR_ANY.

In this example, the PORT statement would be as follows:
PORT
512 TCP RXSERVE ; Remote Execution Server (default)
512 TCP OMVS BIND 9.67.113.2 ; orexecd Remote Execution Server (MVS97USS)
514 TCP RXSERVE ; Remote Shell Server (default)
514 TCP OMVS BIND 9.67.113.2 ; orshd Remote Shell Server (MVS97USS)

As a result, clients who use MVS97 for remote execution will get RXSERVE, and
clients who use MVS97USS will get OMVS orshd.

PROFILE.TCPIP port assignments
Use the PORT statement in the PROFILE.TCPIP data set to reserve ports for
specified user IDs, procedures, and job names. The following example was used for
test configuration and is for illustration only. The sample profile,
SEZAINST(SAMPPROF), contains the most current assignments.
; PORT: Reserves a port for specified job names
;
; - A port that is not reserved in this list can be used by any user.
; If you have TCP/IP hosts in your network that reserve ports
; in the range 1-1023 for privileged applications, you should
; reserve them here to prevent users from using them.
; The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
; prevent unauthorized applications from accessing unreserved
; ports in the 1-1023 range.
;
; - A PORT statement with the optional keyword SAF followed by a
; 1-8 character name can be used to reserve a PORT and control
; access to the PORT with a security product such as RACF.
; For port access control, the full resource name for the security
; product authorization check is constructed as follows:
; EZB.PORTACCESS.sysname.tcpname.safname
; where:
; EZB.PORTACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)
; safname is the 1-8 character name following the SAF keyword
;
; When PORT access control is used, the TCP/IP application
; requiring access to the reserved PORT must be running under a
; USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class.
;
; For an example of how the SAF keyword can be used to enhance
; security, see the definition below for the FTP data PORT 20
; with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
; by the security product to the resource:
; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
;

198 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; - The BIND keyword is used to force a generic server (one that
; binds to INADDR_ANY) to bind to the specific IP address that
; is specified following the BIND keyword. This capability could
; be used, for example, to allow OE telnet and telnet 3270 servers
; to both bind to TCP port 23. The IP address that follows bind
; must be in IPv4 dotted decimal format and may be any valid
; address for the host including VIPA and dynamic VIPA addresses.
;
; The special jobname of OMVS indicates that the PORT is reserved
; for any application with the exception of those that use the Pascal
; API.
;
; The special jobname of * indicates that the PORT is reserved
; for any application, including Pascal API socket applications.
;
; The special jobname of RESERVED indicates that the PORT is
; blocked. It will not be available to any application.
;
; The special jobname of INTCLIEN indicates that the PORT is
; reserved for internal stack use.
;
;
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server

; 21 TCP FTPD2 BIND FEC9:C2D4:1:0000:0009:0067:0115:0066 ; FTP IPv6
23 TCP INTCLIEN ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; OE telnet server
25 TCP SMTP ; SMTP Server
53 TCP NAMED ; Domain Name Server
53 UDP NAMED ; Domain Name Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
162 UDP SNMPQE ; SNMP Query Engine
389 TCP LDAPSRV ; LDAP Server
443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; OE Remote Execution Server
; 514 TCP * SAF ORSHELLD ; OE Remote Shell Server

515 TCP LPSERVE ; LPD Server
520 UDP OROUTED ; OROUTED Server
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server
1933 TCP ILMTSRVR ; IBM LM MT Agent
1934 TCP ILMTSRVR ; IBM LM Appl Agent
3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

;

Chapter 4. Protocol number and port assignments 199

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/etc/services and ETC.SERVICES port assignments
The HFS file, /etc/services, contains the service names and port assignments of
specific z/OS UNIX applications. The MVS data set ETC.SERVICES can also be
used to contain the same information. The following example was used for test
configuration and is for illustration only. The source for this example is shipped in
SEZAINST(SERVICES) and copied to the hlq.ETC.SERVICES by the Installation
Verification Procedure (IVP). It is important that /etc/services and
hlq.ETC.SERVICES be kept identical so that MVS and z/OS UNIX applications use
the same port assignments. The shipped file contains the most current
assignments.

The following syntax rules apply to the services information specification:

v An ETC.SERVICES data set must be fixed or fixed block with an LRECL
between 56 and 256.

v The /etc/services HFS file can have a maximum line length of 256.

v Each service is listed on a single line corresponding to the form:
ServiceName PortNumber/ProtocolName Aliases

ServiceName
Specifies an official Internet service name.

PortNumber
Specifies the socket port number used for the service.

ProtocolName
Specifies the transport protocol used for the service.

Aliases
Specifies a list of unofficial service names.

Items on a line are separated by spaces or tabs.

v A service name must start in the first position on a line.

v The maximum service name and alias name length is 32 characters.

v A maximum of 35 aliases will be recognized.

v Service and alias names are case sensitive.

v Comments begin with a # or ; character and continue until the end of the line.

When a request for information from the services information is requested the
definitions are searched sequentially. The first entry matching a specified search
request (either service name and protocol or port number and protocol) is returned.

For the search order used in locating /etc/services and ETC.SERVICES, refer to
z/OS Communications Server: IP Configuration Guide.
z/OS Communications Server
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAOESER
SMP/E distribution path: SEZAINST(EZAEB02J)
#
5694-A01 (C) Copyright IBM Corp. 1998, 2002
Licensed Materials - Property of IBM
Status = CSV1R4
#
$Header:services 9.4$

Figure 5. Sample PROFILE.TCPIP port statements

200 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

$ACIS:services 9.4$
$Source: /ibm/acis/usr/src/etc/RCS/services,v $

@(#)services 1.16 (Berkeley) 86/04/20
#
Network services, Internet style
#
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource # resource location
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
tftp 69/udp
rje 77/tcp netrjs
finger 79/tcp
link 87/tcp ttylink
supdup 95/tcp
hostnames 101/tcp hostname # usually from sri-nic
#csnet-cs 105/?
pop 109/tcp postoffice
sunrpc 111/tcp
sunrpc 111/udp
auth 113/tcp authentication
sftp 115/tcp
uucp-path 117/tcp
nntp 119/tcp readnews untp # USENET News Transfer Protocol
ntp 123/udp # Network Time Protocol
snmp 161/udp # snmp request port
snmp-trap 162/udp # snmp monitor trap port
#
UNIX specific services
#
exec 512/tcp
biff 512/udp comsat
login 513/tcp
who 513/udp whod
shell 514/tcp cmd # no passwords used
syslog 514/udp
printer 515/tcp spooler # line printer spooler
talk 517/udp
ntalk 518/udp
efs 520/tcp # for LucasFilm
timed 525/udp timeserver
tempo 526/tcp newdate
courier 530/tcp rpc
conference 531/tcp chat
netnews 532/tcp readnews
netwall 533/udp # -for emergency broadcasts
uucp 540/tcp uucpd # uucp daemon
remotefs 556/tcp rfs_server rfs # Brunhoff remote filesystem

Chapter 4. Protocol number and port assignments 201

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ingreslock 1524/tcp
#
Start of IBM added services ...
#
route 520/udp router routed
ncprout 580/udp ncproute

#
RVD service
#
rvd-control 531/udp # rvd control port
#
Andrew File System services
#
filesrv 2001/tcp
console 2018/udp
venus.itc 2106/tcp

For file server backup and migration
client 2030/tcp

#
Andrew File System Authenticated services
#
vexec 712/tcp vice-exec
vlogin 713/tcp vice-login
vshell 714/tcp vice-shell

For the Venus process.
venus.itc 2106/tcp
rauth2 2001/udp
rfilebulk 2002/udp
rfilesrv 2003/udp
ropcons 2115/udp
The following are assigned in pairs and the bulk must be the srv +1
rupdsrv 2131/udp
rupdbulk 2132/udp
rupdsrv1 2133/udp
rupdbulk1 2134/udp

#
Kerberos services
#

klogin 543/tcp # Kerberos aythenticated rlogin
kerberos 750/udp kdc # Kerberos aythentication--udp
kerberos 750/tcp kdc # Kerberos aythentication--tcp
kerboros_master 751/udp # Kerberos aythentication
kerberos_master 751/tcp # Kerberos aythentication
passwd_server 752/udp # Kerberos passwd server
userreg_server 753/tcp # Kerberos userreg serrver
kpop 1109/tcp # Pop with Kerberos
knetd 2053/tcp # Kerberos de-multiplexor
kshell 544/tcp cmd # and remote shell
eklogin 2105/tcp # Kerberos encrypted rlogin
krb_prop 754/tcp # Kerboros slpave propagation
erlogin 888/tcp # Login and environment passing
#
#
Kerberos sample server
#
sample 906/tcp # Kerberos sample app server
sample 906/udp #for kerberos simple test

#
Policy Agent QoS Listener and Collector ports

202 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
pagentQosListener 1700/tcp # Policy Agent Listener thread
pagentQosCollector 1701/tcp # Policy Agent Collector thread

Figure 6. /etc/services example

Chapter 4. Protocol number and port assignments 203

|
|
|

|
|
|

|

204 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 5. TCPIP.DATA configuration statements

Resolver setup statements
The resolver address space can be customized with the following resolver setup
statements summarized in Table 10.

Note: Refer to z/OS Communications Server: IP Configuration Guide for
information about configuring the resolver address space.

Table 10. Summary of resolver setup statements

Statement Description Page

COMMONSEARCH/

NOCOMMONSEARCH

Indicates that the search order for local host tables
is the same regardless of whether the query is for
IPv6 or IPv4 addresses. The search order is also
the same regardless of whether the query is issued
under the native MVS or the z/OS UNIX
environment.

NOCOMMONSEARCH indicates that the search
order for local host tables is different for IPv4 and
IPv6 queries. The search order is also different for
queries issued under the native MVS environment,
vs. queries issued under the z/OS UNIX
environment.

207

DEFAULTIPNODES Specify the name of either an HFS file or MVS data
set that contains the hard-coded IP addresses and
host names to be used.

Identify the default search location for IPNODES
local host file.

208

DEFAULTTCPIPDATA Specify the name of either an HFS file or MVS data
set that contains the TCPIP.DATA statements that
will be used instead of TCPIP.TCPIP.DATA as the
final location when searching for TCPIP.DATA.

209

GLOBALIPNODES Specify the name of either an HFS file or MVS data
set that contains the hard-coded IP addresses and
host names to be used.

Identify the first search location for IPNODES local
host file.

210

GLOBALTCPIPDATA Specify the name of either an HFS file or MVS data
set that contains the TCPIP.DATA statements that
will be used to set global MVS image-wide values
for TCPIP.DATA.

211

; or # Use either character to indicate a comment. 213

Resolver setup statement information
This section explains each of the resolver Setup statements in detail.

If resolver setup statements are contained in a data set, the data set can have the
following characteristics:

v Sequential (PS) or partitioned (PO) organization

v Fixed (F) or fixed block (FB) format

© Copyright IBM Corp. 2000, 2002 205

||

|||

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

||
|
|

|
|

|

||
|
|
|

|

||
|
|

|
|

|

||
|
|
|

|

|||
|

v Recommended logical record length (LRECL) between 80 and 256

v Any valid block size

If resolver setup statements are contained in an HFS file, the file can have a
maximum line length of 256.

Syntax conventions
1. A blank will indicate the end of a statement’s parameters’ values.

2. Anything following the blank on the same line will be treated as a comment.

3. If a valid statement has any parameter error the entire line is ignored.

4. If other than a valid statement is found a warning message will be displayed
on the operator’s console and JES joblog. Processing of the setup statements
will terminate.

v If the non-valid statement was found during resolver address space
initialization the address space will terminate and an eventual action
message will be left on the operator’s console.

v If the non-valid statement was found while processing a MODIFY REFRESH
command, the Modify fails and no refresh takes place.

5. When the processing of the setup file completes and if any valid setup
statement was specified but its parameter value was either incorrect or the
specified HFS or MVS data set does not exist, a warning message will be
displayed on the operator’s console and JES joblog.

v If the error occurred during resolver address space initialization the address
space will terminate and an eventual action message will be left on the
operator’s console.

v If the error occurred while processing a MODIFY REFRESH command, the
Modify fails and no refresh takes place.

6. When the processing of the setup file has been successfully completed, the
resolver statements value are displayed on the operator’s console and JES
joblog. If the resolver statement can specify an MVS data set or HFS file and
none was specified, the word NONE is displayed as the statement’s value on
the operator’s console and JES joblog.

7. Resolver initialization and Modify Refresh processing does not validate the
contents of an MVS data set or HFS file that is specified by a resolver setup
statement. The contents are validated when the first usage of resolver services
is requested by an address space.

8. If the resolver address space abnormally terminates, an eventual action
message will be issued indicating the failure. The Resolver address space
should be restarted by use of the START operator command.

9. Resolver initialization will delete any resolver related eventual action
messages.

10. If an allocation error occurs when trying to access a resolver statement’s MVS
data set or HFS file, an eventual action message will be issued to the
operator’s console. Only one eventual action message will be issued
regardless of the number of times the file is tried. After a successful reference
to the file has occurred, the message will be removed from the operator’s
console.

206 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

COMMONSEARCH/NOCOMMONSEARCH statement
Use the COMMONSEARCH statement to indicate that the search order for local
host table is same regardless of whether it is for an IPv6 or an IPv4 query, or
whether the query is issued in the native MVS or z/OS UNIX environment. The
default is NOCOMMONSEARCH.

Syntax

��
NOCOMMONSEARCH

COMMONSEARCH
�

Parameters
This statement has no parameters.

Examples
To code COMMONSEARCH:
COMMONSEARCH

Usage notes
You can determine the current setting in one of the following ways:

v Use the MODIFY RESOLVER,DISPLAY operator console command. See z/OS
Communications Server: IP System Administrator’s Commands for MODIFY
command syntax and usage.

v Activate the Trace Resolver. Trace output shows the setting. For more
information, refer to z/OS Communications Server: IP Diagnosis.

v For additional information, refer to z/OS Communications Server: IP Configuration
Guide.

Chapter 5. TCPIP.DATA configuration statements 207

|
|
|
|
|

|

|||||||||||||||

|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

DEFAULTIPNODES statement
Use the DEFAULTIPNODES statement to specify the name of either an HFS file or
MVS data set that contains the hard-coded IP addresses and host names to be
used. The data set can contain IPv4 and IPv6 addresses, but does not allow for
IPv4–mapped addresses.

Syntax

��
DEFAULTIPNODES (’fully qualified MVS dataset name’)

(/HFS file absolute pathname)

�

Parameters
’fully qualified MVS dataset name’

The complete name of the MVS data set containing the IP addresses and host
names. The beginning and ending quotation marks (’ ’) are required. The data
set name is not case sensitive.

/HFS file absolute pathname
The complete name of the HFS file containing the IP addresses and host
names. The beginning slash (/) is required. The HFS pathname is case
sensitive.

Examples
To specify the data set names TCPIP.ETC.IPNODES, code:
DEFAULTIPNODES(’TCPIP.ETC.IPNODES’)

To specify HFS file hosts in directory etc as containing IP addresses and host
names, code:
DEFAULTIPNODES(/etc/ipnodes)

Because it is an HFS file, the name is case sensitive.

Usage notes
v For an HFS data set, this statement can reside in any directory. The maximum

line length supported is 256 characters. If the line is greater than 256, it is
truncated to 256 and processed, and a trace resolver warning message is
issued.

v For an MVS data set, the following is required:

– Sequential (PS) organization or PDS

– RECFM=F or RECFM=FB

– A logical record length (LRECL) between 80 and 256

v This statement can contain IPv4 and IPv6 addresses, but cannot contain
IPv4–mapped addresses. Each host name can be up to 128 characters in length,
and each host name can have up to 35 IPv4 addresses and 35 IPv6 addresses.
Each node in the host name (without dots) can be up to 63 characters in length.
For example, if host name is testname.testdomain, testname and testdomain can
only be defined up to 63 characters in length.

208 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|

||||||||||||||||||||||||||

|

|

|
|
|
|

|
|
|
|

|
|

|

|
|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

DEFAULTTCPIPDATA statement
Use the DEFAULTTCPIPDATA statement to specify the name of either an HFS file
or MVS data set that contains the TCPIP.DATA statements that will be used instead
of TCPIP.TCPIP.DATA as the final location when searching for TCPIP.DATA.

Syntax

��
DEFAULTTCPIPDATA (’fully qualified MVS dataset name’)

(/HFS file absolute pathname)

�

Parameters
’fully qualified MVS dataset name’

The complete name of the MVS data set containing the TCPIP.DATA
statements. The beginning and ending quotation marks (’ ’) are required.

/HFS file absolute pathname
The complete name of the HFS file containing the TCPIP.DATA statements. The
beginning slash (/) is required.

Examples
The following example specifies member RESLVCF in partitioned data set
TCPIP.TCPPARMS as containing TCPIP.DATA statements.
DEFAULTTCPIPDATA(’TCPIP.TCPPARMS(RESLVCF)’)

The following example specifies HFS file DefaultTcpip.data in directory etc as
containing TCPIP.DATA statements. Because it is an HFS file, the name is case
sensitive.
DEFAULTTCPIPDATA(/etc/DefaultTcpip.data)

Usage notes
v For an HFS, this statement can reside in any directory. The maximum line length

supported is 256 characters. If the line is greater than 256, it is truncated to 256
and processed, and a trace resolver warning message is issued.

v The HFS pathname is case sensitive.

v For an MVS data set, the following is required:

– Sequential (PS) or Partitioned (PO) organization

– RECFM=F or RECFM=FB

– Recommended logic record length (LRECL) between 80 and 256

v The MVS data set name is not case sensitive.

Chapter 5. TCPIP.DATA configuration statements 209

|
|
|

|

|

|

|

|

|

GLOBALIPNODES statement
Use the GLOBALIPNODES statement to specify the name of either an HFS file or
MVS data set that contains the hard-coded IP addresses and host names to be
used. The data set can contain IPv4 and IPv6 addresses, but does not allow for
IPv4–mapped addresses.

Syntax

��
GLOBALIPNODES (’fully qualified MVS dataset name’)

(/HFS file absolute pathname)

�

Parameters
’fully qualified MVS dataset name’

The complete name of the MVS data set containing the IP addresses and host
names. The beginning and ending quotation marks (’ ’) are required. The data
set name is not case sensitive.

/HFS file absolute pathname
The complete name of the HFS file containing the IP addresses and host
names. The beginning slash (/) is required. The HFS pathname is case
sensitive.

Examples
To specify the data set names TCPIP.ETC.IPNODES, code:
GLOBALIPNODES(’TCPIP.ETC.IPNODES’)

To specify HFS file hosts in directory etc as containing IP addresses and host
names, code:
GLOBALIPNODES(/etc/ipnodes)

Because it is an HFS file, the name is case sensitive.

Usage notes
v For an HFS data set, this statement can reside in any directory. The maximum

line length supported is 256 characters. If the line is greater than 256, it is
truncated to 256 and processed, and a trace resolver warning message is
issued.

v For an MVS data set, the following is required:

– Sequential (PS) organization or PDS

– RECFM=F or RECFM=FB

– Recommended logic record length (LRECL) between 80 and 256

v This statement can contain IPv4 and IPv6 addresses, but cannot contain
IPv4–mapped addresses. Each host name can be up to 128 characters in length,
and each host name can have up to 35 IPv4 addresses and 35 IPv6 addresses.
Each node in the host name (without dots) can be up to 63 characters in length.
For example, if host name is testname.testdomain, testname and testdomain can
only be defined up to 63 characters in length.

210 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|

||||||||||||||||||||||||||

|

|

|
|
|
|

|
|
|
|

|
|

|

|
|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

GLOBALTCPIPDATA statement
Use the GLOBALTCPIPDATA statement to specify the name of either an HFS file or
MVS data set that contains the TCPIP.DATA statements that will be used to set
global MVS image-wide values for TCPIP.DATA.

If GLOBALTCPIPDATA is not specified, the appropriate environment’s (Native MVS
or z/OS UNIX) search orders will be used to locate TCPIP.DATA.

If GLOBALTCPIPDATA is specified:

v Any TCPIP.DATA statements contained in it will take precedence over any
TCPIP.DATA statements found by way of the appropriate environment’s (Native
MVS or z/OS UNIX) search order.

v The following resolver TCPIP.DATA statements can only be specified in
GLOBALTCPIPDATA. If the resolver statements are found in any of the other
search locations for TCPIP.DATA they are ignored. If the resolver statements are
not found in GLOBALTCPIPDATA, their default value will be used.

Resolver statements are:

v DomainOrigin/Domain

v NSInterAddr/NameServer

v NSPortAddr

v ResolverTimeOut

v ResolverUDPRetries

v ResolveVia

v Search

v SortList

Syntax

��
GLOBALTCPIPDATA (’fully qualified MVS dataset name’)

(/HFS file absolute pathname)

�

Parameters
’fully qualified MVS dataset name’

The complete name of the MVS data set containing the TCPIP.DATA
statements. The beginning and ending quotes (’ ’) are required.

/HFS file absolute pathname
The complete name of the HFS file containing the TCPIP.DATA statements. The
beginning slash is required.

Examples
The following example specifies member GLOBAL in partitioned data set
TCPIP.TCPPARMS as containing TCPIP.DATA statements.
GLOBALTCPIPDATA(’TCPIP.TCPPARMS(GLOBAL)’)

The following example specifies HFS file Global.Tcpip.data in directory etc as
containing TCPIP.DATA statements. Since it is an HFS file the name is case
sensitive.
GLOBALTCPIPDATA(/etc/Global.Tcpip.data)

Chapter 5. TCPIP.DATA configuration statements 211

Usage notes
v For an HFS, this statement can reside in any directory. The maximum line length

supported is 256 characters. If the line is greater than 256, it is truncated to 256
and processed, and a trace resolver warning message is issued.

v The HFS pathname is case sensitive.

v For an MVS data set, the following is required:

– Sequential (PS) or Partitioned (PO) organization

– RECFM=F or RECFM=FB

– Recommended logic record length (LRECL) between 80 and 256

v The MVS data set name is not case sensitive.

v The HFS file maximum line length is 256.

v The HFS pathname is case sensitive.

212 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|

|

|

|

|

; and # Statements
Any data after the ; or # character is treated as a comment.

Chapter 5. TCPIP.DATA configuration statements 213

Summary of statements in TCPIP.DATA
The statements are summarized in Table 11.

Table 11. Summary of TCPIP.DATA configuration statements

Statement Description Page

ALWAYSWTO Issue WTO messages for servers. 218

DATASETPREFIX Set the high-level qualifier for dynamic allocation of
data sets.

219

DOMAINORIGIN or
DOMAIN (see note)

Specify the domain origin that is appended to the
host name to form the fully qualified domain name
of a host.

221

HOSTNAME Specify the TCP host name of the z/OS
communication server.

222

LOADDBCSTABLES Tell FTP which DBCS translation tables can be
loaded.

223

LOOKUP Specify the order in which the DNS and the local
host file are to be used for name resolution.

225

MESSAGECASE Specify case translation for the FTP server and
osnmpd.

226

NSINTERADDR or
NAMESERVER (see
note)

Define the IP address of a name server in dotted
decimal format.

228

NSPORTADDR Specify the name server port number. 230

OPTIONS Use the OPTIONS statement to specify if resolver
debug messages should be issued and the number
of periods (.) that need to be contained in a domain
name for it to be considered a fully qualified domain
name.

231

RESOLVERTIMEOUT Specify how long the resolver waits for a response
while trying to communicate with the name server.

233

RESOLVERUDPRETRIES Specify how many times the resolver tries to
connect to the name server when using UDP
datagrams.

234

RESOLVEVIA Specify the protocol used by the resolver to
communicate with the name server.

235

SEARCH Used to specify the list of domain names that are
appended, in the order listed, to the host name to
form the fully qualified domain name of a host.

236

SOCKDEBUG Turn on tracing of TCP/IP socket library calls. 238

SOCKNOTESTSTOR Stop checking of TCP/IP socket calls for storage
access errors on the parameters to the call.

240

SOCKTESTSTOR Enable checking of TCP/IP socket calls for storage
access errors on the parameters to the call.

239

SORTLIST Use the SORTLIST statement to specify the
ordered list of network numbers (subnets or
networks) for the resolver to prefer if it receives
multiple addresses as the result of a name query.

241

TCPIPJOBNAME or
TCPIPUSERID (see
note)

Specify the member name of the cataloged
procedure used to start the TCPIP address space.

243

214 z/OS V1R4.0 CS: IP Configuration Reference

||
|
|

Table 11. Summary of TCPIP.DATA configuration statements (continued)

Statement Description Page

TRACE RESOLVER Trace all queries to and responses from the name
server.

245

TRACE SOCKET Trace TCP/IP C socket library calls. 246

; or # Use either character to indicate a comment. 213

Note: A synonym that provides common statements regardless of whether the statements are defined in an MVS data
set or HFS file.

TCPIP.DATA configuration statements
This section explains each statement for the TCPIP.DATA data set in detail.

Note: If any TCPIP.DATA statement is in the GLOBALTCPIPData file, it is always
used, regardless of what is found in any subsequent TCPIP.DATA statements
from the search list.

system_name considerations
The system_name parameter on the statements is derived from the MVS system
name. If you have configured VMCF and TNF as non-restartable subsystems, the
system name is specified in the IEFSSNxx member of PARMLIB. If you have
configured VMCF and TNF as restartable subsystems, the system name is obtained
from the value of the P= parameter of the EZAZSSI started procedure. Refer to the
z/OS Communications Server: IP Configuration Guide for information about
restartable VMCF. For IEFSSNxx, the specification can be in either the IBM
recommended keyword parameter form or the positional parameter form of
IEFSSNxx.

For example:

v The keyword parameter form is:
SUBSYS SUBNAME(VMCF) INITRTN(MVPXSSI) INITPARM(sysname)

v The positional parameter form is:
VMCF,MVPXSSI,sysname

sysname above is the name specified by the IEASYSxx parmlib member’s
SYSNAME= parameter value. For more information about the SYS1.PARMLIB
member definitions, refer to z/OS MVS Initialization and Tuning Guide.

For SMTP usage, use the NJENODENAME statement in the SMTP configuration
data set to specify the JES nodename for mail delivery on the NJE network.

Dynamically changing TCPIP.DATA statements
You can use the MODIFY REFRESH command to change some of the TCPIP.DATA
statements being used by a long-running TCP/IP application (for example, a server
application). To do this, follow either of the following procedures.

If you are not using GLOBALTCPIPDATA:

1. Change the MVS data set or HFS file currently being used for TCPIP.DATA
statements to the new values.

Chapter 5. TCPIP.DATA configuration statements 215

2. To use the changed values, issue the MODIFY REFRESH command. When
application programs that are configured to use the TCPIP.DATA file make their
next resolver socket call (for example, gethostbyaddr or gethostbyname), the
new values will be used.

If you are using GLOBALTCPIPDATA:

1. Use the preceding procedure to change the global TCPIP.DATA file.

Alternatively, you could create a new global TCPIP.DATA data set or file as follows:

1. Create a new resolver SETUP file in which the GLOBALTCPIPDATA statement
points to the new TCPIP.DATA file.

2. To use the changed values, issue the MODIFY REFRESH,SETUP= command
specifying the new resolver setup name. When application programs make their
next resolver socket call (for example, gethostbyaddr or gethostbyname) the
new values will be used.

Note: You cannot change the TCPIP.DATA statement values for the following
subset of TCP/IP provided applications:

v SMTP server

v BIND v9 DNS

v BIND v9 and BIND v4 DNS utilities (nslookup, onslookup and dig)

v Any application program that uses the Language Environment C/C++ res_
API facilities and changed the updated TCPIP.DATA statement

Table 12 shows which TCPIP.DATA statements can be dynamically changed
(refreshed). For more information about modifying statements, refer to z/OS
Communications Server: IP System Administrator’s Commands and to z/OS
Communications Server: IP Configuration Guide for information about configuring
resolvers.

Table 12. Refreshable TCPIP.DATA

TCPIP.DATA statement Refreshable

AlwaysWTO No

DatasetPrefix No

DomainOrigin or Domain Yes

HostName No

LoadDBCSTables No

LOOKUP Yes

MessageCase No

NSInterAddr or NameServer Yes

NSPortAddr Yes

ResolveVia Yes

ResolverTimeOut Yes

ResolverUDPRetries Yes

Search Yes

SockDebug No

SockNoTestStor No

SockTestStor No

SortList Yes

216 z/OS V1R4.0 CS: IP Configuration Reference

||

Table 12. Refreshable TCPIP.DATA (continued)

TCPIP.DATA statement Refreshable

TCPIPJobname or TCPIPUserid No

Trace Resolver Yes

Trace Socket No

Options Debug Yes

Options Ndots Yes

; or # (comment) NA

Syntax conventions
Notes:

1. A data set containing TCPIP.DATA statements must be fixed or fixed block with
a recommended logic record length (LRECL) between 80 and 256.

2. An HFS file containing TCPIP.DATA statements can have a maximum line
length of 256.

3. Only one statement is allowed on each line.

4. A statement can start in any position on a line.

5. Statements are not case sensitive.

6. Statements can be preceded by an optional system_name.

7. A blank line is treated as a comment.

8. For statements with a single parameter value, a blank after the value ends the
statement. Anything on the line following the blank will be treated as a
comment.

9. For statements accepting multiple parameter values (for example, SEARCH,
LOOKUP, NSINTERADDR/NAMESERVER, SORTLIST, and
LOADDBCSTABLES), at least one blank followed by either a semicolon (;), or
character must precede any comments.

10. If multiple statements are encountered within a single TCPIP.DATA
specification, the last statement will take effect. See the SEARCH, SORTLIST,
NSINTERADDR/NAMESERVER and LOADDBCSTABLES statements for their
unique processing of multiple statements.

11. When Trace Resolver is in effect a warning message will be written for any
error in the specification of a statement or its parameters. The message will be
written to the specified Trace Resolver output location. Processing will continue
with the next line.

12. Allocation errors (including volume offline conditions) causes the resolver
service being requested to continue to be processed, but processing of
TCPIP.DATA statements will stop. Any already processed statements will be
used (for example, GlobalTCPIPData statements). Any statements not
specified will have their defaults assigned.

If an allocation error occurs when trying to use TCPIP.DATA statements, a
message will be issued to the Joblog/STDOUT. If Trace Resolver is in effect, a
message will also be written to the specified Trace Resolver output location.

Chapter 5. TCPIP.DATA configuration statements 217

|
|

|
|
|
|

ALWAYSWTO statement
Some TCP/IP servers, such as SMTP, SNMPQE, LPD, and Miscellaneous server,
can use the ALWAYSWTO statement to issue all of their messages as Write To
Operator (WTO) messages. This is in addition to their messages being sent to the
server’s MVS joblog output. Omitting the ALWAYSWTO statement causes the server
message to be sent only to the server’s MVS job output. Specifying ALWAYSWTO
YES is not recommended.

Syntax

��
system_name:

ALWAYSWTO NO
YES

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

YES
Indicates that server messages are to be displayed on the console.

NO
Indicates that server messages only go to the MVS output.

218 z/OS V1R4.0 CS: IP Configuration Reference

DATASETPREFIX statement
Use the DATASETPREFIX statement to set the high-level qualifier for the dynamic
allocation of data sets in TCP/IP.

Syntax

��
system_name:

DATASETPREFIX dsprefix �

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

dsprefix
The prefix to use as the high-level qualifier for the dynamic allocation of data
sets. The default high-level qualifier distributed with the system is TCPIP.

The values for the parameter must conform to the following:

v A maximum of 26 characters.

v Must contain one or more tokens separated by a period.

v Each token must be in the range of 1 to 8 characters in length.

v First character in each token must start with a letter or character ($, @, or #).

v Remaining characters in each token must be a letter, number, or character (-,
$, @, or #).

v The last character of the data set prefix must not be a period.

Examples
Set the data set prefix for client and server usage:
DATASETPREFIX TCPIP.V2R7

Usage notes
The DATASETPREFIX in TCPIP.DATA is used by clients and servers except the
TCPIP address space.

Chapter 5. TCPIP.DATA configuration statements 219

DOMAIN statement
The DOMAIN statement is functionally equivalent to the DOMAINORIGIN
statement. See “DOMAINORIGIN statement” on page 221.

220 z/OS V1R4.0 CS: IP Configuration Reference

DOMAINORIGIN statement
Use the DOMAINORIGIN statement to specify the domain origin that is appended
to the host name to form the fully qualified domain name of a host.

Syntax

�� DOMAINORIGIN origin
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

origin
The domain origin is appended to the host name. This name usually has
imbedded dots.

The values for the domain name must conform to the following::

v Maximum of 249 characters.

v Must contain one or more tokens separated by a period.

v Each token must be larger than one character.

v First character in each token must start with a letter.

v Remaining characters in each token must be a letter, number, or hyphen.

v The last character of the domain origin must not be a period.

v The length of the host name plus the length of the domain name must be
less than or equal to 254.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
This example appends the domain origin of BOBS.YOUR.UNCLE to the host name:
DOMAINORIGIN BOBS.YOUR.UNCLE

Usage notes
v No case translation is performed on the domain origin.

v If the resolver is passed a host name that does not contain any dots (in dotted
decimal notation), the domain origin is appended to the host name. If the host
name passed to the resolver contains dots, the value of the OPTIONS ndots:n
statement influences how the DOMAINORIGIN value is used. See “OPTIONS
statement” on page 231.

v The DOMAINORIGIN configuration statement must be customized at each site.

v Additionally, the domain origin can be set from the z/OS shell environment by
exporting the LOCALDOMAIN environment variable.

�� export LOCALDOMAIN=origin �

The setting of the LOCALDOMAIN as an environment variable overrides any
setting for DOMAIN, DOMAINORIGIN, or SEARCH found in TCPIP.DATA.

Chapter 5. TCPIP.DATA configuration statements 221

|
|

|||||||||
|
|
|

HOSTNAME statement
Use the HOSTNAME statement to specify the TCP host name of this z/OS CS
server. The fully qualified domain name for the host is formed by concatenating this
host name with the domain name (specified by the DOMAINORIGIN or SEARCH
statement).

Syntax

�� HOSTNAME host_name
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

host_name
The host name. If not specified, defaults to the system name specified in the
IEFSSNxx PARMLIB member or on the P parameter of the EZASSI started
procedure used for restartable VMCF. Refer to z/OS Communications Server: IP
Configuration Guide for details on configuring VMCF.

The values for the host name must conform to the following::

v Maximum of 63 characters.

v Must contain one or more tokens separated by a period.

v Each token must be larger than one character.

v First character in each token must start with a letter.

v Remaining characters in each token must be a letter, number, or hyphen.

Examples
The TCPIP.DATA data set will be shared between two systems, MVSMFG4 and
MVSADM1. The HOSTNAME statements define the host name on each system.
MVSMFG4: HOSTNAME MVSMFG4
MVSADM1: HOSTNAME MVSADM1

Usage notes
v No Case translation is performed on the host name.

v The HOSTNAME in the local host tables has a maximum length of 24 characters.
Refer to z/OS Communications Server: IP Configuration Guide for descriptions of
local host tables.

222 z/OS V1R4.0 CS: IP Configuration Reference

LOADDBCSTABLES statement
Use the LOADDBCSTABLES statement to tell the FTP server and client which
DBCS translation tables can be loaded.

Syntax

�� LOADDBCSTABLES
system-name:

1

BIG5

EUCKANJI

HANGEUL

JIS78KJ

JIS83KJ

KSC5601

SCHINESE

SJISKANJI

TCHINESE

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

BIG5
Indicates to the FTP server and client that the BIG5 DBCS translation table
should be loaded from the TCPCHBIN binary translate table data set.

EUCKANJI
Indicates to the FTP server and client that the Extended UNIX Code Kanji
DBCS translation table should be loaded from the TCPKJBIN binary translate
table data set.

HANGEUL
Indicates to the FTP server and client that the Hangeul DBCS translation table
should be loaded from the TCPHGBIN binary translate table data set.

JIS78KJ
Indicates to the FTP server and client that the JIS 1978 Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

JIS83KJ
Indicates to the FTP server and client that the JIS 1983 Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

KSC5601
Indicates to the FTP server and client that the Korean Standard Code
KSC-5601 DBCS translation table should be loaded from the TCPHGBIN binary
translate table data set.

Chapter 5. TCPIP.DATA configuration statements 223

SCHINESE
Indicates to the FTP server and client that the Simplified Chinese DBCS
translation table should be loaded from the TCPSCBIN binary translate table
data set.

SJISKANJI
Indicates to the FTP server and client that the Shift JIS Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

TCHINESE
Indicates to the FTP server and client that the Traditional Chinese (5550) DBCS
translation table should be loaded from the TCPCHBIN binary translate table
data set.

Examples
Load the Korean Standard Code KSC-5601 and the Traditional Chinese (5550)
DBCS translation tables:
LOADDBCSTABLES KSC5601 TCHINESE

Usage notes
v You can select any or all of the translation tables or specify none. However,

additional virtual storage may be required by the FTP server and client when a
large number of translation tables are loaded at the same time.

v All the parameters must fit on one line. You can repeat the LOADDBCSTABLES
statement as necessary to specify additional tables to be loaded.

v If the LOADDBCSTABLES parameter is not specified, is specified incorrectly, or if
TCPIP.DATA is not accessible, then no DBCS translation tables will be loaded,
and the corresponding FTP server and client DBCS transfer types will be
unavailable.

v The IBMKANJI transfer type does not require any translation table to be loaded.

v If the same table name is specified more than once, the subsequent
specifications are ignored.

Related topics
Refer to z/OS Communications Server: IP Configuration Guide for more information.

224 z/OS V1R4.0 CS: IP Configuration Reference

LOOKUP statement
Use the LOOKUP statement to specify the order in which the DNS or local host file
are to be used for name resolution.

Syntax

�� LOOKUP
system-name:

1 DNS
LOCAL
DNS LOCAL
LOCAL DNS

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

DNS
The domain name servers specified by the NSInterAddr and NameServer
statements will be used for name resolution.

LOCAL
The local host file (for example, etc/hosts, HOSTS.SITEINFO or
HOSTS.ADDRINFO) will be used for name resolution. Refer to z/OS
Communications Server: IP Configuration Guide for information on determining
which local host file will be used.

Dependency
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
In this example, only the local host file is to be used.
LOOKUP LOCAL

In this example, the local host file is to be used first and if not resolved, then the
DNSs will be used.
LOOKUP LOCAL DNS

Usage notes
v If a LOOKUP statement is not specified then the domain name servers will be

queried first and if the resolution request is not successful, the local host file, if it
exists, will be used.

v If an incorrect parameter value is specified, the entire LOOKUP statement is
ignored.

v The last syntactically correct LOOKUP statement is used.

Chapter 5. TCPIP.DATA configuration statements 225

|
|
|

|

||||||||||||||||||||||||||||||||

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|

|
|
|
|

|
|

|

MESSAGECASE statement
Use the MESSAGECASE statement to specify whether to convert output into
uppercase for the FTP server and some TSO commands.

Syntax

�� MESSAGECASE
system-name:

MIXED
UPPER �

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

MIXED
Indicates that output should be displayed in mixed case.

UPPER
Indicates that output should be displayed in uppercase.

Examples
Display all messages to the MVSTEST system in uppercase:
MVSTEST: MESSAGECASE UPPER

Usage notes
v If you specify MIXED, no case conversion is performed on output.

v If the MESSAGECASE statement is not specified, is specified incorrectly, if
MIXED or UPPER are not specified, or if TCPIP.DATA is not accessible, then
mixed case output will be displayed.

v All WTO messages issued by the TCPIP stack will be displayed in uppercase
and are not affected by the MESSAGECASE value.

v Additionally, the MESSAGECASE statement can be set from the z/OS shell
environment by exporting the MESSAGECASE environment variable. But the
MESSAGECASE environment variable is not supported by all functions. This is
shown in the following example.

�� export MESSAGECASE=
MIXED
UPPER �

The setting of the MESSAGECASE as an environment variable overrides any
setting found in TCPIP.DATA. If MESSAGECASE is not defined as an
environment variable or as a statement in TCPIP.DATA, the WTO message will
remain in mixed case.

226 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|

|

|

|
|
|

|
|

NAMESERVER statement
The NAMESERVER statement is functionally equivalent to the NSINTERADDR
statement. See “NSINTERADDR statement” on page 228.

Note: This statement only supports IPv4 IP addresses.

Chapter 5. TCPIP.DATA configuration statements 227

|

NSINTERADDR statement
Use the NSINTERADDR statement to define the IP address of a name server in
dotted decimal format.

When a local name server is being used, you can specify the loopback address
127.0.0.1 or one of the local IP addresses (specified in the HOME statement in
TCPIP.PROFILE) for this host. Specifying one of the local IP addresses can provide
some performance improvement.

Note: This statement only supports IPv4 IP addresses.

Syntax

��
system_name:

NSINTERADDR 1 internet_addr �

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

internet_addr
The IP address of a name server.

The values for the name server IP address must conform to the following:

v Must contain four tokens, each separated by a period.

v Each token must be between one and three characters.

v Each character in each token must be a number.

v Each token cannot exceed the number 255.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Specify the IP address of the name server to be 14.13.12.11:
NSINTERADDR 14.13.12.11

Usage notes
v Up to 16 name server IP addresses can be specified. Any IP addresses beyond

16 are ignored.

v Connections to the name servers are attempted in the order they appear in the
TCPIP.DATA data set.

v If no NSINTERADDR statements are coded, the resolver does not attempt to use
a name server. Instead, the resolver will use the local host tables as described in
z/OS Communications Server: IP Configuration Guide to attempt to resolve the
name or IP address.

v The same IP address can be specified multiple times if desired.

228 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

v After the resolver has successfully contacted a name server, it stops without
contacting the remaining name servers for that query. Name servers beyond the
first in the list are used only if the name server currently being contacted is down,
or unreachable through the network.

v ResolverUdpRetries indicates the maximum number of times an attempt will be
made to reach a given name server if a response is not received within the
current timeout interval. ResolverUdpRetries is applicable only if ResolveVia UDP
is coded or used by default.

Chapter 5. TCPIP.DATA configuration statements 229

NSPORTADDR statement
Use the NSPORTADDR statement to specify the name server port number.

Syntax

��
NSPORTADDR 53

NSPORTADDR nsportaddr
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

nsportaddr
The name server port number. The default is port 53.

The values for the name server port must conform to the following:

v Must be a single number.

v The number must be between one and five digits.

v The number cannot exceed 65535.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Specify the foreign port of the name server to be 55:
NSPORTADDR 55

230 z/OS V1R4.0 CS: IP Configuration Reference

OPTIONS statement
Use the OPTIONS statement to specify the following:

v If resolver debug messages should be issued

v The number of periods (.) that need to be contained in a domain name for it to
be considered a fully qualified domain name

The ndots and debug options are independent; setting one of them does not imply
a setting for the other.

Syntax

�� OPTIONS
system-name

1

DEBUG
ndots:n

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

DEBUG
Specifying DEBUG is equivalent to the Trace Resolver statement. Debugging
messages from the resolver will be generated.

If Debug is not specified, the current debug setting stays in effect. The initial
default setting is for no debug messages to be specified. Specifying OPTIONS
DEBUG in the GLOBALTCPIPDATA file is not recommended.

ndots:n
Specifies that for a domain name that contains n or more periods (.), the
resolver should try to look up the name as is before applying the
DOMAINORIGIN or SEARCH statement settings.

Note: The colon is required.

A maximum of 15 is allowed for n. Any value for n not in the range of 1 to 15
will result in n being set to 1. Not specifying the ndots:n parameter will result in
the current setting remaining in effect (if no value has yet been specified on any
previous OPTIONS statements, then ndots:1 is the current setting).

Use care when setting n greater than 1. For example, consider the following:

v If ndots:2 was specified and the DOMAINORIGIN statement had mit.edu
specified, the following results would be observed.

– A user enters ftp prep.ai. Resolution of domain name prep.ai.mit.edu
would be tried. If that fails resolution, then the name prep.ai would be
tried.

– A user enters ftp prep.ai.mit. The domain name prep.ai.mit would try to
be resolved. If that fails resolution, then the name prep.ai.mit.mit.edu
would be tried.

– A user enters ftp prep. The domain name prep.mit.edu would try to be
resolved. If that fails resolution, then the name prep would be tried.

Chapter 5. TCPIP.DATA configuration statements 231

|
|
|

v If ndots:1 was specified and the SEARCH statement had ai.mit.edu and
MIT.EDU specified, the following results would be observed:

– A user enters ftp prep.ai. The domain name prep.ai would try to be
resolved. If that fails resolution, then the name prep.ai.ai.mit.edu would
be tried. If that fails resolution, then the name prep.ai.MIT.EDU would be
tried.

– A user enters ftp prep. The domain name prep.ai.mit.edu would try to
be resolved. If that fails resolution, then the name prep.MIT.EDU would be
tried. If that fails resolution, then the name prep would be tried.

v If the name specified by the user ends with a period (.), then both the ndots:n
specification and the DOMAINORIGIN or SEARCH values are ignored. For
example, a user enters ftp prep.ai.. The domain name prep.ai. would try
to be resolved. If that fails, no other name is tried.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
The following statement would set ndots to 2 and also request resolver debug
messages:
OPTIONS ndots:2 Debug

The following statement would request resolver debug messages and by default set
ndots to 1:
OPTIONS Debug

The following set of statements in a single TCPIP.DATA file would set ndots to 3
and also request resolver debug messages:
OPTIONS ndots:2 Debug
OPTIONS ndots:3

The following set of statements in a single TCPIP.DATA file would set ndots to 3
and also request resolver debug messages.
OPTIONS ndots:2
OPTIONS ndots:3 Debug
OPTIONS

Usage notes
v If the OPTIONS statement is not specified or specified without a ndots:n

parameter (for example, OPTIONS specified only with the Debug parameter), a
value of ndots:1 is assigned. It is recommended that you do not specify the
OPTIONS Debug parameter in the global TCPIP.DATA file.

v If multiple OPTIONS ndots:n statements are encountered in a single TCPIP.DATA
file, the last statement will take effect.

v If an OPTIONS statement without Debug is specified, the current debug setting
will stay in effect. The default setting is for no debug messages to be specified.

Related topics
v “DOMAINORIGIN statement” on page 221

v “SEARCH statement” on page 236

v “TRACE RESOLVER statement” on page 245

v z/OS Communications Server: IP Configuration Guide

232 z/OS V1R4.0 CS: IP Configuration Reference

RESOLVERTIMEOUT statement
Use the RESOLVERTIMEOUT statement to specify the number of seconds the
resolver waits for a response while trying to communicate with the name server
when using UDP. See “RESOLVEVIA statement” on page 235.

Syntax

��
RESOLVERTIMEOUT 30

RESOLVERTIMEOUT time_out_value
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

time_out_value
The number of seconds the resolver waits until a response is received. The
default timeout is 30 seconds; the maximum timeout is 2 147 483 647.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Specify a 10-second waiting time for the resolver when attempting to communicate
with a name server:
RESOLVERTIMEOUT 10

Chapter 5. TCPIP.DATA configuration statements 233

RESOLVERUDPRETRIES statement
Use the RESOLVERUDPRETRIES statement to specify the number of times
(including retries) the resolver should try to connect to the name server when using
UDP datagrams.

Syntax

��
RESOLVERUDPRETRIES 1

RESOLVERUDPRETRIES limit
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

limit
The maximum number of times the resolver should try to connect to the name
server. The default is 1; the maximum number can be 2 147 483 647.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Specify 2 as the number of times the resolver will try to connect to the name server
when using UDP datagrams:
RESOLVERUDPRETRIES 2

Usage notes
v This statement only applies when using UDP datagrams. See “RESOLVEVIA

statement” on page 235 for more information.

v The resolver attempts to contact each of the specified name servers before
attempting any retries.

v The maximum amount of time for each UDP resolution is the product of the
number of name servers (NSINTERADDR statements) multiplied by the resolver
timeout value (RESOLVERTIMEOUT statement) multiplied by the number of
times to try the name servers (RESOLVERUDPRETRIES statement). This
amount of time can occur for each domain name specified by the SEARCH
statement. If a getaddrinfo API call is issued to request a query for both IPv4 and
IPv6 addresses, the maximum amount of time can be doubled.

234 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|

RESOLVEVIA statement
Use the RESOLVEVIA statement to specify the protocol used by the resolver to
communicate with the name server.

Syntax

��
RESOLVEVIA UDP

RESOLVEVIA UDP
system_name: TCP

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

UDP
Specifies that the protocol is UDP. The default protocol is UDP.

TCP
Specifies that the protocol is TCP.

If anything other than UDP or TCP is specified, the default of UDP is used.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Specify that the resolver is to communicate with the name server using TCP virtual
circuits:
RESOLVEVIA TCP

Chapter 5. TCPIP.DATA configuration statements 235

SEARCH statement
Use the SEARCH statement to specify the list of domain names that are appended,
in the order listed, to the host name to form the fully qualified domain name of a
host. A domain name is appended until either the list is exhausted or an IP address
is determined. The domain names are appended for name server queries as well as
for searching the local host tables.

Syntax

�� SEARCH
system_name

1

domain
�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

domain
The domain name is appended to the host name. This name usually has
imbedded dots.

For name query performance reasons, the first domain listed should be the
most likely to respond to a name query. See “RESOLVERTIMEOUT statement”
on page 233 and “RESOLVERUDPRETRIES statement” on page 234 for

details. No case translation is performed on the domain name.

Up to six names separated by at least one blank are allowed. If the domain
names cannot fit on a single SEARCH statement, multiple SEARCH statements
can be used. If more than six domain names are specified, only the first six are
used. The first domain name specified is used as the value for
DOMAINORIGIN/DOMAIN. If both the SEARCH and DOMAINORIGIN/DOMAIN
statements are present, the one that appears last is used. Encountering a
DOMAINORIGIN/DOMAIN statement after SEARCH statements will result in the
DOMAINORIGIN’s value as the only domain name.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
The following example would establish a search list:
SEARCH raleigh.ibm.com US.IBM.COM ibm.com

If a user entered FTP RALVM12 and assuming that the OPTIONS NDOTS:n (see
“OPTIONS statement” on page 231) was specified such that the SEARCH domains
should be appended, the following order of name queries would be done in
sequence by the resolver until either an answer was found, or the list was
exhausted:

1. RALVM12.raleigh.ibm.com

2. RALVM12.US.IBM.COM

3. RALVM12.ibm.com

236 z/OS V1R4.0 CS: IP Configuration Reference

Related topics
v “DOMAINORIGIN statement” on page 221

v “OPTIONS statement” on page 231

v z/OS Communications Server: IP Configuration Guide

Chapter 5. TCPIP.DATA configuration statements 237

SOCKDEBUG statement
Use the SOCKDEBUG statement to turn on the tracing of TCP/IP socket library
calls. This statement only produces trace message for sockets using the TCP/IP C
sockets or TCP/IP REXX sockets application programming interfaces.

Syntax

�� SOCKDEBUG
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

Usage notes
This statement works for all TCP/IP C sockets across the system the way
sock_debug() works for a specific socket application.

Related topics
Refer to the z/OS Communications Server: IP Application Programming Interface
Guide for more information on sockets.

238 z/OS V1R4.0 CS: IP Configuration Reference

SOCKTESTSTOR statement
Use the SOCKTESTSTOR statement to enable checking of TCP/IP C sockets
socket calls for storage access errors on the parameters to the call.

Syntax

�� SOCKTESTSTOR
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

Usage notes
This statement works for all TCP/IP C sockets across the system the way
sock_do_test_stor() works for a specific socket application.

Related topics
Refer to the z/OS Communications Server: IP Application Programming Interface
Guide for more information about sockets.

Chapter 5. TCPIP.DATA configuration statements 239

SOCKNOTESTSTOR statement
Use the SOCKNOTESTSTOR statement to stop checking of TCP/IP C sockets
socket calls for storage access errors on the parameters to the call.

Syntax

�� SOCKNOTESTSTOR
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

Usage notes
v This statement will improve response time.

v This statement is in effect unless SOCKTESTOR is specified.

v This statement works for all TCP/IP C sockets across the system the way
sock_do_test_stor() works for a specific socket application.

Related topics
Refer to the z/OS Communications Server: IP Application Programming Interface
Guide for more information about sockets.

240 z/OS V1R4.0 CS: IP Configuration Reference

SORTLIST statement
Use the SORTLIST statement to specify the ordered list of network numbers
(subnets or networks) for the resolver to prefer if it receives multiple addresses as
the result of a name query. This will control the list of addresses returned for a
gethostbyname call. This is also used to sort the IPv4 addresses returned for a
getaddrinfo call.

Note: This statement only supports IPv4 IP addresses.

Syntax

�� SORTLIST
system-name:

1

IPaddr
�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

IPaddr
The subnet or network address.

The specification of the address can be:
v network/subnet mask e.g., 128.32.42.0/255.255.255.0 or 128.32.42.0/24

The mask can be specified by a /xx. The number, denoted by xx, represents
the number of significant bits in the mask, for example:
/24=24 significant bits=11111111 11111111 11111111 00000000=255.255.255.0

v network e.g., 128.32.0.0 or 9.0.0.0

If no mask is specified then the following mask will be used:

– Class A network - 255.0.0.0

– Class B network - 255.255.0.0

– Class C network - 255.255.255.0

– Class D or E network - 255.255.255.255

The values for the sortlist IP address must conform to the following:

v Must contain four tokens, each separated by a period.

v Each token must be between one and three characters.

v Each character in each token must be a number.

v Each token cannot exceed the 255.

The values for the sortlist IP addr mask:

v The short format is of the form x.x.x.x/y where:

– x.x.x.x is the IP address

– y is an integer from 1 to 32 representing the number of bits for the mask

v The full format is of the form x.x.x.x/y.y.y.y where:

– x.x.x.x is the IP address

– y.y.y.y is the mask (same syntax checking as IP address)

Chapter 5. TCPIP.DATA configuration statements 241

|
|

|

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
In this example, assume that your host has multiple subnet interfaces, for example,
128.32.42 for FDDI and 128.32.1 for Ethernet.

If you want your applications to see the FDDI subnet address before any other
interface address, code the SORTLIST statement as follows:
SORTLIST 128.32.42.0/24

If you want to ensure that FDDI was first and then any other Class B interface for
128.32, code the SORTLIST statement as follows:
SORTLIST 128.32.42.0/24 128.32.0.0

Usage notes
v A maximum of four IP addresses is allowed. If the IP addresses cannot fit on a

single SORTLIST statement, multiple SORTLIST statements can be used. If
more than four are specified, only the first four IP addresses are used.

v SORTLIST is only supported for GETHOSTBYNAME and GETADDRINFO calls
that return IPv4 addresses, and is not used for NSLOOKUP or ONSLOOKUP.

242 z/OS V1R4.0 CS: IP Configuration Reference

|
|

TCPIPJOBNAME statement
Use the TCPIPJOBNAME/TCPIPUSERID statement to specify the member name of
the procedure used to start the TCPIP address space.

Syntax

��
TCPIPJOBNAME TCPIP

TCPIPJOBNAME tcpip_proc
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

tcpip_proc
The name of the member in the cataloged procedure library that is used to start
the TCP/IP address space. In some cases, the default is TCPIP. However, for
applications which use LE services, the lack of a TCPIPJOBNAME statement
causes applications that issue __iptcpn() to receive a jobname of NULL, rather
than the default of TCPIP. Although this presents no problem when running in a
single-stack environment, this can potentially cause errors in a multi-stack
environment. The maximum length of the start procedure is 8 characters.

Examples
Specify TCPIPA as the name of the procedure that was used to start the TCP/IP
address space:
TCPIPJOBNAME TCPIPA

Usage notes
You must specify the proper procedure name of the TCP/IP address space on your
system. If tcpip_proc is not the name of the started TCP/IP address space,
applications using any TCP/IP provided API will fail with an irrecoverable
interaddress communication error.

For more information about why the TCPIPJOBNAME parameter must match the
name of the associated TCP/IP address space and be the same name as that
defined for the corresponding AF_INET physical file system in the BPXPRMxx
member used to configure z/OS UNIX, refer to z/OS Communications Server: IP
Configuration Guide.

Chapter 5. TCPIP.DATA configuration statements 243

|
|
|
|
|
|
|

TCPIPUSERID statement
The TCPIPUSERID statement is functionally equivalent to the TCPIPJOBNAME
statement. See “TCPIPJOBNAME statement” on page 243.

244 z/OS V1R4.0 CS: IP Configuration Reference

TRACE RESOLVER statement
Use the TRACE RESOLVER statement to have a complete trace of all queries to
and responses from the name server issued.

Note: The TRACE RESOLVER statement should not be specified in the global
TCPIP.DATA file.

Syntax

�� TRACE RESOLVER
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

Modifying
You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

Examples
Do a complete trace of all queries to and from the name server:
TRACE RESOLVER

Usage notes
The TRACE RESOLVER statement is used for debugging purposes only.

Related topics
Refer to z/OS Communications Server: IP Diagnosis for information on interpreting
and directing the output.

Chapter 5. TCPIP.DATA configuration statements 245

TRACE SOCKET statement
Use the TRACE SOCKET statement to have a complete trace of all calls to TCP/IP
through the C socket library.

Syntax

�� TRACE SOCKET
system_name:

�

Parameters
system_name:

The name of the system to which this statement applies. See “system_name
considerations” on page 215 for a complete description of this parameter. The
colon is required.

Examples
Do a complete trace of all TCP/IP C socket calls:
TRACE SOCKET

Usage notes
The TRACE SOCKET statement is used for debugging purposes only.

The output from the TRACE SOCKET command is sent to the data set referred to
by the SYSPRINT DD statement.

246 z/OS V1R4.0 CS: IP Configuration Reference

; and # Statements
Any data after the ; or # character is treated as a comment.

Chapter 5. TCPIP.DATA configuration statements 247

Sample TCPIP.DATA data set (TCPDATA)
The following shows sample TCPIP.DATA statements that can be used to configure
information used by the resolver and TCP/IP application programs. The sample is
shipped as member TCPDATA in the z/OS CS hlq.SEZAINST data set.
;***
; *
; Name of Data Set: TCPIP.DATA *
; *
; COPYRIGHT = NONE. *
; *
; This data, TCPIP.DATA, is used to specify configuration *
; information required by TCP/IP client and server programs. *
; *
; *
; Syntax Rules for the TCPIP.DATA configuration data set: *
; *
; (a) All characters to the right of and including a ; or # will *
; be treated as a comment. *
; *
; (b) Blanks and <end of line> are used to delimit tokens. *
; *
; (c) The format for each configuration statement is: *
; *
; <SystemName||’:’> keyword value *
; *
; where <SystemName||’:’> is an optional label that can be *
; specified before a keyword; if present, then the keyword- *
; value pair will only be recognized if the SystemName matches *
; the name of the MVS system. *
; SystemName is derived from the MVS image name. Its value should*
; be the IEASYSxx parmlib member’s SYSNAME= parameter value. *
; The SystemName can be specified by either restartable VMCF *
; or the subsystem definition of VMCF in the IEFSSNxx member of *
; PARMLIB. *
; *
; For SMTP usage use the NJENODENAME statement in the SMTP *
; configuration data set to specify the JES nodename for mail *
; delivery on the NJE network. *
; *
;***
;
; TCPIPJOBNAME statement
; ======================
; TCPIPJOBNAME specifies the name of the started procedure that was
; used to start the TCPIP address space. TCPIP is the default for
; most cases. However, for applications which use LE services, the
; lack of a TCPIPJOBNAME statement causes applications that issue
; __iptcpn() to receive a jobname of NULL, and some of these
; application will use INET instead of TCPIP. Although this presents
; no problem when running in a single-stack environment, this can
; potentially cause errors in a multi-stack environment.
;
; If multiple TCPIP stacks are run on a single system, each stack will
; require its own copy of this file, each with a different value for
; TCPIPJOBNAME.
;
TCPIPJOBNAME TCPIP
;
;
; HOSTNAME statement
; ==================
; HOSTNAME specifies the TCP host name of this system as it is known
; in the IP network. If not specified, the default HOSTNAME will be
; the name specified by either restartable VMCF or the subsystem
; definition of VMCF in the IEFSSNxx member of PARMLIB.

248 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; If the VMCF name is not available then the IEASYSxx parmlib member’s
; SYSNAME= parameter value will be used.
;
; For example, if this TCPIP.DATA data set is shared between 2
; systems, OURMVSNAME and YOURMVSNAME, then the following 2 lines
; will define the HOSTNAME correctly on each system.
;
; OURMVSNAME: HOSTNAME OURTCPNAME
; YOURMVSNAME: HOSTNAME YOURTCPNAME
;
; No prefix is required if the TCPIP.DATA file is not being shared.
;
HOSTNAME THISTCPNAME
;
;
; NOTE - Use either DOMAINORIGIN/DOMAIN or SEARCH to specify your domain
; origin value
;
; DOMAINORIGIN or DOMAIN statement
; ================================
; DOMAINORIGIN or DOMAIN specifies the domain origin that will be
; appended to host names passed to the resolver. If a host name
; ends with a dot, then the domain origin will not be appended to the
; host name.
;
DOMAINORIGIN YOUR.DOMAIN.NAME
;
;
; SEARCH statement
; ================
; SEARCH specifies a list of 1 to 6 domain origin values that will be
; appended to host names passed to the resolver. If a host name
; ends with a dot, then none of the domain origin values will be
; appended to the host name.
; The first domain origin value specified by SEARCH will be used as the
; DOMAINORIGIN/DOMAIN value.
;
; SEARCH YOUR.DOMAIN.NAME my.domain.name domain.name
;
;
; DATASETPREFIX statement
; =======================
; DATASETPREFIX is used to set the high level qualifier for dynamic
; allocation of data sets in TCP/IP.
;
; The character string specified as a parameter on
; DATASETPREFIX takes precedence over the default prefix of "TCPIP".
;
; The DATASETPREFIX parameter can be up to 26 characters long
; and the parameter must NOT end with a period.
;
; For more information please see "Dynamic Data Set Allocation" in
; the IP Configuration Guide.
;
DATASETPREFIX TCPIP
;
;
; MESSAGECASE statement
; =====================
; MESSAGECASE MIXED indicates to some servers, such as FTPD, that
; messages should be displayed in mixed case. MESSAGECASE UPPER
; indicates that all messages should be displayed in uppercase. Mixed
; case strings that are inserted in messages will not be uppercased.
;
; If MESSAGECASE is not specified, mixed case messages will be used.
;
; MESSAGECASE MIXED

Chapter 5. TCPIP.DATA configuration statements 249

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; MESSAGECASE UPPER
;
;
; NSINTERADDR or NAMESERVER statement
; ===================================
; NSINTERADDR or NAMESERVER specifies the IP address of the name server.
; LOOPBACK (127.0.0.1) specifies your local name server. If a name
; server will not be used, then do not code an NSINTERADDR statement
; or NAMESERVER statement.
;
; The NSINTERADDR or NAMESERVER statement can be repeated up to sixteen
; times to specify alternate name servers. The name server listed first
; will be the first one attempted.
;
; NSINTERADDR 127.0.0.1
;
;
; NSPORTADDR statement
; ====================
; NSPORTADDR specifies the foreign port of the name server.
; 53 is the default value.
;
; NSPORTADDR 53
;
;
; RESOLVEVIA statement
; ====================
;
; RESOLVEVIA specifies how the resolver is to communicate with the
; name server. TCP indicates use of TCP connections. UDP indicates
; use of UDP datagrams. The default is UDP.
;
RESOLVEVIA UDP
;
;
; RESOLVERTIMEOUT statement
; =========================
; RESOLVERTIMEOUT specifies the time in seconds that the resolver
; will wait for a response from the name server (either UDP or TCP).
; The default is 30 seconds.
;
RESOLVERTIMEOUT 10
;
;
; RESOLVERUDPRETRIES statement
; ============================
;
; RESOLVERUDPRETRIES specifies the number of times the resolver
; should try to connect to the name server when using UDP datagrams.
; The default is 1.
;
RESOLVERUDPRETRIES 1
;
;
; LOOKUP statement
; ================
; LOOKUP indicates the order of name and address resolution. DNS means
; use the DNSs listed on the NSINTERADDR and NAMESERVER statements.
; LOCAL means use the local host tables as appropriate for the
; environment being used (UNIX System Services or Native MVS).
;
; LOOKUP DNS LOCAL
;
;
; LOADDBCSTABLES statement
; ========================
; LOADDBCSTABLES indicates to the FTP server and FTP client which DBCS

250 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; translation tables should be loaded at initialization time. Remove
; from the list any tables that are not required. If LOADDBCSTABLES is
; not specified, no DBCS tables will be loaded.
;
; LOADDBCSTABLES JIS78KJ JIS83KJ SJISKANJI EUCKANJI HANGEUL KSC5601
; LOADDBCSTABLES TCHINESE BIG5 SCHINESE
;
;
; SOCKDEBUG statement
; ===================
; Use the SOCKDEBUG statement to turn on the tracing of TCP/IP C and
; REXX socket library calls.
; This command is for debugging purposes only.
;
; SOCKDEBUG
;
;
; SOCKNOTESTSTOR statement
; ========================
; SOCKTESTSTOR is used to check socket calls for storage access errors
; on the parameters to the call. SOCKNOTESTSTOR stops this checking
; and is better for response time. SOCKNOTESTSTOR is the default.
;
; SOCKTESTSTOR
; SOCKNOTESTSTOR
;
;
; TRACE RESOLVER statement
; ========================
; TRACE RESOLVER will cause a complete trace of all queries to and
; responses from the name server or site tables to be written to
; the user’s joblog. This command is for debugging purposes only.
;
; TRACE RESOLVER
;
;
; OPTIONS statement
; =================
; Use the OPTIONS statement to specify the following:
; DEBUG
; Causes resolver debug messages to be issued. This is equivalent to
; TRACE RESOLVER
; NDOTS:n
; Indicates the number of periods (.) that need to be contained in a
; domain name for it to be considered a fully qualified domain name
;
; OPTIONS NDOTS:1 DEBUG
;
;
; SORTLIST statement
; ==================
; Use the SORTLIST statement to specify the ordered list (maximum of 4)
; of network numbers (subnets or networks) for the resolver to prefer
; if it receives multiple addresses as the result of a name query.
;
; SORTLIST 128.32.42.0/24 128.32.42.0/255.255.0.0 9.0.0.0
;
;
; TRACE SOCKET statement
; ======================
; TRACE SOCKET will cause a complete trace of all calls to TCP/IP
; through the C socket library.
; This statement is for debugging purposes only.
;
; TRACE SOCKET
;
;

Chapter 5. TCPIP.DATA configuration statements 251

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; ALWAYSWTO statement
; ===================
; ALWAYSWTO causes messages for some servers, such as SMTP and LPD,
; to be issued as WTOs. Specifying YES can cause excessive operator
; console messages to be issued.
;
ALWAYSWTO NO
; ALWAYSWTO YES
;
; Obsolete statements
; ===================
; The following statements no longer have any effect when included in
; this file:
; SOCKBULKMODE
; SOCKDEBUGBULKPERF0
;
; End of file.
;

Figure 7. Sample TCPIP.DATA data set (TCPDATA)

252 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Part 2. Server applications

© Copyright IBM Corp. 2000, 2002 253

254 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 6. OMPROUTE

OMPROUTE cataloged procedure (optional)

Note: OMPROUTE does not provide support for IPv6.

If OMPROUTE is to be started by a procedure, update the cataloged procedure
OMPROUTE by copying the sample in hlq.SEZAINST(OMPROUTE) to your system
or recognized PROCLIB. Specify OMPROUTE parameters and change the data set
names to suit your local configuration.

© Copyright IBM Corp. 2000, 2002 255

|

//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZBORPRC
//*
//* 5647-A01 (C) Copyright IBM Corp. 1998.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON)’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")/’)
//*
//* Example of start parameters to OMPROUTE:
//*
//* PARM=(’POSIX(ON)’,
//* ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1’)
//*
//* Provide environment variables to run with the
//* desired stack and configuration. As an example,
//* the file specified by STDENV could have these
//* four lines in it:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* OMPROUTE_FILE=/u/usernnn/config.tcpcs2
//* OMPROUTE_DEBUG_FILE=/tmp/logs/omproute.debug
//* OMPROUTE_DEBUG_FILE_CONTROL=1000,10
//*
//* For information on the above environment variables,
//* refer to the IP CONFIGURATION GUIDE.
//*
//STDENV DD PATH=’/u/usernnn/envcs2’,
// PATHOPTS=(ORDONLY)
//*
//* The stdout stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stdout file
//* every time OMPROUTE is started. If you want to retain
//* previous stdout information, change it to OAPPEND.
//*
//SYSPRINT DD SYSOUT=*
//*SYSPRINT DD PATH=’/tmp/omproute.stdout’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* The stderr stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stderr file
//* every time OMPROUTE is started. If you want to retain
//* previous stderr information, change it to OAPPEND.
//*
//SYSOUT DD SYSOUT=*
//*SYSOUT DD PATH=’/tmp/omproute.stderr’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 8. OMPROUTE cataloged procedure

256 z/OS V1R4.0 CS: IP Configuration Reference

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

Starting OMPROUTE using UNIX system services
You can start OMPROUTE from the z/OS shell using the following syntax:

�� omproute
-tn -dn -sn

�

OMPROUTE parameters
-tn

External tracing level, where n is a supported trace level. The following values
are supported:

v Informational messages

v Formatted packet trace and informational messages

-dn
Internal debugging level, where n is a supported debug level. This parameter is
intended for service, as it provides information needed for debugging problems.

-sn
Internal subagent debugging level, where n is a supported debug level. This
parameter is intended for service, as it provides information needed for
debugging problems.

Note: For more information about the -dn and -sn parameters, refer to z/OS
Communications Server: IP Diagnosis.

OMPROUTE environment variables
The following environment variables are used by OMPROUTE and can be tailored
to a particular installation:

v RESOLVER_CONFIG

The RESOLVER_CONFIG variable is used by OMPROUTE to locate the resolver
configuration file. For more information on OMPROUTE’s use of the resolver
configuration file, refer to z/OS Communications Server: IP Configuration Guide.
For more information about the RESOLVER_CONFIG environment variable, refer
to z/OS UNIX System Services Planning.

v OMPROUTE_FILE

The OMPROUTE_FILE variable is used by OMPROUTE in the search order for
the OMPROUTE configuration file. For details on the search order used for
locating this configuration file, refer to z/OS Communications Server: IP
Configuration Guide.

v OMPROUTE_OPTIONS

The OMPROUTE_OPTIONS variable is used by OMPROUTE to set various
controls for OMPROUTE processing. Currently only the hello_hi option is
supported. The syntax of this new variable is:
OMPROUTE_OPTIONS=hello_hi

The absence of the hello_hi option allows normal OMPROUTE processing of
OSPF packets in the order they are received.

Chapter 6. OMPROUTE 257

|

|
|
|

|

|
|

Specifying OMPROUTE_OPTIONS=hello_hi changes the way OMPROUTE
processes the OSPF Hello packets. These packets are given a higher priority
than other updates and processed by the first available OMPROUTE task ahead
of other received packets. Before specifying this parameter, you should be aware
of the potential network impact when processing hello packets out of the received
order sequence. This option might help prevent adjacencies from failing when
OMPROUTE is being flooded with protocol packets. It will not help prevent
adjacencies from failing when OMPROUTE is not getting sufficient processing
cycles from the operating system, whether due to being overloaded or not being
high enough priority.

v OMPROUTE_DEBUG_FILE

The OMPROUTE_DEBUG_FILE variable is used by OMPROUTE to override the
debug output destination. For more information on using this environment
variable, refer to z/OS Communications Server: IP Configuration Guide.

v OMPROUTE_DEBUG_FILE_CONTROL

The OMPROUTE_DEBUG_FILE_CONTROL variable is used to specify the size
and quantity of the files produced as a result of the OMPROUTE_DEBUG_FILE
environment variable. For more information on using this variable, refer to z/OS
Communications Server: IP Configuration Guide.

OMPROUTE configuration file
Statements in the OMPROUTE configuration file have the following syntax:
type tag=value tag=value..;
where:
type Specifies what is to be configured
tag=value Specifies a parameter and its associated value.
type=value Used for statements that have only a single parameter.

The following are the syntax rules for the OMPROUTE configuration statements:

v Types, tags, and values can be specified in mixed case.

v Every configuration statement must end with a semicolon (;).

v Blanks and comments are supported. Comments are identified by a semicolon in
any column. Comments cannot appear within a configuration statement.

v Statements may begin in any column.

v There must be no sequence numbers in the data set or file.

v Statements with only optional operands must have at least one operand coded,
even if all operands have defaults.

A sample OMPROUTE configuration file is provided in SEZAINST(EZAORCFG).

OSPF configuration statements
This section contains descriptions of the following OSPF configuration statements:

v AREA

v AS_BOUNDARY_ROUTING

v COMPARISON

v DEMAND_CIRCUIT

v OSPF_INTERFACE

v RANGE

v ROUTERID

v VIRTUAL _LINK

258 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|

Refer to z/OS Communications Server: IP System Administrator’s Commands for
more information about how to display configuration information.

Chapter 6. OMPROUTE 259

AREA statement

Sets the parameters for an OSPF area. If no areas are defined, the router software
assumes that all the router’s directly attached networks belong to the backbone
area (area ID 0.0.0.0).

Syntax:

�� Area
Area_Number=0.0.0.0

Area_Number = ospf_area_address
�

�
Authentication_Type=None

Authentication_Type = security_scheme

Stub_Area=NO

Stub_Area = value
�

�
Stub_Default_Cost=1

Stub_Default_Cost = cost

Import_Summaries=YES

Import_Summaries = value
�

Parameters:

Area_Number
The OSPF area number in dotted decimal.

Authentication_Type
The default security scheme to be used in the area. Valid values for
authentication types are ″MD5″, which indicates MD5 cryptographic
authentication as described in Appendix D of RFC 2328; ″Password″, which
indicates a simple password; or ″None″, which indicates that no authentication
is necessary to pass packets. The area’s default security scheme can be
overridden on an interface basis by specifying the Authentication_Type keyword
on OSPF_INTERFACE or VIRTUAL_LINK statements.

Stub_Area
Specifies whether this area is a stub area or not. Valid values are YES or NO.

If you specify Stub_area = YES, the area does not receive any AS external link
advertisements, reducing the size of your database and decreasing memory
usage for routers in the stub area. You cannot configure virtual links through a
stub area. You cannot configure a router within the stub area as an AS
boundary router.

You cannot configure the backbone as a stub area. External routing in stub
areas is based on a default route. Each border area router attaching to a stub
area originates a default route for this purpose. The cost of this default route is
also configurable with the AREA statement.

Stub_Default_Cost
The cost OSPF associates with the default route to its border area router. Valid
values are 1 to 65535.

Import_Summaries
Determines whether this stub area will import a routing summary from a
neighbor area. Valid values are YES or NO.

260 z/OS V1R4.0 CS: IP Configuration Reference

AS_BOUNDARY_ROUTING statement

Enables the AS boundary routing capability, which allows you to import routes
learned from other methods (RIP, statically configured, and direct routes) into the
OSPF domain. This statement must be coded even if the only route you want to
import is the default route (destination 0.0.0.0). All routes are imported with their
cost equal to their routing table cost. They are all imported as either Type 1 or Type
2 external routes, depending on what was coded on the Comparison statement.
The metric type used when importing routes determines how the imported cost is
viewed by the OSPF domain. When comparing Type 2 metrics, only the external
cost is considered in picking the best route. When comparing Type 1 metrics, the
external and internal costs of the route are combined before making the
comparison.

Syntax:

�� AS_Boundary_Routing
Import_RIP_Routes=No

Import_RIP_Routes = value
�

�
Import_Static_Routes=No

Import_Static_Routes = value

Import_Direct_Routes=No

Import_Direct_Routes = value
�

�
Import_Subnet_Routes=Yes

Import_Subnet_Routes = value

Originate_Default_Route=No

Originate_Default_Route = value
�

�
Originate_as_Type=2

Originate_as_Type = type

Default_Route_Cost=1

Default_Route_Cost = cost
�

�
Learn_Default_Route=NO

Learn_Default_Route = value
�

�
Default_Forwarding_Address = address

�

Parameters:

Import_RIP_Routes
Specifies whether routes learned by RIP will be imported into the OSPF routing
domain. Valid values are YES or NO.

Import_Static_Routes
Specifies whether static routes (routes defined to the TCP/IP stack using the
BEGINROUTES or GATEWAY statement) will be imported into the OSPF
routing domain. Valid values are YES or NO.

Import_Direct_Routes
Specifies whether direct routes will be imported into the OSPF routing domain.
Valid values are YES or NO.

Import_Subnet_Routes
Independent of the RIP, static, and direct routes you may choose to import, you
can also configure whether or not to import subnet routes into the OSPF
domain. Valid values are YES or NO.

Chapter 6. OMPROUTE 261

Originate_Default_Route
Specifies whether OSPF should advertise this router as default router.

Originate_as_Type
Specifies the external type assigned to the default route. Valid values are 1 or
2.

Default_Route_Cost
Specifies the cost that OSPF associates with the default route. Valid values are
0 to 16 777 215.

Learn_Default_Route
Specifies that OSPF will learn default routes from inbound packets, even if their
cost is higher than the default route originated by this host. Valid values are
YES or NO.

Default_Forwarding_Address
Specifies the forwarding address that will be used in the imported default route.

262 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

COMPARISON statement

Tells the router where external routes fit in the OSPF hierarchy. OSPF supports two
types of external metrics. Type 1 external metrics are equivalent to the link state
metric. Type 2 external metrics are greater than the cost of any path internal to the
AS. Use of type 2 external metrics assumes that routing between autonomous
systems is the major cost of routing a packet, and eliminates the need for
conversion of external costs to internal link state metrics.

For more information on the COMPARISON configuration statement, refer to z/OS
Communications Server: IP Configuration Guide.

Syntax:

��
Comparison=Type2

Comparison = value
�

Parameters:

Comparison
Compare to type 1 or 2 externals. Valid values are Type1 (or 1) or Type2 (or 2).

Chapter 6. OMPROUTE 263

DEMAND_CIRCUIT statement

Global demand circuit statement. Coding YES enables demand circuits. Demand
circuit parameters can then be coded on the OSPF_Interface statement.

Syntax:

��
Demand_Circuit=YES

Demand_Circuit = value
�

Parameters:

Demand_Circuit
Valid values are YES or NO.

264 z/OS V1R4.0 CS: IP Configuration Reference

OSPF_INTERFACE statement

Sets the OSPF parameters for the router’s network interfaces. This statement will
need to be replicated in the configuration file for each IP interface over which OSPF
will operate.

Syntax:

�� OSPF_Interface IP_address = ip_address Name = interface_name �

� Subnet_mask = subnet_mask
Destination_Addr = address

�

�
Attaches_To_Area=0.0.0.0

Attaches_To_Area = area

MTU=576

MTU = mtu_size
�

�
Retransmission_Interval=5

Retransmission_Interval = frequency

Transmission_Delay=1

Transmission_Delay = delay
�

�
Router_Priority=1

Router_Priority = priority

Hello_Interval=10

Hello_Interval = interval
�

�
Dead_Router_Interval=40

Dead_Router_Interval = interval

Cost0=1

Cost0 = cost
�

�
Subnet=NO

Subnet = value Authentication_TYPE

MD5
Password
None

Authentication_Key_ID
0

0-255

�

�
Authentication_Key=nulls

Authentication_Key = password

Demand_Circuit=no

Demand_Circuit = value
�

�
Hello_Suppression=Allow

Hello_Suppression = value

PP_Poll_Interval=60

PP_Poll_Interval = interval
�

�
Parallel_OSPF=Backup

Parallel_OSPF = value

Non_Broadcast=NO

Non_Broadcast = value
�

�
NB_Poll_Interval=120

NB_Poll_Interval = interval

1

DR_Neighbor = value
�

Chapter 6. OMPROUTE 265

� 1

No_DR_Neighbor = value

Max_Xmit_Time=120

Max_Xmit_Time = time
�

�
Min_Xmit_Time=0.5

Min_Xmit_Time = time

RT_Gain=0.125

RT_Gain = value
�

�
Variance_Gain=0.25

Variance_Gain = value

Variance_Mult=2

Variance_Mult = mult
�

�
Delay_Acks=YES

Delay_Acks = value

DB_Exchange_Interval=40

DB_Exchange_Interva = interval
�

Parameters:

IP_address
IP address of the local interface to be configured for OSPF.

The IP address can be a valid IP address that is configured on the system, or it
can be specified with asterisks (*) as wildcards. The valid wildcard
specifications are below. The result of coding a wildcard value is that all
configured interfaces whose IP address matches the wildcard will be configured
as OSPF interfaces. Configured interface IP addresses and names will be
matched against possible wildcards in the order they appear below with the
name being the best match, x.y.z.* being second best, and so forth.
interface name
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

Because a stack could have a large number of Dynamic VIPAs (DVIPAs)
defined, as well as DVIPA ranges, additional wildcard capabilities exist on the
OSPF_INTERFACE statement for use only with DVIPAs. Ranges of DVIPA
interfaces can be defined using the subnet mask parameter on the
OSPF_INTERFACE statement. The range defined in this way will be all the IP
addresses that fall within the subnet defined by the mask and the IP address.

Name
The name of the interface. Must match the link name coded for the
corresponding IP address on the HOME statement in the TCP/IP profile. Valid
values are any strings from 1–16 characters in length. If a name match is not
found, then the most specific wildcard address that matches is used. The same
wildcard address can be configured more than once with unique names. For
Dynamic VIPA (DVIPA), link names are assigned programmatically by the stack
when the DVIPA is created. Therefore, the name field set on the
OSPF_INTERFACE statement will be ignored by OMPROUTE for DVIPAs.

Subnet_Mask
The subnet mask of the subnet to which this interface attaches. This value must

266 z/OS V1R4.0 CS: IP Configuration Reference

be the same for all routers attached to a common network. For more
information, refer to z/OS Communications Server: IP Configuration Guide.

Destination_Addr
IP address of the host at the remote end of this interface. This parameter is
only valid for point-to-point links. If this parameter is not specified for a
point-to-point link, a route to the host at the remote end of the interface will not
be added to the TCP/IP route table until OSPF communication is established
with that host. A subnet route for the interface will be added at OMPROUTE
initialization independent of whether this parameter is specified.

Attaches_To_Area
OSPF area to which this interface attaches. Valid values are 0.0.0.0 (the
backbone), or any area defined by the AREA statement.

MTU
The maximum transmission unit size for OSPF to add to the routing table for
routes that take this interface. Valid values are 0 to 65535.

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are
from 1 to 65535 seconds.

If this parameter is set too low, needless retransmissions will occur that could
affect performance and interfere with neighbor adjacency establishment. It
should be set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to transmit
link-state information over the interface. Each link-state advertisement has a
finite lifetime of 1 hour. As each link-state advertisement is sent out from this
interface, it will be aged by this configured transmission delay. Valid values are
1 to 65535 seconds.

Router_Priority
This value is used for broadcast and nonbroadcast multiaccess networks to
elect the designated router, with the highest priority router being elected. Valid
values are 0 to 255.

Hello_Interval
This parameter defines the number of seconds between OSPF Hello packets
being sent out this interface. This value must be the same for all routers
attached to a common network. Valid values are 1 to 255 seconds.

Dead_Router_Interval
The interval in seconds, after not having received an OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_interval. Setting this value too close to the Hello_Interval can result in the
collapse of adjacencies. A value of 4*Hello_Interval is recommended. This value
must be the same for all routers attached to a common network. Valid values
are 2 to 65535.

Cost0
The cost for this interface. The cost is used to determine the shortest path to a
destination. Valid values are 1 to 65535.

Subnet
For an interface to a point-to-point serial line, this option enables the
advertisement of a stub route to the subnet that represents the serial line rather
than the host route for the other router’s address.

Chapter 6. OMPROUTE 267

For a VIPA interface, this option suppresses advertisement of the VIPA host
route. Normally CS for z/OS advertises both a host route and a subnet route for
owned VIPA interfaces. With this option set to YES, only the subnet route will
be advertised.

Note: Do not use this option for dynamic VIPAs or for any VIPA whose subnet
might exist on multiple hosts. If you do, problems can occur routing to all
VIPAs that share the subnet.

Valid Values are YES or NO.

Authentication_Type
The security scheme to be used on the network to which the interface attaches.
If parameter is not specified, takes on the default value specified for the area to
which the interface is attached. Valid values for authentication types are ″MD5″,
which indicates MD5 cryptographic authentication as described in Appendix D of
RFC 2328; ″Password″, which indicates a simple password; or ″None″, which
indicates that no authentication is necessary to pass packets. All hosts on the
network must be configured with the same security scheme.

Authentication_Key_ID
The identifier of the authentication key defined with the
AUTHENTICATION_KEY keyword. This is a constant numeric value from 0 to
255, with a default value of 0. It is only relevant when MD5 cryptographic
authentication is employed on the interface; otherwise, it is ignored. This field is
provided for compatibility with other routers that might require identification of a
key identifier with the authentication key.

Authentication_Key
If the authentication type for this interface is PASSWORD,
AUTHENTICATION_KEY the password for OSPF routers that are attached to
this subnet. This is coded when Authentication_Type=Password on the AREA
statement for the OSPF area to which this interface attaches. This value must
be the same for all routers attached to a common network. Valid values are any
characters from code page 1047 up to 8 characters in length coded within
double quotation marks (″ ″)or any hex string that begins with 0x.

Note: In some cases, pwtokey can be used to generate MD5 keys (this can be
limited by ASCII/EBCIDIC issues. Refer to z/OS Communications Server:
IP System Administrator’s Commands.

If the authentication type for this interface is MD5, AUTHENTICATION_KEY the
16-byte MD5 authentication key for OSPF routers that are attached to this
subnet. This value must be the same for all routers attached to a common
network. Valid values are 16-byte hex strings beginning with 0x (0x plus 32 hex
characters).

Note: When the authentication type is MD5, an MD5 key must be specified as
a hexadecimal string.

Demand_Circuit
This parameter, when coded with YES, causes Link State Advertisements
(LSAs) to not be periodically refreshed over this interface. Only LSAs with real
changes will be advertised. In addition, coding this parameter to YES causes
LSAs flooded over this interface to never age out. Valid values are YES or NO.
For more information on the Demand_Circuit=YES and related topics, such as
handling high cost links, refer to z/OS Communications Server: IP Configuration
Guide.

268 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|

Hello_Suppression
This parameter is meaningful only if Demand_Circuit is coded YES. This
parameter allows you to configure the interface to request Hello suppression.
This parameter is useful for point-to-point and point-to-multipoint interfaces.
Valid values are ALLOW, REQUEST, or DISABLE.

If either or both sides specify DISABLE, hello suppression is disabled. If both
specify ALLOW, hello suppression is disabled. If one specifies ALLOW and the
other REQUEST, or if both specify REQUEST, hello suppression is enabled.

PP_Poll_Interval
This parameter specifies the interval (in seconds) that OMPROUTE should use
when attempting to contact a neighbor to reestablish a neighbor relationship
when the relationship has failed, but the interface is still available. This
parameter is meaningful only if Demand_Circuit is coded YES and
Hello_Supression has been enabled. Valid values are 0 to 65535.

Parallel_OSPF
This parameter designates whether the OSPF interface is primary or backup
when more than one OSPF interface is defined to the same subnet. Only one of
these interfaces can be configured as primary, meaning that it will be the
interface to carry the OSPF protocol traffic between OMPROUTE and the
subnet. Failure of the primary interface results in automatic switching of OSPF
traffic to one of the backup interfaces. If the primary interface is later
reactivated, OSPF traffic will not be automatically switched back from the
backup interface to the primary interface. If you want to switch traffic back to
the primary interface, the backup interface must be stopped. If none of the
interfaces to the common subnet are configured as primary, a primary interface
will be selected by OMPROUTE. Valid values are ″Backup″ and ″Primary″.

Non_Broadcast
If the router is connected to a nonbroadcast, multiaccess network (NBMA), such
as X.25, Frame Relay, Hyperchannel, or ATM networks, coding a
Non_Broadcast helps the router discover its neighbors. This configuration is
only necessary if the router will be eligible to become the designated router of
the NBMA network. In addition to coding this parameter, each neighbor must be
configured with the DR_NEIGHBOR parameter, for those neighbors that are
eligible to become the designated router, and NO_DR_NEIGHBOR for those
neighbors that are not eligible to become the designated router. This statement
is ignored when this OSPF interface is coded as a wildcard. Valid values are
YES or NO.

NB_Poll_Interval
This parameter specifies the frequency (in seconds) of hellos sent to neighbors
that are inactive. You must set this poll interval consistently across all interfaces
that attach to the same subnetwork for OSPF to function correctly. This
statement is only valid when Non_Broadcast is coded as YES. Valid values are
1 to 65535.

DR_Neighbor
Configures designated router eligible neighbors adjacent to the router over this
interface. In nonbroadcast multiaccess networks, neighbors need to be
configured to all OSPF routers on the network. Multiple DR_Neighbor
statements may be coded on an OSPF_interface statement as necessary.

Note: It is not necessary or recommended to define neighbors on broadcast or
multicast capable media. If you do define neighbors on these media,

Chapter 6. OMPROUTE 269

OMPROUTE will be able to communicate OSPF information only with
those neighbors that are defined (it will not form adjacenies with any
additional neighbors).

No_DR_Neighbor
Configures nondesignated router eligible neighbors adjacent to the router over
this interface. In nonbroadcast multiaccess networks, neighbors need to be
configured to all OSPF routers on the network. Multiple No_DR_Neighbor
statements may be coded on an OSPF_Interface statement as necessary.

Note: It is not necessary or recommended to define neighbors on broadcast or
multicast capable media. If you do define neighbors on these media,
OMPROUTE will be able to communicate OSPF information only with
those neighbors that are defined (it will not form adjacencies with any
additional neighbors).

Retransmit Parameters

The following parameters affect the TCP retransmit algorithms. When TCP packets
are not acknowledged, TCP begins to retransmit these packets at certain time
intervals. If these packets are not acknowledged after a certain number of
retransmits, TCP closes the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet will be
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and will be
retransmitted 15 times before the connection is timed out. All of the parameters
listed below affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds the
specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value may increase the
amount of time it takes for TCP to timeout a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
999.990. The default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be
specified for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is
0.125 . This parameter does not affect initial connection retransmission.

270 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average
to be applied to the RTT variance average. The higher this value, the more
influence the latest packet’s RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25 . This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2 . This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value to add to the routing table for routes that
take this interface. Specifying YES delays transmission of acknowledgments
when a packet is received with the PUSH bit on in the TCP header. Specifying
NO results in acknowledgments being returned immediately. Valid values are
YES and NO. The default value is YES.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If
the interval elapses, the procedure will be restarted. This value must be larger
than the Hello_interval. If no value is specified, the DB_Exchange_Interval will
be set to the Dead router interval. Valid values are 2 through 65535.

Usage notes: When configuring multiaccess parallel interfaces (primary and
secondary interfaces having IP addresses in the same network) for
OMPROUTE(OSPF), the parallel interfaces order in the HOME list of TCPIP profile
must match the order of the corresponding OSPF_INTERFACE statements in the
OMPROUTE configuration file. This causes OMPROUTE to treat the first interface
in the list as primary and the remaining ones as secondary. The interfaces order is
critical for OMPROUTE(OSPF) to be able to send the LSAs correctly to the
neighboring routers. This allows the primary interface to be recognized. Otherwise,
a secondary interface configured in OMPROUTE or HOME list might be
inadvertently treated as a primary interface, and this can cause routing problems
between OMPROUTE and its neighbors. In case of a primary interface failure,
OMPROUTE will use the first available secondary interface and mark it as primary.

Chapter 6. OMPROUTE 271

|
|
|
|
|
|

|
|
|
|
|

RANGE statement

Adds ranges to OSPF areas. OSPF areas can be defined in terms of address
ranges. External to the area, a single route is advertised for each address range.
For example, if an OSPF area were to consist of all subnets of the class B network
128.185.0.0, it would be defined as consisting of a single address range. The
address range would be specified as an address of 128.185.0.0 together with a
mask of 255.255.0.0. Outside of the area, the entire subnetted network would be
advertised as a single route to network 128.185.0.0.

Ranges can be defined to control which routes are advertised external to an area.
There are two choices:

v When OSPF is configured to advertise the range, a single interarea route is
advertised for the range if at least one component route of the range is active
within the area.

v When OSPF is configured not to advertise the range, no interarea routes are
advertised for routes that fall within the range.

Ranges cannot be used for areas that serve as transit areas for virtual links. Also,
when ranges are defined for an area, OSPF will not function correctly if the area is
partitioned but is connected by the backbone.

Syntax:

�� Range IP_address = address Subnet_Mask = mask �

�
Area_Number=0.0.0.0

Area_Number = area

Advertise=YES

Advertise = value
�

Parameters:

IP_Address
Common subnet portion of IP addresses in this range. Valid values are valid
network and subnetwork addresses.

Subnet_Mask
Subnet mask with respect to the network range defined in IP_Address.

Area_Number
Area number for which to add this range. Valid values are any defined areas.

Advertise
Specifies whether this range will be advertised to other areas. Valid values are
YES or NO.

272 z/OS V1R4.0 CS: IP Configuration Reference

ROUTERID statement

Every router in an OSPF routing domain must be assigned a unique 32-bit router
ID. The value used for the OSPF router ID is chosen as follows:

v If the RouterID statement is specified, the value configured is used as the OSPF
router ID. This value must be one of the stack’s configured OSPF interface IP
addresses.

Note: Loopback addresses are not valid IP interface addresses.

v If the RouterID is not configured, one of the OSPF interface addresses will be
used as the OSPF router ID.

Note: With the advent of Dynamic VIPAs (DVIPAs) that can move between z/OS
hosts within a sysplex, it is highly recommended that the ROUTERID be a
physical interface or a static VIPA, not a Dynamic VIPA.

Syntax:

�� RouterID = id �

Parameters:

RouterID
RouterID as previously described.

Chapter 6. OMPROUTE 273

|
|
|

|

VIRTUAL_LINK statement

Configures a virtual link between any two area border routers. To maintain
backbone connectivity you must have all of your backbone routers interconnected
either by permanent or virtual links. Virtual links are considered to be separate
router interfaces connecting to the backbone area. Therefore, you are asked to
specify many of the interface parameters when configuring a virtual link.

Virtual links can be configured between any two backbone routers that have an
interface to a common nonbackbone area. Virtual links are used to maintain
backbone connectivity and must be configured at both endpoints.

Note: OSPF virtual links are not to be confused with Virtual IP Address support
(VIPA).

Syntax:

�� Virtual_Link Virtual_Endpoint_RouterID = id �

�
Links_Transit_Area=0.0.0.1

Links_Transit_Area = area

Retransmission_Interval=10

Retransmission_Interval = frequency
�

�
Transmission_Delay=5

Transmission_Delay = delay

Hello_Interval=30

Hello_Interval = interval
�

�
Dead_Router_Interval=180

Dead_Router_Interval = interval

Authentication_Key=nulls

Authentication_Key = password
�

�
Authentication_Key_ID

0

0-255

Authentication_TYPE

MD5
Password
None

�

�
DB_Exchange_Interval=180

DB_Exchange_Interva = interval
�

Parameters:

Virtual_Endpoint_RouterID
Router ID of the virtual neighbor (other endpoint). Router IDs are entered in the
same form as IP addresses.

Links_Transit_Area
This is the nonbackbone, nonstub area through which the virtual link is
configured. Virtual links can be configured between any two area border routers
that have an interface to a common nonbackbone and nonstub area. Virtual
links must be configured in each of the link’s two endpoints. Valid values are
0.0.0.1 to 255.255.255.255.

274 z/OS V1R4.0 CS: IP Configuration Reference

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are
from 1 to 65535 seconds.

If this parameter is set too low, needless retransmissions will occur that could
affect performance and interfere with neighbor adjacency establishment. It
should be set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to transmit
link-state information over the virtual link. Each link-state advertisement has a
finite lifetime of 1 hour. As each link-state advertisement is sent out from this
virtual link, it will be aged by this configured transmission delay. Valid values are
1 to 65535 seconds.

Hello_Interval
This parameter defines the number of seconds between OSPF Hello packets
being sent out from this virtual link. Valid values are 1 to 255 seconds. The
Hello_interval should be set higher than the same value used on the
intervening, actual OSPF interfaces.

Dead_Router_Interval
The interval in seconds, after not having received an OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_interval. Valid values are 2 to 65535. The dead router interval should be
set higher than the same value used on the intervening, actual, OSPF
interfaces.

Authentication_Key
If the authentication type for this interface is password, the password for OSPF
routers are attached to this subnet. This is coded when
Authentication_Type=Password on the AREA statement for the OSPF area to
which this interface attaches. This value must be the same for all routers
attached to a common network. Valid values are any characters from code page
1047 up to 8 characters in length coded within double quotation marks, or any
hexadecimal string that begins with 0x.

If the authentication type for this interface is MD5, the 16-byte MD5
authentication key for OSPF routers attached to this subnet. This value must be
the same for all routers attached to a common network. Valid values are
16-byte hexadecimal strings beginning with 0x (for example, 0x plus 32 hex
characters).

Note: When the authentication type is MD5, an MD5 key must be specified as
a hexadecimal string.

Authentication_Key_ID
The identifier of the authentication key defined with the
AUTHENTICATION_KEY keyword. This is a constant numeric value from 0-255,
with a default value of 0. It is only relevant when MD5 cryptographic
authentication is employed on the virtual link; otherwise, it is ignored. This field
is provided for compatibility with other routers which might require identification
of a key identifier with the authentication key.

Authentication_Type
The security scheme to be used over the virtual link. If not specified, the
statement takes on the default value specified for the backbone area. Valid
values for authentication types are ″MD5″, which indicates MD5 cryptographic
authentication as described in Appendix D of RFC 2328; ″Password″, which

Chapter 6. OMPROUTE 275

indicates a simple password; or ″None″, which indicates that no authentication
is necessary to pass packets. Both hosts attached to the virtual link must be
configured with the same security scheme.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If
the interval elapses, the procedure will be restarted. This value must be larger
than the Hello_interval. If no value is specified, the DB_Exchange_Interval will
be set to the Dead router interval. Valid values are 2 through 65535.

276 z/OS V1R4.0 CS: IP Configuration Reference

RIP configuration statements
This section contains descriptions of the following RIP configuration statements.

v ACCEPT_RIP_ROUTE

v FILTER

v IGNORE_RIP_NEIGHBOR

v ORIGINATE_RIP_DEFAULT

v RIP_INTERFACE

v SEND_ONLY

Chapter 6. OMPROUTE 277

ACCEPT_RIP_ROUTE statement

Allows a network, subnet, or host route to be accepted independent of whether the
interface it was received on has the corresponding reception parameter enabled
(network, subnet, or host). Routes added in this manner can be thought of as a list
of exception conditions.

Note: Coding this statement will not enable updates for this destination to be
received on RIP interfaces with RECEIVE_RIP=NO to be coded. Also, this
will not override RIP version filters code using the RECEIVE_RIP parameter
on RIP_INTERFACE statements. For example, on an RIP_INTERFACE with
RECEIVE_RIP=RIP2, an RIPV1 route that would otherwise be allowed by
this statement will not be received.

Syntax:

�� Accept_RIP_Route IP_address = address �

Parameters:

IP_address
Destination route to be unconditionally accepted.

278 z/OS V1R4.0 CS: IP Configuration Reference

FILTER statement

The filter statement can be coded stand-alone in the OMPROUTE configuration file
(nosend and noreceive only) to apply to all configured RIP interfaces.

Syntax:

�� filter = (filter_type,dest_route,filter_mask) �

Parameters:

filter_type
The filter_type can be any of the following values:

nosend
Specifies that routes matching the dest_route and filter_mask are not to
be broadcast over RIP interfaces. This option serves as an RIP output
filter.

noreceive
Specifies that routes matching the dest_route and filter_mask are to be
ignored in broadcasts received over RIP interfaces. This option serves
as an RIP input filter.

dest_route
The dest_route specifies the destination route in network, subnetwork, or host
format in dotted decimal form. Alternatively, an asterisk (*) can be coded. This
serves as a blackhole filter that can be used to filter out all routes broadcast or
received over an interface. This should be used in conjunction with either
additional send or receive filters to allow only certain routes to be received, or
advertised over an interface or set of interfaces.

filter_mask
The filter_mask specifies the filter mask in dotted decimal form. If not coded,
the default filter mask will be 255.255.255.255, meaning apply the filter to the
dest_route as coded. Coding the filter mask has no meaning and is not valid if
the dest_route is coded as an asterisk (*) for a blackhole filter.

Chapter 6. OMPROUTE 279

IGNORE_RIP_NEIGHBOR statement

Specifies that RIP routing table broadcasts from this gateway are to be ignored.
This option serves as an RIP input filter.

Syntax:

�� IGNORE_RIP_NEIGHBOR IP_address = address �

Parameters:

IP_address
Specifies the IP address of the gateway from which routing table broadcasts will
be ignored. For multiple IP addresses, the statement must be repeated for each
IP address.

280 z/OS V1R4.0 CS: IP Configuration Reference

ORIGINATE_RIP_DEFAULT statement

Indicates under what conditions RIP will support Default route (destination/mask
0.0.0.0/0.0.0.0) generation.

Syntax:

�� Originate_RIP_Default
Condition=Always

Condition = condition

Cost=1

Cost = cost
�

�
Accept_Default=NO

Accept_Default = value
�

Parameters:

Condition
Condition for when RIP is to advertise this router as a default router. Valid
values are:

Always
Always originate RIP default.

OSPF Originate RIP default if OSPF routes are available.

Never Never advertise this router as a default router.

Cost
Specifies the cost that RIP will advertise with the default route that it originates.
Valid values are 1 to 16.

Accept_Default
Specifies that RIP will learn default routes from inbound RIP packets, even if
their cost is higher than default routes originated by this host. Valid values are
YES or NO.

Chapter 6. OMPROUTE 281

|
|
|

RIP_INTERFACE statement

Configures the RIP parameters for each IP interface. This statement will need to be
replicated in the configuration file for each IP interface over which RIP will operate.

Syntax:

�� RIP_Interface IP_address = address Name = interface_name �

� Subnet_mask = subnet_mask
Destination_Addr = address

�

�
MTU=576

MTU = size

Receive_RIP=YES

Receive_RIP = value
�

�
Receive_Dynamic_Nets=YES

Receive_Dynamic_Nets = value

Receive_Dynamic_Subnets=YES

Receive_Dynamic_Subnets = value
�

�
Receive_Dynamic_Hosts=NO

Receive_Dynamic_Hosts = value
�

�
filter = (filter_type,dest_route,filter_mask)

�

�
Send_Only=ALL

Send_Only = (values)

Send_RIP=YES

Send_RIP = value
�

�
Send_Default_Routes=NO

Send_Default_Routes = value

Send_Net_Routes=YES

Send_Net_Routes = value
�

�
Send_Subnet_Routes=YES

Send_Subnet_Routes = value

Send_Static_Routes=NO

Send_Static_Routes = value
�

�
Send_Host_Routes=NO

Send_Host_Routes = value
�

�
Send_Poisoned_Reverse_Routes=YES

Send_Poisoned_Reverse_Routes = value

In_Metric=1

In_Metric = metric
�

�
Out_Metric=0

Out_Metric = metric

RipV2=NO

RipV2 = value

RipV1_Routes=NO

RipV1_Routes = value
�

282 z/OS V1R4.0 CS: IP Configuration Reference

�
Authentication_Key=nulls

Authentication_Key = key

1

Neighbor = value
�

�
Max_Xmit_Time=120

Max_Xmit_Time = time

Min_Xmit_Time=0.5

Min_Xmit_Time = time
�

�
RT_Gain=0.125

RT_Gain = value

Variance_Gain=0.25

Variance_Gain = value
�

�
Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
�

Parameters:

IP_address
IP address of interface to be configured for RIP.

The IP address can be a valid IP address that is configured on the system or it
can be specified with asterisks (*) as wild cards. The valid wildcard
specifications are below. The result of coding a wildcard value are that all
configured interfaces whose IP address matches the wild card will be
configured as RIP interfaces. Configured interface IP addresses and names will
be matched against possible wildcards in the order they appear below with the
name being the best match, x.y.z.* being second best, and so forth.
interface name
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

Name
The name of the interface. Must match the link name coded for the
corresponding IP address on the HOME statement in the TCP/IP profile. Valid
values are any string from 1–16 characters in length. If an exact IP address
match is not found, then this parameter is used first when searching wildcard
addresses. If a name match is not found, then the most specific wildcard
address that matches is used. The same wildcard address can be configured
more than once with unique names.

Subnet_Mask
Subnet mask for the associated interface IP address. For more information,
refer to z/OS Communications Server: IP Configuration Guide.

Destination_Addr
IP address of the host at the remote end of this interface. This parameter is
only valid for point-to-point links and is a required parameter for point-to-point
links that cannot receive RIP2 packets (see RECEIVE_RIP for more information
on the level of RIP packets that an interface can receive). If this parameter is
not specified for a point-to-point link that can receive RIP2 packets, a route to
the host at the remote end of the interface will not be added to the TCP/IP

Chapter 6. OMPROUTE 283

route table until RIP communication is established with that host. A subnet route
for the interface will be added at OMPROUTE initialization independent of
whether this parameter is specified.

MTU
The maximum transmission unit size for RIP to add to the routing table for
routes that take this interface. Valid values are 0 to 65535.

Receive_RIP
Specifies what type of RIP updates will be accepted over this interface. Valid
values are:

RIP1 Accept only RIP version 1 updates over this interface.

RIP2 Accept only RIP version 2 updates over this interface.

ANY Accept RIP Version 1 and RIP Version 2 updates over this interface.

Note: If RIP2 authentication is required and this value is coded,
unauthenticated RIP1 packets will be received over this
interface. Also, if RIP2 authentication is not required,
authenticated RIP2 packets will not be received over this
interface, regardless of the value of RIPV2.

YES If RIPV2=YES, then receive only RIP Version 2 updates over this
interface. If RIPV2=No, then receive only RIP Version 1 updates over
this interface. This is the default value.

NO No RIP packets will be received over this interface, regardless of any
other filters.

Receive_Dynamic_Nets
Specifies whether or not to learn routes for networks over this interface. If this is
not set, only nets explicitly allowed using the Accept_RIP_Route configuration
statement will be accepted on this interface. Valid values are YES or NO.

Receive_Dynamic_Subnets
Specifies whether or not to learn routes for subnets over this interface. If this is
not set, only subnets explicitly allowed using the Accept_RIP_Route
configuration statement will be accepted on this interface. Valid values are YES
or NO.

Receive_Dynamic_Hosts
Specifies whether or not to learn routes for hosts over this interface. If this is
not set, only hosts explicitly allowed using the Accept_RIP_Route configuration
statement will be accepted on this interface. Valid values are YES or NO.

filter
When specified on the RIP_Interface statement, the filter parameter applies only
to the corresponding RIP interface. The filter statement can also be coded
stand-alone in the OMPROUTE configuration file (nosend and noreceive only)
to apply to all configured RIP interfaces.

The filter_type can be any of the following values:

Value Description

nosend
Specifies that routes matching the dest_route and filter_mask are not to
be broadcast over this interface. This option serves as an RIP output
filter.

284 z/OS V1R4.0 CS: IP Configuration Reference

noreceive
Specifies that routes matching the dest_route and filter_mask are to be
ignored in broadcasts received over this interface. This option serves as
an RIP input filter.

send Specifies that routes matching the dest_route and filter_mask are to be
broadcast over only this interface (or any other RIP interface with an
equivalent filter). This option serves as an RIP output filter and can be
used for inbound and outbound traffic splitting.

send_cond
Specifies that routes matching the dest_route and filter_mask are to be
broadcast over only this interface when this interface is active (or any
other active RIP interface with an equivalent filter). If this interface is
inactive, the routes can be broadcast over other interfaces. This option
serves as an RIP output filter and can be used for inbound and
outbound traffic splitting.

receive
Specifies that routes matching the dest_route and filter_mask are to be
received over only this interface (or any other RIP interface with an
equivalent filter). If received over other RIP interfaces, the routes are
discarded. This option serves as an RIP input filter.

receive_cond
Specifies that routes matching the dest_route and filter_mask are to be
received over only this interface when this interface is active (or any
other active RIP interface with an equivalent filter). If this interface is
inactive, the routes can be received over all other active RIP interfaces.
This option serves as an RIP input filter.

The dest_route specifies the destination route in network, subnetwork, or host
format in dotted decimal form. Alternatively, an asterisk (*) can be coded in
conjunction with the nosend and noreceive filter types. This serves as a
blackhole filter that can be used to filter out all routes broadcast or received
over an interface. This should be used in conjunction with either additional send
or receive filters to allow only certain routes to be received, or advertised over
an interface or set of interfaces.

The filter_mask specifies the filter mask in dotted decimal form. If not coded,
the default filter mask will be 255.255.255.255, meaning apply the filter to the
dest route as coded. Coding the filter mask has no meaning and is not valid if
the dest route is coded as an asterisk (*) for a blackhole filter.

Send_Only
Specifies broadcast restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no broadcast restrictions.

VIRTUAL
Broadcasts virtual IP addresses.

DEFAULT
Broadcasts the default route.

DIRECT
Broadcasts direct routes.

Chapter 6. OMPROUTE 285

TRIGGERED
Only broadcasts routes when requested or when a route becomes
inactive (metric 16).

VIRTUAL, DEFAULT, and DIRECT are ″ored″ together to determine what
should be broadcasted. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT) will
broadcast virtual IP addresses and the default route. When multiple values are
specified, they must be enclosed within parentheses.

When specified on the RIP_Interface statement, the Send_Only parameter
applies only to the corresponding RIP interface. The Send_Only statement can
also be coded stand-alone in the OMPROUTE configuration file to apply to all
RIP interfaces.

Send_RIP
Specifies whether or not RIP advertisements will be broadcast over this
interface. Valid values are YES or NO.

Send_Default_Routes
Advertise the default route (destination 0.0.0.0), if it is available, in RIP
responses sent from this IP source address. Valid values are YES or NO.

Note: If DEFAULT is coded on the Send_Only parameter, the
Send_Default_Routes parameter is ignored and will be set to YES.

Send_Net_Routes
Advertise all network level routes in RIP responses sent from this IP address.
Valid values are YES or NO.

Send_Subnet_Routes
Advertise appropriate subnet-level routes in RIP responses sent from this IP
address. In this context an appropriate subnet is one that meets RFC 1058
subnet advertisement constraints as follows:

v Natural Net must be the same as the IP source’s natural net.

v Subnet mask must be the same.

v Valid values are YES or NO.

Send_Static_Routes
Advertise static and direct routes in RIP responses sent from this IP source
address. Split horizon is applied; that is, static routes configured over an
interface will not be included in RIP responses sent from that interface. Valid
values are YES or NO.

Send_Host_Routes
Advertise host routes in RIP responses sent from this IP source address. In this
context, a host route is one with a mask of 255.255.255.255. Valid values are
YES or NO.

Send_Poisoned_Reverse_Routes
Advertise poisoned reverse routes over the interface corresponding to the next
hop. A poison reverse route is one with an infinite metric (16). Valid values are
YES or NO. If NO is specified, OMPROUTE still uses split horizon.

In_Metric
Specifies the value of the metric to be added to RIP routes received over this
interface prior to installation in the routing table. Valid values are 1 to 15.

Out_Metric
Specifies the value of the metric to be added to RIP routes advertised over this
interface. Valid values are 0 to 15.

286 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

RipV2
Enables RIP V2 packets to be sent on this link. Valid values are YES or NO. If
YES, all RIP packets sent on this link will be RIPV2. If NO, all RIP packets sent
on this link will be RIPV1. See the RECEIVE_RIP description above for
information about configuring the level of RIP packets that can be received on
this link.

RipV1_Routes
Specifies whether RIP V1 routes should be advertised on this RIP V2 link. Valid
values are YES or NO.

Authentication_Key
RIP V2 authentication key. Only used for RIP V2 packets. Coding this key will
not prevent reception of unauthenticated RIP V1 packets. To ensure that only
authenticated RIP packets can be received over this interface, code
RECEIVE_RIP=RIP2 in addition to this parameter. Valid values are any
alphanumeric string from code page 1047 up to 16 characters in length coded
within double quotation marks, or any hexadecimal string which begins with 0x.

Notes:

1. If the value is entered in characters (rather than the hexadecimal string),
that value is case sensitive.

2. If an authentication key is not provided, authenticated RIP V2 packets will
not be received, even if RECEIVE_RIP=ANY.

Neighbor
Multiple neighbor statements can be coded on an RIP_Interface statement to
indicate adjacent RIP routers. This should be used when the interface is not
point-to-point, does not support broadcast, and does not support multicast.
Examples of interface types for which the Neighbor parameter must be used
are Hyperchannel and ATM.

Note: It is not necessary or recommended to define neighbors on multicast
capable media if this interface supports RIP V2, or broadcast capable
media for interfaces that support RIP V1 or RIP V2. If you do define
neighbors on these media, OMPROUTE will be able to communicate RIP
information only with those neighbors that are defined (it will not learn
about any additional neighbors).

Retransmit Parameters

The following parameters affect the TCP retransmit algorithms. When TCP packets
are not acknowledged, TCP begins to retransmit these packets at certain time
intervals. If these packets are not acknowledged after a certain number of
retransmits, TCP closes the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet will be
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and will be
retransmitted 15 times before the connection is timed out. All of the parameters

Chapter 6. OMPROUTE 287

|

|
|
|
|
|
|

|
|
|
|
|
|
|

listed below affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds the
specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value may increase the
amount of time it takes for TCP to timeout a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
999.990. The default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be
specified for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is
0.125 . This parameter does not affect initial connection retransmission.

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average
to be applied to the RTT variance average. The higher this value, the more
influence the latest packet’s RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25 . This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2 . This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value to add to the routing table for routes that
take this interface. Specifying YES delays transmission of acknowledgments
when a packet is received with the PUSH bit on in the TCP header. Specifying
NO results in acknowledgments being returned immediately. Valid values are
YES and NO. The default value is YES.

288 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

SEND_ONLY statement

The SEND_ONLY statement can be coded stand-alone in the OMPROUTE
configuration file to apply to all RIP interfaces.

Syntax:

��
Send_Only=ALL

Send_Only = (values)
�

Parameters:

(values)
Specifies broadcast restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no broadcast restrictions.

VIRTUAL
Broadcasts virtual IP addresses.

DEFAULT
Broadcasts the default route.

DIRECT
Broadcasts direct routes.

TRIGGERED
Only broadcast routes when requested or when a route becomes
inactive (metric 16).

VIRTUAL, DEFAULT, and DIRECT are OR’d together to determine what should
be broadcasted. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT) will
broadcast virtual IP addresses and the default route.. When multiple values are
specified, they must be enclosed within parentheses.

When specified on the SEND_ONLY statement in the OMPROUTE
configuration file, it applies to all RIP_Interfaces. The SEND_ONLY statement
can also be coded on the RIP_INTERFACE statement. When specified on the
RIP_INTERFACE statement, the SEND_ONLYy parameter applies only to the
corresponding RIP_Interfaces.

Chapter 6. OMPROUTE 289

Common configuration statements for RIP and OSPF
This section contains descriptions of the common configuration statements:

v DEFAULT_ROUTE

v INTERFACE

v ROUTESA_CONFIG

290 z/OS V1R4.0 CS: IP Configuration Reference

DEFAULT_ROUTE statement

Allows the default route to be specified to OMPROUTE. Default routes are created
using any of the following:

v BEGINROUTES or GATEWAY statement

v Default_Route statement

v Originate_RIP_Default statement

v Learned by routing protocol

The Send_Default_Routes keyword on the RIP_Interface statement indicates
whether or not to advertise the default route over that interface.

Syntax:

�� Default_Route Name = interface_name Next_Hop = ip_address �

Parameters:

Name
The name of the interface used in the default route. This name must match a
link name coded on the HOME statement in the TCP/IP profile. Valid values are
any 16 characters.

Next_Hop
IP address of the next hop used in the default route.

Note: Only one default route can be configured using this Default_Route
statement. If more than one default route is needed, they should be
configured using the BEGINROUTES or GATEWAY statement in the
TCP/IP profile. If multiple Default_Route statements are coded, the last
statement will be used for the default route.

Chapter 6. OMPROUTE 291

INTERFACE statement

Allows certain values to be specified for interfaces that are neither OSPF nor RIP
interfaces. Each interface that is neither an OSPF nor an RIP interface should be
configured to OMPROUTE using the INTERFACE statement unless it is a
non-point-to-point interface and the default values for Subnet_Mask and MTU are
acceptable for that interface.

Syntax:

�� Interface IP_address = ip_address Name = interface_name �

� Subnet_Mask = mask
Destination_Addr = address

MTU=576

MTU = size
�

�
Max_Xmit_Time=120

Max_Xmit_Time = time

Min_Xmit_Time=0.5

Min_Xmit_Time = time
�

�
RT_Gain=0.125

RT_Gain = value

Variance_Gain=0.25

Variance_Gain = value
�

�
Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
�

Parameters:

IP_address
The IP address can be a valid IP address that is configured on the system or it
can be specified with asterisks (*) as wild cards. The valid wildcard
specifications are below. The result of coding a wildcard value is that all
configured interfaces whose IP address matches the wild card will be
configured as interfaces. Configured interface IP addresses will be matched
against possible wild cards in the order they appear below with x.y.z.* being the
best match, x.y.*.* being second best, and so forth.
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

Because a stack could have a large number of Dynamic VIPAs (DVIPAs)
defined, as well as DVIPA ranges, additional wildcard capabilities exist on the
INTERFACE statement for use only with DVIPAs. Ranges of DVIPA interfaces
can be defined using the subnet mask parameter on the INTERFACE
statement. The range defined in this way will be all the IP addresses that fall
within the subnet defined by the mask and the IP address.

Name
The name of the interface. This name must match the link name coded for the
corresponding IP address on the HOME statement in the TCP/IP profile. If an
exact IP address match is not found, then this parameter is used first when
searching wildcard addresses. If a name match is not found, then the most
specific wildcard address that matches is used. The same wildcard address

292 z/OS V1R4.0 CS: IP Configuration Reference

may be configured more than once with unique names. For Dynamic VIPA
(DVIPA), link names are assigned programmatically by the stack when the
DVIPA is created. Valid values are any character string of 1 to 16 characters in
length.

Subnet_Mask
Subnet mask for the associated interface’s IP address.

Destination_Addr
IP address of the host at the remote end of this interface. This parameter is
only valid for point-to-point links. If this parameter is not specified for a
point-to-point link, a route to the host at the remote end of the interface will not
be added to the TCP/IP route table. A subnet route for the interface will be
added at OMPROUTE initialization independent of whether this parameter is
specified.

MTU
The maximum transmission unit size for OMPROUTE to add to the routing table
for routes that take this interface. Valid values are 0 to 65535.

Max_Xmit_Time
The maximum retransmit time to add to the routing table for routes that take
this interface. This value is used in the TCP/IP retransmission timeout
calculation to determine how long to wait for an acknowledgment before
resending a packet. Valid values are 0 to 999.990.

Min_Xmit_Time
The minimum retransmit time to add to the routing table for routes that take this
interface. This value is used in the TCP/IP retransmission timeout calculation to
determine how long to wait for an acknowledgment before resending a packet.
Valid values are 0 to 99.990.

RT_Gain
The round trip gain value to add to the routing table for routes that take this
interface. This value is used in the TCP/IP retransmission timeout calculation to
determine how long to wait for an acknowledgment before resending a packet.
Valid values are 0 to 1.0.

Variance_Gain
The variance gain value to add to the routing table for routes that take this
interface. This value is used in the TCP/IP retransmission timeout calculation to
determine how long to wait for an acknowledgment before resending a packet.
Valid values are 0 to 1.0.

Variance_Mult
The variance multiplier value to add to the routing table for routes that take this
interface. This value is used in the TCP/IP retransmission timeout calculation to
determine how long to wait for an acknowledgment before resending a packet.
Valid values are 0 to 99.990.

Delay_Acks
The delay acknowledgments value to add to the routing table for routes that
take this interface. Specifying YES delays transmission of acknowledgments
when a packet is received with the PUSH bit on in the TCP header. Specifying
NO results in acknowledgments being returned immediately. Valid values are
YES and NO. The default value is YES.

Chapter 6. OMPROUTE 293

ROUTESA_CONFIG statement

Use the ROUTESA_CONFIG statement to configure the OMPROUTE OSPF
subagent.

Syntax:

�� ROUTESA_CONFIG
COMMUNITY=″public″

COMMUNITY=community_string
�

�
AGENT=161

AGENT=agent_port_number

ENABLED=YES

ENABLED=value
�

Parameters:

COMMUNITY
A character string of 1 to 32 characters enclosed in double quotation marks (″″)
used as the community name (or password) in establishing contact with the
SNMP agent. For the OMPROUTE subagent to communicate with the z/OS CS
SNMP agent, the community name specified (or defaulted) on the COMMUNITY
keyword must match one that is defined (or defaulted) in the PW.SRC or
SNMPD.CONF data set configured to the SNMP agent or the -c parameter
when the SNMP agent is started. The default value is public.

AGENT
A port number in the range 1 to 65535 used in establishing communication with
the SNMP agent. For the OMPROUTE subagent to communicate with the z/OS
CS SNMP agent, the port number specified must match the port number
specified (or defaulted) on the -p parameter when the SNMP agent is started.
The default value is 161.

ENABLED
A value of YES indicates that the OMPROUTE subagent should be started
during OMPROUTE initialization. If there are no active OSPF interfaces, the
OMPROUTE subagent will return noSuchInstance for all GET and GETNEXT
requests. By default, the OMPROUTE subagent is started when OMPROUTE is
started.

A value of NO indicates that the OMPROUTE subagent should not be started.
Specify this keyword if little or no OSPF SNMP data will be requested from this
OSPF image. SNMP MIB objects supported by the TCP/IP SNMP agent and
TCP/IP subagent (other than the OMPROUTE subagent) will still be available.
For information on which MIB objects are supported by the SNMP agent and
OMPROUTE subagent, see the z/OS Communications Server: IP User’s Guide
and Commands.

Examples:
ROUTESA_CONFIG COMMUNITY="USACCESS" AGENT=528
ROUTESA_CONFIG ENABLED=NO

Usage notes:

v If ENABLED=NO is specified, the OMPROUTE subagent will not be started
during OMPROUTE initialization. If the ROUTESA_CONFIG statement itself is
not specified, the OMPROUTE subagent will be started (this is the default).

294 z/OS V1R4.0 CS: IP Configuration Reference

v The community string is case sensitive and must be 1–32 characters. It is not
converted to uppercase by profile processing.

v At initialization time, the default for the OMPROUTE subagent is to be enabled.

v A MODIFY command can be used to start or stop the OMPROUTE subagent, but
the setting of the parameters cannot be changed unless OMPROUTE is recycled.

Chapter 6. OMPROUTE 295

296 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 7. SNALINK

SNALINK cataloged procedure (SNALPROC)

SNALINK parameters
The system parameters required by SNALINK are passed by the PARM parameter
on the EXEC statement of the SNALINK cataloged procedure. The parameters are
order-dependent and appear in the following list:

DEBUG
Enables detailed tracing into an internal buffer. If specified, it must be the
first parameter in the list.

TCP=‘tcpid’
Specifies the name of the TCPIP address space, in quotation marks.

APPLID=‘applid’
Specifies the name of the VTAM application (LU name), in quotation marks,
that SNALINK uses for this system.

max_ru_size
This parameter is optional, and is the maximum RU size in hexadecimal.
The default size is 88 (in form mn). Set max_ru_size to specify the
maximum request or response unit (RU) size that SNALINK sends. The
value is of the form mn, where m is between 8 and F, and n is between 0

//SNALINK PROC MODULE=SNALINK,TCP=’TCPIP’,APPLID=’APPLID’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01U SEZAINST(SNALPROC)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//SNALINK EXEC PGM=&MODULE,REGION=2048K,TIME=1440,
// PARM=’OS/390 TCP/IP UNIX System Services DLC Support &APPLID’
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 9. SNALINK cataloged procedure (SNALPROC)

© Copyright IBM Corp. 2000, 2002 297

and F. The corresponding maximum RU size is m2n (m multiplied by 2 to
the power of n). Use the largest size that works on your SNA network, to
provide the best performance and the least overhead. See z/OS
Communications Server: SNA Programming for more information about this
parameter as well as z/OS Communications Server: IP Configuration Guide.

max_session
The maximum number of sessions; a decimal value from 1 to 9999. The
default value is 6. To use different values for max_session, you also have to
specify the max_ru_size.

retry The delay time for VTAM to retry sense codes. It has the following format:
hhmm. Where:

hh Hours 0–24

mm Minutes 0–59

For example:
v 0005 is a 5-minute delay.
v 0200 is a 2-hour delay.
v 1030 is a 10-hour and 30-minute delay.

The default delay is 15 minutes and the maximum delay is 24 hours. To use
a different retry interval, you must specify both max_ru_size and
max_session.

session_type
Defines the SNALINK communication session mode. The session_type can
have the values of SINGLE, DUAL, or be omitted. If the parameter is
omitted, session_type defaults to DUAL. If the session_type is set to
SINGLE, SNALINK creates a single duplex session. If DUAL is specified,
SNALINK creates two sessions, a send session and a receive session. Like
max_session and retry, if session_type is specified, you must also specify
the previous parameters.

NCPROUTE and 3745 Communication Controller Ethernet links require
session_type of SINGLE.

298 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 8. SNALINK LU6.2

SNALINK LU6.2 cataloged procedure (LU62PROC)

Sample SNALINK LU6.2 configuration data set (LU62CFG)

//TCPIPL62 PROC MODULE=SNALNK62
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB023
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//SNALNK62 EXEC PGM=&MODULE,TIME=1440,REGION=256K
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//LU62CFG DD DSN=TCPIP.SEZAINST(LU62CFG),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 10. SNALINK LU6.2 cataloged procedure (LU62PROC)

© Copyright IBM Corp. 2000, 2002 299

The DD statements in the cataloged procedure should be defined as follows:

DD Name Description
SYSTCPD TCPIP.DATA configuration data set
LU62CFG SNALINK LU6.2 configuration data set
SYSPRINT Run-time diagnostic or trace output
SYSUDUMP User abend dump output (optional)

Summary of SNALINK LU6.2 configuration statements
Table 13. Summary of SNALINK LU6.2 configuration statements

Statement Description Page

BUFFERS Specifies the allocation of buffer pools for IP datagrams 302

DEST Defines an IP-to-LU mapping for a destination node 303

LINK Defines a link between two TCPIP address spaces 304

--
* Sample configuration file for SNALNK62 *
* *
* COPYRIGHT = NONE. *
* *
--
*
*-- VTAM Application definition:
*
* ApplID Password
* -------- --------
VTAM LU62APPL QWERTY
*
*-- Link Definition:
* Idle
* TCP/IP Link Name LogMode Time-out
* ---------------- -------- --------
LINK LNKLU62 LU62MODE 600
*
*-- Destination address list for this link:
*
* *--- REMOTE ----* Start
* IP Address Send LU Recv LU Type
* --------------- -------- -------- ----
DEST 192.9.207.39 LU6LBK11 LU6LBK12 INIT
DEST 192.9.207.40 LU6LBK13 =
DEST 192.9.207.41 LU6LBK14 =
*
*-- Buffer specifications:
*
* Datagram Add Snd Snd Queue
* Max Size Buffers Limit
* ----- ----- -----
BUFFERS 32758 10 11
*
*-- Trace level specifications:
*
* Trace
* Level Connection Range
* ------ ------------------
TRACE OFF ALL

Figure 11. Sample of LU62CFG

300 z/OS V1R4.0 CS: IP Configuration Reference

Table 13. Summary of SNALINK LU6.2 configuration statements (continued)

Statement Description Page

TRACE Defines the required level of tracing for the connections 305

VTAM Specifies the VTAM application for the connection 306

SNALINK LU6.2 configuration statements
This section contains the statements for the SNALINK LU6.2 configuration data set.

Statement syntax
Use the following syntax rules:

v Each statement must be entered on a separate line in the configuration data set.

v Each statement consists of a keyword, followed by one or more parameter fields
separated by a blank.

v Case is not significant and leading blanks are ignored.

v Comment lines are marked with an asterisk (*) in column 1.

Statement ordering
v At least one of each type of statement, except the TRACE statement, must

appear in the configuration data set. TRACE is the only optional statement.

v Only one BUFFERS statement can be defined, and it can appear anywhere in
the data set.

v Only one VTAM statement can be defined, and it must appear before the first
LINK statement.

v You must have one LINK statement for each network directly connected to the
SNALINK LU6.2 address space.

v You must have one DEST statement for each distinct IP address on the directly
connected networks.

v A DEST statement defining a destination IP address must appear before a
TRACE statement for the same destination IP address. The DEST statements for
a particular network must appear after the LINK statement for that network and
before the next LINK statement.

For example:
LINK
DEST
.
.
.
LINK

v The data set can have any number of TRACE statements. If the ranges specified
in any of the TRACE statements overlap, the resulting trace levels are
determined by invoking the TRACE statements in the order in which they appear
in the data set.

Chapter 8. SNALINK LU6.2 301

BUFFERS statement
Use the BUFFERS statement to specify the parameters used to allocate buffer
pools for storing IP datagrams.

Syntax

�� BUFFERS max_packet_size
add_send_buffers send_queue_limit

�

Parameters
max_packet_size

The maximum IP packet size. This value should match the max_packet_size
parameter on the BEGINROUTES or GATEWAY statement in the
PROFILE.TCPIP data set and it must be less than the maximum physical
information unit (PIU) in the VTAM definition for your LU6.2 connection. The
maximum PIU is set by the MAXDATA parameter of the PCCU macro that is
part of the NCP generation program in the VTAMLST library. The value for this
parameter differs for each device. Check the documentation for your device to
determine the appropriate value.

The max_packet_size value must be an integer in the range 20 to 32758. Any
datagrams exceeding this length that are received from either the local or
remote TCP/IP are discarded.

add_send_buffers
The number of additional buffers for storing datagrams waiting to be passed to
VTAM. These are in addition to the initial allocation of one for every destination
(DEST) defined in the SNALINK LU6.2 configuration data set. If an
add_send_buffers value is not specified, no additional buffers are allocated. The
minimum value allowed for add_send_buffers is 1; the maximum value allowed
is 2 147 483 647.

send_queue_limit
The maximum number of buffers that can be allocated to any connection for
storing datagrams waiting to be passed to VTAM. This parameter allows you to
prevent a single connection from restricting other connections access to the free
buffers from the VTAM send buffer pool. Once this maximum limit is reached on
the VTAM send queue, further datagrams received from TCP/IP for this
connection are discarded, until the number of buffers on the send queue is
reduced below the limit. For this parameter to be effective, its value should
leave enough free buffers in the VTAM send buffer pool to service the other
active connections when full throughput is reached on the main connections.
See the description of the add_send_buffers parameter to calculate the size of
the VTAM send buffer pool. If a send_queue_limit value is not specified, no limit
is placed on the lengths of individual send queues. The minimum value allowed
for send_queue_limit is 1; the maximum value allowed is 2 147 483 647.

Examples
*-- Buffer specifications:
*
* Datagram Add Snd Snd Queue
* Max Size Buffers Limit
* ----- ----- -----
BUFFERS 32758 10 11
*

302 z/OS V1R4.0 CS: IP Configuration Reference

DEST statement
Use the DEST statement to define an IP-address-to-LU-name mapping for a
destination node associated with the link specified in the most recent LINK
statement.

The IP addresses listed must be consistent with the direct connections defined for
the current link in the GATEWAY statement of the hlq.PROFILE.TCPIP data set.

Syntax

�� DEST ip_addr send_lu receive_lu
DATA

INIT
�

Parameters
ip_addr

The IP address in dotted decimal format. The value entered must be in the
correct format for an IP address of a network node (a fully qualified IP address).

send_lu
The remote LU name for the send connection.

receive_lu
The remote LU name for the receive connection. For independent logical units
using parallel sessions, the send and receive LU names are the same. In this
case, you can enter an equal sign (=) as the value for the receive_lu parameter.

DATA
Definition of when the connection to the destination node is to be established. If
the DATA parameter is specified, the connection is only established after there
is IP data to be transferred to and from the destination node. If neither INIT nor
DATA is specified, DATA is used as the default setting.

INIT
Definition of when the connection to the destination node is to be established. If
the INIT parameter is specified, the connection is established during
initialization of the SNALINK LU6.2 address space.

Examples
* IP Address Send LU Recv LU Type
* --------------- -------- -------- ----
DEST 192.9.207.39 LU6LBK11 LU6LBK12 INIT
DEST 192.9.207.40 LU6LBK13 =
DEST 192.9.207.41 LU6LBK14 =

Chapter 8. SNALINK LU6.2 303

LINK statement
Use the LINK statement to define the link between the main TCPIP address space
and the SNALINK LU6.2 interface.

Syntax

�� LINK link_name log_mode
idle_disconnect

�

Parameters
link_name

The name of the TCP/IP link, as defined in the hlq.PROFILE.TCPIP data set to
which the destinations in the subsequent DEST statements are to apply. The
maximum length is eight characters.

log_mode
The name of the VTAM LOGMODE entry to be used when establishing an SNA
LU type 6.2 session for this link.

idle_disconnect
Time, in seconds, after which an idle or inactive session is terminated. If blank
or 0, no inactivity checking or timeout is to apply to connections defined for this
link. If not blank, the value of this parameter must lie within the inclusive range
0 to 2³¹–1.

Examples
*-- Link Definition:
* Idle
* TCP/IP Link Name LogMode Time-out
* ---------------- -------- --------
LINK LNKLU62 LU62MODE 600

304 z/OS V1R4.0 CS: IP Configuration Reference

TRACE statement
Use the TRACE statement to define the required level of tracing for a specified
range of connections. All tracing levels default to OFF unless overridden by any
appropriate TRACE statement. Trace output is written to the SYSPRINT data set.

Syntax

��
TRACE OFF ALL

OFF
TRACE IP=dest_ip

DETAIL ALL
ON

�

Parameters
OFF

Disables tracing for all connections in the specified range. If OFF, DETAIL, or
ON is not specified, OFF is the default. For example, specifying TRACE
IP=dest_ip would disable tracing for only the connection associated with
dest_ip.

DETAIL
Enables a detailed level of tracing for all connections in the specified range.

ON
Enables a basic level of tracing for all connections in the specified range.

IP=dest_ip
The destination IP address associated with the connection for which tracing is
enabled or disabled. A DEST statement defining a destination IP address must
appear before a TRACE statement for the same destination IP address.

ALL
If the ALL parameter is specified, tracing for all destinations (either currently
defined or still to be defined) is set to the requested level.

Examples
*-- Trace level specifications:
*
* Trace
* Level Connection Range
* ------ ------------------
TRACE OFF ALL

Chapter 8. SNALINK LU6.2 305

VTAM statement
Use the VTAM statement to specify the VTAM application definition to be used to
establish the connections.

The VTAM statement must precede the first LINK statement.

Syntax

�� VTAM application_id password �

Parameters
application_id

The VTAM application identifier as defined by the VTAM APPL statement. This
name identifies the local logical unit used by this SNALINK LU6.2 address
space. Remote SNALINK LU6.2 interfaces configure this name as their remote
logical unit name for a connection to this SNALINK LU6.2 address space.

The maximum length is eight characters.

password
The password for the VTAM application specified in application_id. This must
match the password specified by the PRCT parameter in the VTAM APPL
statement.

Examples
The following example shows the connection between the VTAM APPL statement
and the VTAM configuration statement.
LU62APPL APPL ACBNAME=LU62APPL, *

PRTCT=QWERTY, *

*-- VTAM Application definition:
*
* ApplID Password
* -------- --------
VTAM LU62APPL QWERTY

306 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 9. X.25 NPSI

X.25 NPSI cataloged procedure (X25PROC)
//TCPIPX25 PROC MODULE=XNX25IPI
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB020
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//X25IPI EXEC PGM=&MODULE,REGION=256K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//X25IPI DD DSN=TCPIP.SEZAINST(X25CONF),DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Sample X.25 NPSI server configuration data set (X25CONF)
Following is a copy of the sample, X.25 NPSI configuration data set, shipped as
SEZAINST(X25CONF).

* Sample configuration file for TCPIPX25 *
* *
* COPYRIGHT = NONE. *

*-- Trace level and debug flags
* 01234567
Trace OFF 00000000
*
*-- VTAM Application definition:
* ApplID Password
* -------- --------
VTAM TCPIPX25 TCPX25
*

* Definitions for a public network connection with two-line hunt
* group, using NPSI GATE Fast Connect. Network default packet size
* is 128; packet size 1024 negotiated on call request

Figure 12. X.25 NPSI cataloged procedure (X25PROC)

© Copyright IBM Corp. 2000, 2002 307

*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse
*
* Destination address list for this link Destination
* IP Address X.25 DTE Addr C.U.D. Facilities
* --------------- --------------- -------- ---------------
Dest 192.005.058.001 131106170015300 CC
Dest 192.005.058.004 131106170015320 CC
Dest 192.005.058.005 131106170015350 CC 02AA
* * this dest. requires throughput class on
* call request
*

* Definitions for a DDN connection
* Note: DDN and non-DDN links cannot be mixed
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
*Link XU023 DDN 2 128 16
*Options GATE
*
* DDN network 10 uses RFC 1236 address calculation, no explicit
* X.25 DTE addresses
*
* IP Address X.25 DTE Addr
* --------------- ---------------
*Dest 10
*

* Definitions for a private point-to-point link to a router
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU024 PRIV 1 2 1024 2
Options GATE
*
* IP Address X.25 DTE Addr C.U.D.
* --------------- --------------- --------
Dest 192.5.57.2 2
*

*-- Buffer specifications:
* Datagram Addn’l VC Queue
* Max Size Buffers Limit
* -------- -- --
Buffers 1024 50 4
*
*-- Timers:
* Idle Minimum
* Disconn. Open
* -------- -------
Timers 300 60

308 z/OS V1R4.0 CS: IP Configuration Reference

Summary of X.25 NPSI server configuration statements
Table 14. Summary of X.25 NPSI server configuration statements

Statement Description Page

ALTLINK Specifies the members of a link’s hunt group for incoming calls 310

BUFFERS Specifies the buffer size to use for IP datagrams 312

DEST Specifies the destination address list for a link 313

FAST Specifies that a link will have NPSI GATE fast connect 314

LINK Defines the link to an NPSI physical circuit logical unit 315

OPTIONS Specifies the call handling options for incoming calls on a link 316

TIMERS Defines the time limits for holding or clearing connections on all
links

318

TRACE Specifies the trace and debug levels for the X.25 NPSI server 319

VTAM Identifies the VTAM APPL definition for the X.25 NPSI server 321

X.25 NPSI server configuration statements
Following are the syntax and description of the valid statements used in the data
set pointed to by the //X25IPI DD statement in your X.25 NPSI cataloged
procedure.

Statement syntax
v Each statement is on a separate line in the configuration data set.

v Each statement starts with the keyword followed by the parameter fields,
separated by one or more blanks.

v The statements are not case sensitive. You can enter them in both upper- and
lowercase.

v Comment lines are marked with an asterisk (*) in column 1.

Figure 13. Sample X.25 NPSI server configuration data set (X25CONF)

Chapter 9. X.25 NPSI 309

ALTLINK statement
Use the ALTLINK statement to specify members of a hunt group for incoming calls.
The collection of lines in this group are assigned a single X.25 address. Incoming
X.25 calls will be accepted from any of the lines in the group and outgoing calls will
be rotated across the lines. If one of the lines is not operational, outgoing calls will
be rotated on to the next available line in the group.

Syntax

�� ALTLINK mchlu_name DDN
dnic dte_addr

�

� window_size packet_size logical_channels �

Parameters
mchlu_name

The name of the physical circuit logical unit (NPSI MCH LU).

DDN
Use DDN for the Defense Data Network.

dnic
The X.121 Data Network Identifier Code (DNIC) for the public data network.
dnic can be coded as PRIVATE or PRIV to denote a private X.25 network.

dte_addr
The X.25 DTE address for the link. The address must be from 1 to 15 decimal
digits. This parameter is not coded for DDN links. Specify dte_addr as NONE to
omit the calling address from the call request packet.

window_size
The window size to negotiate on switched virtual circuits, in the range of 1 to 7
for a modulo-8 network, or 1 to 127 for a modulo-128 network.

packet_size
Choose one of the following X.25 packet sizes as the default: 32, 64, 128, 256,
512, 1024, 2048, or 4096 bytes.

logical_channels
The number of logical channels (switched virtual circuits) subscribed, in the
range of 1 to 1023.

Examples
The following example shows the LINK, ALTLINK, FAST, and OPTIONS statements
for a public network connection with a two-line hunt group:
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse

Usage notes
v The ALTLINK statement must follow a LINK statement.

v A DEST statement follows the last ALTLINK statement for a hunt group.

310 z/OS V1R4.0 CS: IP Configuration Reference

v If special options are required or fast connect is used, OPTIONS or FAST
statements must immediately follow the ALTLINK to which they apply.

Related topics
v “DEST statement” on page 313

v “FAST statement” on page 314

v “LINK statement” on page 315

Chapter 9. X.25 NPSI 311

BUFFERS statement
Use the BUFFERS statement to specify the buffer size for IP datagrams.

Syntax

�� BUFFERS max_packet_size add_buffers vc_queue_limit �

Parameters
max_packet_size

The maximum IP packet size. This value must match the max_packet_size
parameter on the GATEWAY statement in the hlq.PROFILE.TCPIP data set,
and must be in the range of 576 to 2048.

add_buffers
The number of additional buffers to allocate, in addition to the minimum of 2 for
each logical channel.

vc_queue_limit
The limit on the number of buffers queued outbound on any single virtual circuit.

Examples
The following statement specifies a maximum IP packet size of 1024, an allocation
of 50 additional buffers, and a limit of 4 queued outbound buffers on any SVC:
*
Buffers 1024 50 4
*

Usage notes
v This maximum IP packet size must be at least as large as the largest

max_packet_size parameter on the GATEWAY entries for X.25 NPSI LINKS in
the hlq.PROFILE.TCPIP data set.

v Additional buffers are required for coping with traffic peaks and holding outbound
IP datagrams while new X.25 connections are being established. Use a larger
value when many X.25 destinations are called in a short period of time.

Related topics
v “GATEWAY statement” on page 96

v “OPTIONS statement” on page 316

v z/OS Communications Server: IP Diagnosis

312 z/OS V1R4.0 CS: IP Configuration Reference

DEST statement
Use the DEST statement to specify the destination address list for the link.

Syntax

�� DEST ip_addr
X25_dte_addr cud dest_facilities

�

Parameters
ip_addr

The IP address in dotted decimal format. At least 1 byte must be supplied;
omitted trailing bytes are not checked when determining a match.

X25_dte_addr
The corresponding X.25 DTE destination address for the link (1 to 15 decimal
digits). Do not code this parameter for Defense Data Network (DDN)
destinations.

cud
The call user data (CUD) protocol identifier used. A hexadecimal number with a
default value of X'CC'. Do not code this parameter for DDN destinations.

dest_facilities
The X.25 facilities field to be used on outgoing calls for this destination. This
value overrides the FACILITIES value in the OPTIONS statement for this
destination. Specify this value as an even number of hexadecimal digits. The
field is inserted in outgoing call packets following facilities generated from
window or packet size negotiation or reverse charging. The facilities length byte
is calculated automatically and should not be coded here.

Examples
The following example shows the LINK and DEST statement for a DDN connection.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU023 DDN 2 128 16
*
* IP address X.25 DTE addr
* --------------- ---------------
Dest 10
*

Usage notes
v The DEST statement must follow the LINK statement.

v Data Defense Network destinations do not use the X.25 DTE address and the
CUD protocol identifier.

Chapter 9. X.25 NPSI 313

FAST statement
Use the FAST statement to provide NPSI fast connect for links with heavy activity.
Fast connect is only used for SVCs connected to non-SNA data terminal equipment
(DTE). See X.25 NPSI Host Programming for more information.

�� FAST prefix
HEX

DEC

001

suffix
�

Parameters
prefix

The fast connect VC LU name prefix. This is the MCH LU name unless the
PRFLU option is coded on the NPSI X25.VC statement.

HEX or DEC
The fast connect VC LU numbering scheme (if the HEXNAME parameter is
coded in the NPSI X25.VC statement). The default is HEX.

suffix
The fast connect VC LU numbering base (if the SUFFIX parameter is coded in
the NPSI X25.VC statement). The default is 001.

Examples
The following example shows the placement of a FAST statement that specifies a
prefix of XU021 and takes the default values of HEX and 001.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
LINK XU021 3110 23456789 2 128 16
FAST XU021
OPTIONS GATE
*

Usage notes
v The OPTIONS GATE statement is required.

v The FAST statement must follow the LINK or ALTLINK statement to which it
applies.

v The prefix value must match the value in your NPSI configuration.

314 z/OS V1R4.0 CS: IP Configuration Reference

LINK statement
Use the LINK statement to define the NPSI MCH LU names. One SNA control
session is established for each MCH LU defined by a LINK statement.

Syntax

�� LINK mchlu_name DDN
dnic dte_addr

�

� window_size packet_size logical_channels �

Parameters
mchlu_name

The name of the physical circuit logical unit (NPSI MCH LU).

DDN
Use DDN for the Defense Data Network.

dnic
The X.121 Data Network Identifier Code (DNIC) for the public data network.
The dnic parameter can be coded as PRIVATE or PRIV to denote a private
X.25 network.

dte_addr
The X.25 DTE address for the link. The address must be from 1 to 15 decimal
digits. This parameter is not coded for DDN links. Specify dte_addr as NONE to
omit the calling address from the call request packet.

window_size
The window size to negotiate on switched virtual circuits, in the range of 1 to 7
for a modulo-8 network, or 1 to 127 for a modulo-128 network.

packet_size
Choose one of the following X.25 packet sizes as the default: 32, 64, 128, 256,
512, 1024, 2048, or 4096 bytes.

logical_channels
The number of logical channels (switched virtual circuits) subscribed, in the
range of 1 to 1023.

Examples
In the following example, AU20 is the name of a non-DDN network, and AU16 is the
name of a DDN network.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
LINK AU20 3020 90201234548 2 1024 5
LINK AU16 DDN 2 1024 5
*

Chapter 9. X.25 NPSI 315

OPTIONS statement
Use the OPTIONS statement to specify the call handling options for each link.
Values specified on the OPTIONS statement apply to all outgoing calls on the LINK
MCH, but can be overridden for individual destination addresses by the DEST
statement. More than one OPTIONS statement can be coded after each LINK
statement. Several parameters can be placed in a single OPTIONS statement but
cannot continue on the next line. If all the parameters do not fit on one line, use
additional OPTIONS statements.

Syntax

�� 1 OPTIONS ACCEPTFACILITIES hex_facilities
ACCEPTREVERSE
REVERSE
PACKETSIZE packet_size
WINDOWSIZE window_size
GATE
CALLDATA call_user_data
FACILITIES hex_facilities

�

Parameters
ACCEPTFACILITIES hex_facilities

The X.25 facilities field to be used when accepting incoming calls. Specify this
value as an even number of hexadecimal digits. The facilities length byte is
calculated automatically and should not be coded here.

ACCEPTREVERSE
Causes incoming calls with the reverse charging facility to be accepted. The
default action is to clear reverse charge calls.

REVERSE
Includes the reverse charging facility in all outgoing call request packets.

PACKETSIZE packet_size
The packet size to negotiate on switched virtual circuits, one of the values 32,
64, 128, 256, 512, 1024, 2048, or 4096 bytes.

WINDOWSIZE window_size
The window size to negotiate on switched virtual circuits, in the range of 1 to 7
for a modulo-8 network, or 1 to 127 for a modulo-128 network.

GATE
Specified if the NPSI MCH is defined with GATE=GENERAL to permit sharing
of an X.25 physical link with other services.

CALLDATA call_user_data
The call user data field to be used on outgoing X.25 calls; an even number of
hexadecimal digits. The standard value for IP traffic must begin with the
protocol identifier CC.

FACILITIES hex_facilities
The X.25 facilities field to be used on outgoing calls for this destination. Specify
this value as an even number of hexadecimal digits. The field is inserted in
outgoing call packets following facilities generated from window or packet size
negotiation or reverse charging. The facilities length byte is calculated
automatically and should not be coded here.

316 z/OS V1R4.0 CS: IP Configuration Reference

Examples
The following example shows the proper placement of the OPTIONS statements
when using both LINK and ALTLINK statements.
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse
*

Usage notes
v The OPTIONS statements must follow the LINK or ALTLINK statements to which

they apply.

v Negotiation takes place on outgoing calls if the window size or packet size on the
OPTIONS statement is different from the network defaults coded in the LINK
statement.

v The max_packet_size, also called the maximum transmission unit (MTU), coded
in the BUFFERS statement must be large enough to hold the largest IP
datagram to be transmitted or received over the link. If the MTU is greater than
the X.25 packet size, an IP datagram is sent as an X.25 packet sequence. The
buffer size must be sufficient to hold the combined data of the sequence. The
MTU for DDN networks is 1007. Refer to RFC 877 for more information.
Information on how to obtain RFCs is included in z/OS Communications Server:
IP Configuration Guide.

Related topics
v “BUFFERS statement” on page 312

v “GATEWAY statement” on page 96

Chapter 9. X.25 NPSI 317

TIMERS statement
Use the TIMERS statement to specify the limits for various timers.

Syntax

�� TIMERS idle_disconnect min_open �

Parameters
idle_disconnect

Time, in seconds, after which an idle or inactive connection is cleared.

min_open
The minimum time, in seconds, a connection is held before it can be preempted
by a new destination.

Examples
The following statement clears inactive connections after 5 minutes and holds a
connection open for 1 minute.
* Idle Minimum
* Disconn. Open
* -------- -------
Timers 300 60
*

318 z/OS V1R4.0 CS: IP Configuration Reference

TRACE statement

Syntax
Use the TRACE statement to specify the trace and debug levels for the X.25 NPSI
server. The trace and debug functions are independent of one another. You can turn
tracing off and still request debug options.

�� TRACE OFF
DATA
CONTROL
EBCDIC
ASCII
IA5

debug_flags �

Parameters
OFF

Turns tracing off. If you specify OFF, data on the connection is not traced.

DATA
Traces the data packets on the connection and displays the full contents of the
IP datagrams. This is equivalent to the ASCII option.

CONTROL
Traces the data packets on the connection and displays only the X.25 control
packet.

EBCDIC
Traces the data packets on the connection and displays the data in EBCDIC.

ASCII
Traces the data packets on the connection and displays the data in ASCII.

IA5
Traces the data packets on the connection and displays the data in IA5.

debug_flags
A string of eight positional flags that control the display of debugging
information. Each flag has the value of 1 or 0, where 1 turns the flag on and 0
turns the flag off. The flags are:

Position Description
0 Display configuration records
1 Display commands
2 Trace DLC events
3 Trace VTAM events
4 Display control block addresses
5 Main loop dispatching
6 Reserved for internal use
7 Send information and warning messages to the

operator’s console

Examples
The following statement turns tracing off and sets two debug flags:
Value 1 in position 0

Displays configuration records
Value 1 in position 7

Sends information and warning messages to the operator’s console

Chapter 9. X.25 NPSI 319

* 01234567
Trace OFF 10000001
*

Related topics
Refer to z/OS Communications Server: IP Diagnosis for more information.

320 z/OS V1R4.0 CS: IP Configuration Reference

VTAM statement
The VTAM statement allows you to access the VTAM definition for the application.
The VTAM statement must precede the LINK statement.

Syntax

�� VTAM application_id password �

Parameters
application_id

The application identifier in the VTAM APPL definition. This is either the name
specified in the first 8 columns or the ACBNAME if one is defined.

password
The password for the VTAM application specified in the VTAM APPL definition.

Examples
This VTAM statement is correct for either of the VTAM APPL definitions that follow
it.
*--
VTAM TCPIPX25 TCPX25
*--

VTAM APPL definitions:
X25APPL2 APPL ACBNAME=TCPIPX25,

PRTCT=TCPX25,
AUTH=(ACQ),
PARSESS=YES,
EAS=20

TCPIPX25 APPL PRTCT=TCPX25,
AUTH=(ACQ),
PARSESS=YES,
EAS=20

Chapter 9. X.25 NPSI 321

322 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 10. NCPROUTE server

NCPROUTE cataloged procedure (NCPROUT)
//NCPROUT PROC MODULE=NCPROUTE,PARMS=’/’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZBNRJCL
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1994, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//NCPROUT EXEC PGM=&MODULE,
// PARM=’&PARMS’,
// REGION=4096K,TIME=1440
//*
//* STEPLIB contains libraries to be accessed by NCPROUT. Required
//* libraries are the TCPIP executable module library and the NCP
//* load library which contains a client’s NCP load module and its
//* Routing Information Table (RIT).
//*
//* The C runtime libraries should be in the system’s link list or add
//* them to the STEPLIB definition here. If you add them to STEPLIB,
//* they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//* DD DSN=ncp.v7r1.ncpload,DISP=SHR
//*
//* SYSPRINT contains output from NCPROUTE plus any enabled tracing.
//* It can be a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains abnormal run-time error messages from NCPROUTE.
//* It can be a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* NCPRPROF contains profile configuration information such as SNMP
//* agent specifications and the name of a GATEWAYS partitioned data
//* set (PDS). A data set member can be optionally created for each
//* NCP client and it can contain gateway definitions and NCPROUTE
//* server options such as tracing and broadcasting of route tables.
//*
//* The data set can be any sequential data set or a member of a
//* partitioned data set (PDS). For a sequential data set, specify
//* FREE=CLOSE parameter for dynamic allocation support.
//*
//NCPRPROF DD DSN=TCPIP.SEZAINST(EZBNRPRF),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on

© Copyright IBM Corp. 2000, 2002 323

//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//*
//* SERVICES points to an optional etc.services data set which can be
//* used to override well-known ports in the ETC.SERVICES.
//*
//*SERVICES DD DSN=TCPIP.SEZAINST(EZAEB02J),DISP=SHR
//*
//* MSNCPROU contains NCPROUTE’s optional message repository for NLS
//* support.
//*
//*MSNCPROU DD DSN=TCPIP.SEZAINST(EZBNRMSG),DISP=SHR,FREE=CLOSE

Specifying the NCPROUTE parameters
The system parameters required by NCPROUTE are passed by the PARM
parameter on the EXEC statement of the NCPROUTE cataloged procedure. Add
your parameters to PARMS=’/’ in the PROC statement of the NCPROUTE cataloged
procedure, making certain that:
v A slash (/) precedes the first parameter.
v Each parameter is separated by a blank.
v Mixed case is allowed for the parameters.
v Blanks and comments are supported in the gateways data set. Comments are

identified by a semicolon (;).

For example: //NCPROUT PROC MODULE=NCPROUT,PARMS=’/-s -t -t’

Note: These parameters are also valid when starting the NCPROUTE server with
the START command or when modifying NCPROUTE with the MODIFY
command. For more information about parameters used with the MODIFY
command, refer to z/OS Communications Server: IP System Administrator’s
Commands.

Parameters

-dp
Trace packets coming in and out of NCPROUTE for all NCP clients. The
packets are displayed in data format.

-h Include host routes in the RIP responses. Adjacent routers to an NCP client
must be able to receive host routes. Otherwise, NETWORK UNREACHABLE
problems occur.

-s Supply routing information for all NCP clients and override the supply settings in
the NCP clients’ gateways data sets.

-sl Supply local (directly connected) routes only for NCP clients. This option is
provided as an RIP output filter.

-sq
Suppress supplying routing information to all NCP clients and override the
supply settings in the NCP clients’ gateways data set.

-t Activate global tracing of actions for all NCP clients.

Figure 14. NCPROUTE cataloged procedure (NCPROUT)

324 z/OS V1R4.0 CS: IP Configuration Reference

-tq
Deactivate tracing at all levels. This parameter suppresses tracing for all NCP
clients and overrides the trace settings in the NCP clients gateway data set.

-t -t
Activate global tracing of packets for all NCP clients.

Note: There are no third or fourth level global tracing options like those in the
NCPROUTE gateways data set members. However, additional levels can be
specified using the MODIFY command for a specific NCP client. In any case,
the system will use the highest of all the settings.

For more information, refer to z/OS Communications Server: IP Configuration
Guide.

All traces go to a standard output referred to by the //SYSPRINT DD statement in
the NCPROUTE cataloged procedure. All abnormal run-time error messages go to
the data set specified by the //SYSERR DD statement in the NCPROUTE cataloged
procedure.

NCPROUTE profile data set
To build the NCPROUTE profile, create a data set and specify its name in the
//NCPRPROF DD statement in the NCPROUTE cataloged procedure. You can find
a sample in hlq.SEZAINST(EZBNRPRF). Include configuration statements in this
data set to define SNMP functions and to identify the NCPROUTE gateways data
set. For more information about configuring SNMP, refer to z/OS Communications
Server: IP Configuration Guide.

The following are statements that can be included in the NCPROUTE profile:

RIP_SUPPLY_CONTROL supply_control
Specifies one of the following options on a server-wide basis:

v RIP1—Unicast/Broadcast RIP Version 1 packets (Default)

v RIP2B—Unicast/Broadcast RIP Version 2 packets (Not Recommended)

v RIP2M—Unicast/Multicast/Broadcast RIP packets (Migration)

v RIP2—Unicast/Multicast RIP Version 2 packets

v NONE—Disables sending RIP packets

Notes:

1. If RIP2 is specified, the RIP Version 2 packets are multicast over
multicast-capable interfaces only. No RIP packets are sent over
multicast-incapable interfaces.

2. For RIP2M, the RIP Version 2 packets are multicast over multicast-capable
interfaces and RIP Version 1 packets over multicast-incapable interfaces.

3. For RIP2B, the RIP Version 2 packets are unicast or broadcast; this option
is not recommended since host route misinterpretations by adjacent routers
running RIP Version 1 can occur. For this reason, RIP2B may become
obsolete in a future release. For point-to-point interfaces that are
nonbroadcast and multicast-incapable, the RIP Version 2 packets are
unicast.

RIP RECEIVE CONTROL receive_control
Specifies one of the following options on a server-wide basis:

v RIP1—Receive RIP Version 1 packets only

Chapter 10. NCPROUTE server 325

v RIP2—Receive RIP Version 2 packets only

v ANY—Receive any RIP Version 1 and 2 packets (Default)

v NONE—Disables receiving RIP packets

Note: If the client NCP does not support variable subnetting, the default of ANY
is changed to RIP1.

RIP2_AUTHENTICATION_KEY authentication_key
Specifies a plain text password authentication_key containing up to 16
characters. The key is used on a router-wide basis and can contain mixed case
and blank characters. Single quotation marks (’) can be included as delimiters
to include leading and trailing blanks. The key will be used to authenticate RIP
Version 2 packets and be included in the RIP updates for authentication by
adjacent routers running RIP Version 2. For maximum security, set
RIP_SUPPLY_CONTROL and RIP RECEIVE CONTROL to RIP2. This will
discard RIP1 and unauthenticated RIP2 packets. A blank key indicates that
authentication is disabled. Following are examples of authentication passwords:
my password (no leading or trailing blanks)
’ my password ’ (leading and trailing blanks)
’’abc’’ (single quotes part of password)
’ ’ (5-character blanks)

SNMP_AGENT host_name
Specifies the host name or IP address of the host running an SNMP daemon.
Only one NCPROUTE server can use a particular SNMP agent at a time.

SNMP_COMMUNITY community_name
Specifies a community name that SNMP applications must use to access data
that the agent manages. Protect this information accordingly.

GATEWAY_PDS dsname
Specifies the optional partitioned data set that contains GATEWAY information
for each client NCP. Quotation marks are not needed when specifying dsname.
One member for each NCP client of this data set must be configured to match
the NCP NEWNAME parameter with the P suffix, which is the same as the
NCP’s RIT member name. Refer to information on configuring NCPROUTE
gateways in z/OS Communications Server: IP Configuration Guide for additional
information about defining the statements necessary for the members of this
data set.

NCPROUTE gateways statements

Syntax rules
v You can specify multiple GATEWAY statements.

v Keywords can be specified in mixed case.

v Blanks and comments are supported in the gateways data set. Comments are
identified by a semicolon in column 1.

v GATEWAY statements must start in column 1.

v There should be no sequence numbers in the data set.

The syntax for the gateway statement is:

�� net
host
active

name1 gateway name2 metric value gateway options �

326 z/OS V1R4.0 CS: IP Configuration Reference

gateway options:

passive
external
active

mask subnetmask

Parameters

net
Indicates that the route goes to a network.

host
Indicates that the route goes to a specific host.

active
Indicates that the route to the gateway will be treated as a network interface.

name1
Can be either a symbolic name or the IP address of the destination network or
host. name1 must be specified as active if this is for an active gateway.

gateway
The parameters that follow this keyword identify the gateway or router for this
destination.

name2
Can be either a symbolic name or the IP address of the gateway or router for
this destination.

metric
The value that follows this keyword is the hop count to the destination.

value
Indicates the hop count to this destination. This number is an integer from 1 to
15, where 15 indicates that the network cannot be reached.

passive
A passive gateway does not exchange routing information. Information about
the passive gateway is maintained in the local routing tables indefinitely and is
only local to this NCPROUTE server. Passive gateway entries for indirect routes
are not included in any routing information that is transmitted. Directly
connected passive routes are included.

external
Indicates that entries for this destination should never be added to the routing
table. The NCPROUTE server discards any routes for this destination that it
receives from other routers. Only the destination field is significant; the gateway
and metric fields are ignored.

active
Indicates that the router is treated as a network interface. An active gateway is
a router that is running RIP, but can only be reached through a network that
does not allow link-level broadcasting or multicasting and is not point-to-point.

mask
A constant. The value that follows this keyword is the subnet mask for the
route.

subnetmask
A bit mask (expressed in dotted-decimal form) defining the subnetwork mask for
a network route. The bits must be contiguous in the network portion of the
subnetmask. If the subnetmask is not specified, NCPROUTE will default the

Chapter 10. NCPROUTE server 327

subnetwork mask to an interface subnetwork mask that matches the route’s
network. If there is no interface match, then the network class mask for the
route is used.

The syntax for the options statement is:

�� 1
no

OPTIONS default.router yes
on

supply off
default.route
hosts
locals

0
trace.level 1

2
3
4

gateway ip_addr block
noreceive
none

interface name ip_addr interface options

�

interface options:

block destination fmask mask
forward destination fmask mask
forward.cond destination fmask mask
metric
noforward destination fmask mask
receive destination fmask mask
receive.cond destination fmask mask
noreceive destination fmask mask
none
passive
ripon
ripoff

off
supply on
key authentication_key
nokey
supply.control supply_control
receive.control rec._control

Parameters

default.router
Enables the default router. When this option is specified, NCPROUTE adds a
default route to its routing information and propagates it over all local interfaces.
If the adjacent routers add the default route to their routing tables, NCPROUTE
will receive all unknown packets from them and funnel them to a destination
router, provided that a default route is defined. If this option is used, it is
recommended that a default route to a destination router be defined on an
IPROUTE statement in NCP generation definition or in the NCPROUTE
gateways data set. Refer to z/OS Communications Server: IP Configuration
Guide.

328 z/OS V1R4.0 CS: IP Configuration Reference

yes This is the default router.

no This is not the default router.

interface
A constant. The parameters name and ipaddr follow this keyword.
name Specifies the name of the interface according to NCP clients-NCP

generation. A specification of an asterisk (*) can only be used with the
NONE parameter option to indicate all interface names.

ipaddr Specifies the Internet address of the interface associated with the
interface name. A specification of an asterisk (*) can only be used with
the NONE parameter option to indicate all Internet addresses of the
interfaces.

noreceive (or block)
If an interface option, specifies that the destination route in the received
RIP packets for this interface are to be ignored. If a gateway option,
specifies that routing table broadcasts from this gateway are to be
ignored. This option is provided as an RIP input filter.

destination
Specifies that the destination route is in network, subnetwork, or host
format. A specification of an asterisk (*) indicates that all destination
routes are to be used with the noforward and noreceive options. This
serves as a blackhole filter option which can be used to filter out all
routes RIP packets over an interface and allow routes with specified
forward and receive filters to be used.

fmask A constant. The value that follows this keyword is the filter mask for the
route.

mask Optional bit mask (expressed in dotted-decimal form) defining the
routing filter mask associated with the destination route. This mask is to
be used as an optional parameter to the forward and receive
parameters to filter in and filter out multiple routes matching the mask of
the destination route. This option can be used to define a single RIP
input or output filter representing multiple routes as opposed to defining
individual RIP input or output filters for each route.

forward
Specifies that the destination route in the RIP responses is to be
forwarded to this interface only. This option is provided as an RIP
output filter and can be used for inbound and outbound traffic splitting.

forward.cond
Specifies that the destination route is to be forwarded to this interface
only when the interface is active. In case of an interface outage,
NCPROUTE will include the destination route in the RIP responses to
other active interfaces. After recovery of an interface outage,
NCPROUTE will resume to sending the destination route over this
interface only. This option is provided as an RIP output filter and can be
used for inbound and outbound traffic splitting.

metric The metric associated with the cost of use for the link. When sending
routing information over this link, NCPROUTE will use the new_metric
value in the routing metrics for the routes that are advertised over this
link. If this option is not used, the metric value that is used will be the
value specified in the IPLOCAL statement of NCP generation definition.
This option allows you to override the genned metric. If a metric of 1 is
specified, a metric value of 1 will be used; this is the default cost for a
directlyconnected network. If a metric of 2 is specified, a metric value of
2 will be used. As the metric gets higher, the routes sent over this link

Chapter 10. NCPROUTE server 329

become less preferred. The range is from 1 to 15. A metric of 1 is
usually coded so that the routes sent over the interface will be the most
preferred.

noforward
Specifies that the destination route in the RIP responses is not to be
forwarded. This option is provided as an RIP output filter.

none If an interface option, specifies that any RIP filter options for this
interface are to be turned off or reset. If asterisks (*) are specified for
interface name and ipaddr, all options will be cleared from all interfaces.
If a gateway option, specifies that any RIP filter options for the gateway
are to be turned off or reset. If an asterisk (*) is specified for the
Internet addresses, all gateway entries with gateway options will be
cleared.

receive
Specifies that the destination route in the RIP responses is to be
received over this interface only. This option is provided as an RIP input
filter.

receive.cond
Specifies that the destination route is to be received over this interface
only when it is active. In case of an interface outage, NCPROUTE will
allow the destination route in the RIP responses to be received over
other active interfaces. This option is provided as an RIP input filter and
can be used for inbound and outbound traffic splitting.

ripoff (or passive)
Specifies that RIP is disabled for this interface. NCPROUTE will not
supply nor receive RIP updates.

ripon Specifies that RIP is enabled for this interface. RIP responses will be
allowed to be sent or received over this interface.

supply
Defines the supply routing setting. The default is on. This option is provided as
an RIP input and output filter.

on Supply routing information for this NCP client or interface.

off Suppresses supply of routing information for this NCP client or
interface. NCPROUTE will continue to receive routing updates.

default.route
Supply the default route only for this NCP client. When this option is
specified, yes is internally set for the default.router option. This option is
provided as an RIP output filter.

hosts Supply routing information with host routes added.

locals Supply only local (directly connected) routes.

trace.level
Specifies the trace level to be used for this NCP client. The default is 0.

0 Do not allow tracing.

1 Activates tracing of actions by the NCPROUTE server.

2 Activates tracing of actions and packets sent or received.

3 Activates tracing of actions, packets sent or received, and packet
history. Circular trace buffers are used for each interface to record the
history of all packets traced and are displayed whenever an interface
goes inactive.

330 z/OS V1R4.0 CS: IP Configuration Reference

4 Activates tracing of actions, packets sent or received, packet history,
and packet contents. The packet contents display the RIP network
routing information.

key
Specifies a plain text password authentication key containing up to 16
characters to be used for this interface and that is used to override the
server-wide setting defined in the NCPROUTE profile. It can contain mixed case
and blank characters. Single quotation marks (’) can be included as delimiters
to include leading and trailing blanks. A null or blank key indicates that the
server-wide key will be used as the default. For examples on authentication
passwords, see the RIP2_AUTHENTICATION_KEY statement in “NCPROUTE
profile data set” on page 325.

nokey
Specifies that authentication is disabled for this interface even though the
server-wide specification from the RouteD profile is defined.

supply.control
Specifies that the RIP supply_control is to be used for this client or interface
and is used to override the NCPROUTE profile setting.

supply_control
Specifies one of the RIP supply control options. The default is set to the
NCPROUTE profile setting. Valid options are RIP1, RIP2B, RIP2M, RIP2, and
NONE.

receive.control
Specifies that the RIP receive_control is to be used for this client or interface
and is used to override the NCPROUTE profile setting.

rec_control
Specifies one of the RIP receive control options. The default is set to the
NCPROUTE profile setting. Valid options are RIP1, RIP2, ANY, and NONE.

gateway
A constant. The value that follows this keyword identifies the gateway or router.

ipaddr
If an interface option, specifies the Internet address of the interface associated
with the interface name. If a gateway option, specifies the gateway address of
the adjacent router. A specification of an asterisk (*) applies to all gateway
addresses.

none
If an interface option, specifies that any RIP filter options for this interface are to
be turned off or reset. If a gateway option, specifies that any RIP filter options
for this gateway are to be turned off or reset. A specification of an asterisk (*)
indicates all interface Internet addresses or all gateway addresses.

noreceive (or block)
If an interface option, specifies that the destination route in the RIP responses
propagates is not to be received over this interface only. If a gateway option,
specifies that no RIP packets are to be received from the specified gateway
address of the adjacent router. This option provides an RIP input filter.

Note: All traces will go to a standard output referred to in the //SYSPRINT DD
statement in the NCPROUTE cataloged procedure.

The options can be specified in any order. For example:

Chapter 10. NCPROUTE server 331

options default.router yes supply on trace.level 2
options interface ETH1 10.1.1.1 passive
options interface ETH1 10.1.1.1 supply off
options interface TR1 9.67.112.25 metric 2
options interface TR1 9.67.112.25 forward 11.0.0.0
options interface TR1 9.67.112.25 forward.cond 12.0.0.0
options interface TR1 9.67.112.25 block 9.1.0.0
options interface TR1 9.67.112.25 supply.control rip1
options interface ETH1 10.1.1.1 receive.control rip2
options interface ETH2 9.1.1.1 forward 9.2.0.0 fmask 255.255.0.0
options interface ETH1 10.1.1.1 none
options interface * * none
options gateway 9.67.112.77 noreceive
options gateway 9.67.112.77 none
options gateway * none

Table 15 shows how the selected parameters affect the advertising algorithm for
routes in RIP responses to adjacent routers. The parameters can be used as
router-wide RIP output filters. To configure interface-wide RIP input and output
filters, see the OPTIONS statement in the NCPROUTE Gateways configuration data
set.

Table 15. NCPRoute options

Option Host routes Network
routes

Advertise as
default
router

Local routes Unreachable
routes

default.router Yes Yes Yes Yes Yes

Supply
default.route

Not applicable Not applicable Yes Not applicable Yes

Supply hosts Yes Yes Not applicable Yes Yes

Supply locals Not applicable Not applicable Not applicable Yes Yes

Supply on Not applicable Yes Not applicable Yes Yes

Supply off Not applicable Not applicable Not applicable Not applicable Not
applicable

None Not applicable Yes Not applicable Yes Yes

332 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 11. TN3270 Telnet Server

Overview of Telnet profile statements
This chapter describes the Telnet parameter and Telnet mapping statements.

These statements define the characteristics of connections, which host VTAM
applications can be accessed, what LU name represents the client, and other
functions. For a detailed discussion of Telnet functions, refer to z/OS
Communications Server: IP Configuration Guide.

TELNETGLOBALS statements
The TELNETGLOBALS block is an optional statement block that contains Telnet
parameter statements that apply to all connections on all TN3270 ports. If more
than one TELNETGLOBALS block is coded in the profile, only the last reference is
used. Use the following format in the PROFILE.TCPIP:

��
TELNETGLOBALS ENDTELNETGLOBALS

Telnet parameter statements

�

TELNETPARMS statements
The TELNETPARMS block is a required statement block that contains Telnet
parameter statements that apply to all connections of the TN3270 port defined in
the block. Use the following format in the PROFILE.TCPIP:

�� TELNETPARMS ENDTELNETPARMS
Telnet parameter statements

�

PARMSGROUP statements
The PARMSGROUP Object statement is an optional statement that applies to
connections which have the PARMSGROUP mapped by either their client identifiers
or a matching LUMAP statement. Use the following format in the PROFILE.TCPIP:

��
PARMSGROUP parmsgroup_name ENDPARMSGROUP

parameter statements

�

BEGINVTAM block
The BEGINVTAM block is a required block that contains Telnet mapping statements
used to map objects to clients based on Client Identifier. Use the following format in
the PROFILE.TCPIP:

�� BEGINVTAM ENDVTAM
Telnet mapping statements

�

© Copyright IBM Corp. 2000, 2002 333

|
|
|
|

|
|
|

|
|
|

Telnet parameter statements in the TCP/IP profile
Table 16 provides a list of Telnet parameter statements and the page location to see
for more information.

The letter Y (with note references in parentheses) in a column indicates that the
parameter can be coded in the indicated block. For example, CLIENTAUTH can be
coded in TELNETGLOBALS, TELNETPARMS, or PARMSGROUP (affecting all
connections on all ports, all connections on one port, or a subset of connections on
one port, respectively). Parameters that can be coded in BEGINVTAM are set as if
they were coded in TELNETPARMS. If a statement is coded in BEGINVTAM and
TELNETPARMS, the TELNETPARMS value is used. For these parameters, the
preferred coding location is TELNETPARMS.

Table 16. Telnet parameter statements

Statement TELNET-

GLOBALS

TELNET-

PARMS

PARMS-

GROUP

BEGIN-

VTAM

See
page

BINARYLINEMODE
NOBINARYLINEMODE

Y Y Y (1) 337

CLIENTAUTH Y Y Y (2) 338

CODEPAGE Y Y Y (1) 339

CONNTYPE Y Y (2) 340

CRLLDAPSERVER Y 341

DBCSTRACE
NODBCSTRACE

Y Y 342

DBCSTRANSFORM
NODBSCTRANSFORM

Y Y (3) 343

DEBUG Y Y Y 344

DROPASSOCPRINTER
NODROPASSOCPRINTER

Y Y Y 346

ENCRYPTION Y Y Y (2) 348

EXPRESSLOGON
NOEXPRESSLOGON

Y Y Y (3) 349

FULLDATATRACE
NOFULLDATATRACE

Y Y Y 350

INACTIVE Y Y Y 351

KEEPINACTIVE Y Y Y 352

KEEPLU Y Y Y 353

KEYRING Y Y 354

LUSSESSIONPEND
NOLUSSESSIONPEND

Y Y Y Y 355

MAXRECEIVE Y Y Y 356

MAXREQSESS Y Y Y 357

MAXVTAMSENDQ Y Y Y 358

MSG07
NOMSG07

Y Y Y (1) Y 359

OLDSOLICITOR
NOOLDSOLICITOR

Y Y Y 360

334 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|

||

||

|

|

|

|

|

|

|

|
|

|
|
|||||

||||||

||||||

||||||

||||||

|
|
|||||

|
|
|||||

||||||

|
|
|||||

||||||

|
|
|||||

|
|
|||||

||||||

||||||

||||||

||||||

|
|
|||||

||||||

||||||

||||||

|
|
|||||

|
|
|||||

Table 16. Telnet parameter statements (continued)

Statement TELNET-

GLOBALS

TELNET-

PARMS

PARMS-

GROUP

BEGIN-

VTAM

See
page

PORT/SECUREPORT Y 361

PRTINACTIVE Y Y Y 362

SCANINTERVAL
TIMEMARK

Y Y Y 363

SECUREPORT Y 364

SEQUENTIALLU
NOSEQUENTIALLU

Y Y Y 365

SGA
NoSGA(DISABLESGA)

Y Y Y (3) 366

SIMCLIENTLU
NOSIMCLIENTLU

Y Y Y (3) 367

SINGLEATTN
NOSINGLEATTN

Y Y Y 368

SMFINIT
SMFTERM

Y Y Y 369

SNAEXT
NOSNAEXT

Y Y Y 370

SSLTIMEOUT Y Y Y (2) 371

TELNETDEVICE Y Y Y Y 372

TESTMODE Y 374

TIMEMARK Y Y Y 375

TKOSPECLU
TKOSPECLURECON

Y Y Y 376

TN3270E
NOTN3270E

Y Y Y (3) 377

WLMCLUSTERNAME Y 378

Notes:

1. Changing or setting the function at LU assignment time using the LUMAP-PMAP
statement might not provide the expected results. Use PARMSMAP for consistent
results.

2. The statement definition is used before the user ID Client Identifier is determined and
before LU assignment is performed. To use the statement in PARMSGROUP, the group
must be mapped using PARMSMAP to any Client Identifier other than user ID or user
group.

3. The function is negotiated with the client before LU assignment; therefore, LUMAP
PMAP has no affect on these statements.

General rules for parameter statements
v The value of parameter statements used by a connection is determined by the

parameter hierarchy. All parameter values are initially set to Telnet default values
and can then be modified using the TELNETGLOBALS block, TELNETPARMS
block, or PARMSGROUP object. TELNETGLOBALS parameters affect all
connections on all ports, TELNETPARMS parameters affect all connections on a
single port, and PARMSGROUP parameters affect a subset of connections within
a single port.

Chapter 11. TN3270 Telnet Server 335

|

||

|

|

|

|

|

|

|

|
|

||||||

||||||

|
|
|||||

||||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

||||||

||||||

||||||

||||||

|
|
|||||

|
|
|||||

||||||

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

v A TELNETPARMS block and a BEGINVTAM block are required for each port.

v Error messages are issued for incorrect statements. A DEBUG message displays
the profile line number of the statement in error and other pertinent information.
Error messages can be turned off by coding DEBUG OFF or DEBUG SUMMARY
in TELNETGLOBALS.

v Names are not case sensitive and are translated to upper case (except if HFS
file KEYRING is specified; this HFS data set name is left in its original case).

v If a duplicate TELNETGLOBALS, TELNETPARMS for a port, BEGINVTAM for a
port, or PARMSGROUP name within a BEGINVTAM is specified, the last
statement block is used.

v If duplicate statements appear in TELNETGLOBALS, TELNETPARMS,
PARMSGROUP, or BEGINVTAM blocks, Telnet uses the last valid statement that
was specified. However, if the REPLACEMENT statement is not valid, the
statement being replaced is REMOVED and the REPLACEMENT does not occur.
The only exception to the last one wins rule is Client Identifiers defined in their
respective group statement. For details, see “General rules for BEGINVTAM
statements” on page 379.

v If no statements are entered between TELNETPARMS and ENDTELNETPARMS,
Telnet uses the default values for each of the TELNETPARMS statements.

v For update capability and procedures, refer to z/OS Communications Server: IP
Configuration Guide for information about managing the Telnet server.

Rules for security parameters
The following parameter statements are valid on a secure port only:

v CRLLDAPSERVER

v CLIENTAUTH

v KEYRING

v ENCRYPTION

v CONNTYPE

If any of these parameters are coded on or sift down to a basic port, they are
handled as follows:

v Security parameters in the TELNETGLOBALS block that sift down to basic ports
are ignored and a DEBUG warning message is issued. To avoid the DEBUG
message, code the Security parameters in the TELNETPARMS block instead of
in the TELNETGLOBALS block.

v Security parameters in the TELNETPARMS block for a basic port cause the port
update to fail and a DEBUG error message is issued. It is assumed that the port
was meant to be secure because of the presence of Secure parameters. Either
specify Secureport or remove the Security parameters.

v Security parameters in the PARMSGROUP Object statement mapped in a basic
port are ignored and a DEBUG warning message is issued. To avoid the DEBUG
messages, remove the Security parameters. If the BEGINVTAM block supports
multiple ports (basic and secure), duplicate the BEGINVTAM block into multiple
blocks and remove the security parameters from the basic port.

336 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|

BINARYLINEMODE statements
The BINARYLINEMODE parameter statement is used to prohibit translation of
characters between EBCDIC and ASCII during linemode sessions. If
NOBINARYLINEMODE is specified, standard linemode translation is implemented.

Syntax

��
NOBINARYLINEMODE
BINARYLINEMODE

�

Parameters
This statement has no parameters.

Usage notes
v NOBINARYLINEMODE is the Telnet default.

v BINARYLINEMODE and NOBINARYLINEMODE can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “General rules for
parameter statements” on page 335 for more information about the hierarchy of
parameter values.

Chapter 11. TN3270 Telnet Server 337

|
|
|

|

|
|
|
|

CLIENTAUTH statement
The CLIENTAUTH parameter statement allows you to specify whether or not client
authentication is used for the secure Telnet port.

Syntax

��
CLIENTAUTH SSLCERT

SAFCERT
NONE

�

Parameters
SSLCERT

Specifies that the SSL handshake process authenticates the client certificate as
well as the server certificate. This check verifies that the client has received a
certificate from a trusted certificate authority (CA).

SAFCERT
Specifies that the SSL handshake process authenticates the client certificate.
Prior to completing connection negotiation, additional access control is provided
through the installation’s SAF compliant security product (for example, RACF)
as follows:

v Verifies that the client certificate has an associated user ID defined to the
security product. The certificate must first be defined to the security product
to obtain this validation. For more information about adding certificates to
RACF, refer to the description of the RACDCERT command in the z/OS
Security Server RACF Command Language Reference.

v For security products that support the ’SERVAUTH’ class, installations can
also obtain a more granular level of access control. If the installation has
activated the SERVAUTH class and provided a profile for the port in the
’SERVAUTH’ class, only users specified in the profile are allowed to connect
into the port. Refer to the z/OS Communications Server: IP Configuration
Guide for more information. The security product profile name is specified in
the following format:
EZB.TN3270.sysname.tcpname.PORTnnnnn

NONE
No client authentication checks are to be done.

Usage notes
v CLIENTAUTH NONE is the Telnet default.

v CLIENTUATH can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v CLIENTAUTH is valid only with a secure port. See “Rules for security
parameters” on page 336 for details.

v If CLIENTAUTH is specified but is not followed by SSLCERT, SAFCERT or
NONE, an EZZ0401I warning message is issued, and SAFCERT is assumed for
maximum protection.

338 z/OS V1R4.0 CS: IP Configuration Reference

|

CODEPAGE statement
The CODEPAGE parameter statement lets you specify ASCII-EBCDIC translation
tables for linemode connections.

Syntax

��
CODEPAGE TNSTD TNSTD

ascii ebcdic

�

Parameters
ascii

The ASCII code page name. If TNSTD is specified, the TELNET-created
translation table is used.

ebcdic
The EBCDIC code page name. If TNSTD is specified, the TELNET-created
translation table is used.

Usage notes
v The Telnet default is to use the ISO8859–1 code page for ASCII and the

IBM-1047 code page for EBCDIC.

v CODEPAGE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v If there is an error in the syntax, a default code page of ISO8859-1 is used for
ASCII and the language environment code page taken from locale information is
used as the EBCDIC code page. If the EBCDIC code page is in error, a default
code page of IBM-1047 is used for EBCDIC.

v If TNSTD is specified as either parameter, TNSTD is used for both. The Telnet
table is based on the ISO08859-1/IBM-1047 translation tables with the following
exceptions:

EBCDIC ASCII
x’0D25’ -----> x’0D0085’ using ISO8859-1/IBM-1047
x’0D25’ -----> x’0D0A’ using internal tables
x’15’ <---- x’0A’ using ISO8859-1/IBM-1047
x’25’ <---- x’0A’ using internal tables

Chapter 11. TN3270 Telnet Server 339

|
|

|
|
|

CONNTYPE statement
The CONNTYPE parameter statement allows for the selection of different
connection types.

Syntax

��
CONNTYPE SECURE

NEGTSECURE
BASIC
ANY
NONE

�

Parameters
SECURE

Indicates that the traditional SSL handshake is used to start the SSL
connection. If the client does not start the handshake within the time specified
by SSLTIMEOUT, an attempt is made to do a negotiated SSL handshake. If the
client rejects the negotiated attempt, the connection is closed.

NEGTSECURE
Indicates that a TN3270 negotiation with the client determines if the client is
willing to enter into a secure connection. If the client agrees, SSL protocols are
used for all subsequent communication. If the client does not agree, the
connection is closed.

BASIC
Indicates that a basic (non-SSL) connection is used.

ANY
Indicates that the client can connect as secure or basic. Telnet first tries a
standard SSL handshake. If the handshake times out, negotiated SSL (see
CONNTYPE NEGTSECURE) is attempted.

v If the client is willing to enter into a secure connection, SSL protocols are
used for all subsequent communication.

v If the client is not willing to enter into a secure connection, a basic
connection is used.

NONE
Indicates that any client connection request is rejected.

Usage notes
v The Telnet default for secure ports is CONNTYPE SECURE and for basic ports

is CONNTYPE BASIC.

v CONNTYPE can be coded in TELNETPARMS or PARMSGROUP. See “General
rules for parameter statements” on page 335 for parameter statements for more
information about the hierarchy of parameter values.

v CONNTYPE is valid only with a secure port. See “Rules for security parameters”
on page 336 for details.

340 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

CRLLDAPSERVER statement
The CRLLDAPSERVER parameter statement is used to specify the LDAP server to
be used for Telnet’s Certificate Revocation List (CRL) processing. CRL processing
using the LDAP server is done in conjunction with Telnet’s SSL client authentication
of client certificates. If the client’s certificate is found on the certificate revocation
list, the connection is closed. The anonymous user ID is used to connect to the
CRLLDAPSERVER.

Syntax

��
CRLLDAPSERVER server IP addr port_num ENDCRLLDAPSERVER

server name

�

Parameters
Server IP addr

The IP address of the CRL LDAP server.

Server name
The name of the CRL LDAP server.

Port_num
The port number of the CRL LDAP server.

Usage notes
v CRLLDAPSERVER can be coded only in TELNETGLOBALS.

v CRLLDAPSERVER is valid only with a secure port. See “Rules for security
parameters” on page 336 for details.

v If a secure port is active during a profile update, the CRLLDAPSERVER
parameters cannot change. If a change is attempted, an error message is issued
and the profile updates for the secure ports are rejected. To change
CRLLDAPSERVER parameters, all secure ports must be stopped first.

v If all SECUREPORTs are stopped when a profile update occurs, the
CRLLDAPSERVER is refreshed if a new SECUREPORT is activated.

Chapter 11. TN3270 Telnet Server 341

DBCSTRACE statements
The DBCSTRACE parameter statement activates additional, detailed tracing within
the DBCS load module. The trace records are written to the SYSPRINT and
TNDBCSER file. If NODBCSTRACE is specified, detailed trace records are not
written.

Syntax

��
NODBCSTRACE
DBCSTRACE

�

Parameters
This statement has no parameters.

Usage notes
v NODBCSTRACE is the Telnet default.

v DBCSTRACE and NODBCSTRACE can be coded in TELNETPARMS or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

342 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|
|
|

DBCSTRANSFORM statements
The DBCSTRANSFORM parameter statement is used to configure the Telnet server
linemode type to support 3270 SBCS or DBCS ASCII-EBCDIC transformations.
DBCSTRANSFORM specifies that the Telnet server should load the 3270 DBCS
transform module, TNDBCSTM, at initialization. If NODBCSTRANSFORM is
specified, standard linemode translation is done.

Syntax

��
NODBCSTRANSFORM
DBCSTRANSFORM

�

Parameters
This statement has no parameters.

Usage notes
v NODBCSTRANSFORM is the Telnet default.

v DBCSTRANSFORM and NODBCSTRANSFORM can be coded in
TELNETPARMS or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

v The TNDBCSTM module must be in a data set in the system search list. You can
find the module in the installation data set, hlq.SEZALOAD. If you are using the
3270 DBCS transform mode, the TCP/IP address space can require additional
virtual storage.

v Transform is supported only on a single port. To use transform on a different port,
the port using transform must be stopped using VARY TCPIP,,T,STOP. Then a
VARY TCPIP,,OBEYFILE can be used to process a new Telnet profile, which
defines transform support on another port.

v If DBCSTRANSFORM is coded in multiple parameter blocks, the last port
identified as DBCSTRANSFORM will be the DBCSTRANSFORM port.

v The maximum number of transform connections is 250.

Chapter 11. TN3270 Telnet Server 343

|
|
|
|
|

|

|
|
|
|

|

|
|

|

DEBUG statement
The DEBUG parameter statement provides different levels of debug information for
Telnet problems or tracking. Without this statement, only certain connection drop
reasons are reported to the operator’s console.

Syntax

��
CONSOLE

DEBUG EXCEPTION
JOBLOG

DEBUG OFF
JOBLOG

DEBUG SUMmary
DETail CONSOLE
TRACE

�

Parameters
OFF

When OFF is specified, no debug records are issued.

EXCEPTION
When EXCEPTION is specified, no debug records are issued, except for
connection drops due to timeouts or errors.

SUMMARY
When SUMMARY is specified, a summary debug message (EZZ6034I) is
issued indicating major state changes.

DETAIL
When DETAIL is specified, a detail debug message (EZZ6035I) is written
whenever a reportable error is detected in Telnet. Summary messages are also
written when DETAIL is specified.

TRACE
When TRACE is specified, data to and from the client and to and from VTAM
for one connection is displayed by debug message EZZ6035I. Detail and
summary messages are also written when Trace is specified.

JOBLOG
When JOBLOG is specified, the debug messages are routed to the joblog
(routing code 11) instead of the console.

CONSOLE
When CONSOLE is specified, the debug messages are routed to the master
console (routing code 2) and to the teleprocessing console (routing code 8) in
addition to being sent to the joblog.

Usage notes
v DEBUG EXCEPTION is the Telnet default.

v DEBUG can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v When TRACE is requested, data records are issued for only one client to prevent
message flooding. After the option is requested, the next connection that maps to
the debug trace parameter is the connection traced. PARMSGROUP can be used
to very accurately select a client.

344 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|

|
|
|

|
|

|
|
|

|

v Use the V TCPIP,,T,DEBUG,OFF command to turn off all active Debug reporting.
This also turns off the reporting of connection drops due to timeouts or errors.

Chapter 11. TN3270 Telnet Server 345

|
|

DROPASSOCPRINTER statement
The DROPASSOCPRINTER parameter statement controls whether or not the
associated printer is dropped when the terminal connection is dropped.

Syntax

��
NODROPASSOCPRINTER
DROPASSOCPRINTER

�

Parameters
This statement has no parameters.

Usage notes
v NODROPASSOCPRINTER is the Telnet default.

v DROPASSOCPRINTER and NODROPASSOCPRINTER can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “General rules for
parameter statements” on page 335 for more information about the hierarchy of
parameter values.

346 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|||||||||||||||

|

|
|

|
|

|
|
|
|

DISABLESGA statement
See the “SGA statements” on page 366.

Chapter 11. TN3270 Telnet Server 347

|

ENCRYPTION statement
The ENCRYPTION parameter statement allows the selection of a subset of the
supported algorithms to use for this port. Each z/OS system level supports a
specific set of encryption algorithms.

Syntax

��

1ENCRYPTion cipher_type ENDENCRYPTion
DEFAULT

�

Parameters
cipher_type

The encryption type to use for this port. The order in which the encryption types
are specified is significant. The server controls which of the available ciphers
are used for data encryption by specifying the desired ciphers in order of
preference. The actual cipher used is the best match between what the server
requests and what the client supports. If the client does not support any of the
ciphers the server requests, the SSL handshake fails and the connection is
closed.

DEFAULT
Indicates that all encryption types available for the level of z/OS system SSL
installed should be used. Default provides a way to override specific methods
chosen in TELNETGLOBALS or TELNETPARMS.

Usage notes
v The Telnet server default is to support all encryption methods available for the

level of z/OS system SSL installed.

v ENCRYPTION can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v The ENCRYPTION/ENDENCRYPTION block applies only to a Telnet
SECUREPORT that serves SSL V3/TLS and later clients.

v The ciphers that are available for use depend on the level of SSL that is
installed. Following are the cipher types that can be specified:

Cipher_Type Telnet Abbreviation
-------------- --------------------
SSL_NULL_Null NN
SSL_NULL_MD5 NM
SSL_NULL_SHA NS
SSL_RC4_MD5_EX 4E
SSL_RC4_MD5 4M
SSL_RC4_SHA 4S
SSL_RC2_MD5_EX 2E
SSL_DES_SHA DS
SSL_3DES_SHA 3S

348 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

EXPRESSLOGON statements
The EXPRESSLOGON parameter statement allows a user at a workstation, with a
TN3270 client and a X.509 certificate, to log on to an SNA application without
entering a user ID or password. If NOEXPRESSLOGON is specified,
EXPRESSLOGON function is not available to the client.

Syntax

��
NOEXPRESSLOGON
EXPRESSLOGON

�

Parameters
This statement has no parameters.

Usage notes
v NOEXPRESSLOGON is the Telnet default.

v EXPRESSLOGON and NOEXPRESSLOGON can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “General rules for
parameter statements” on page 335 for more information about the hierarchy of
parameter values.

v The client must support the new environment Telnet option as defined in RFC
1572.

v The connection must be secure with CLIENTAUTH SAFCERT.

Chapter 11. TN3270 Telnet Server 349

|

FULLDATATRACE statements
The FULLDATATRACE parameter statement specifies that all data to and from the
client and all data to and from VTAM is completely traced when the CTRACE,
TELNET OPTION, is chosen. If NOFULLDATATRACE is specified, the first 64 bytes
of data are traced.

Syntax

��
NOFULLDATATRACE
FULLDATATRACE

�

Parameters
This statement has no parameters.

Usage notes
v NOFULLDATATRACE is the Telnet default.

v FULLDATATRACE and NOFULLDATATRACE can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “General rules for
parameter statements” on page 335 for more information about the hierarchy of
parameter values.

350 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|

INACTIVE statement
The INACTIVE parameter statement defines the terminal SNA session inactivity
timeout. A connection that has no client-VTAM session activity for the specified time
is dropped.

Syntax

��
INACTIVE 0
INACTIVE sec

�

Parameters
0 An INACTIVE timeout disables the inactivity timeout.

sec
Sets the inactivity timeout to the specified number of seconds. When a
connection has had no session activity for the specified number of seconds, it is
closed. This number must be an integer in the range 0–99 999 999.

Usage notes
v INACTIVE 0 is the Telnet default.

v INACTIVE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v The INACTIVE statement applies to a KEEPOPEN connection only when an
SNA session, with the VTAM application, is active.

v Telnet uses one timer for INACTIVE, PRTINACTIVE, and KEEPINACTIVE. Refer
to z/OS Communications Server: IP Configuration Guide for details.

Chapter 11. TN3270 Telnet Server 351

|
|
|

|

|
|
|

|

KEEPINACTIVE statement
The KEEPINACTIVE parameter statement defines the session setup inactivity
timeout. A KEEPOPEN connection with no active SNA session that has no
client-VTAM activity for the specified time is dropped.

Syntax

��
KEEPINACTIVE 0
KEEPINACTIVE sec

�

Parameters
0 A KEEPINACTIVE timeout of 0 disables the inactivity timeout.

sec
Sets the inactivity timeout to the specified number of seconds. When a
KEEPOPEN connection has had no session for the specified number of
seconds, it is closed. This number must be an integer in the range 0 to
99 999 999.

Usage notes
v KEEPINACTIVE 0 is the Telnet default.

v KEEPINACTIVE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v The KEEPINACTIVE statement applies to a KEEPOPEN connection only when
the connection does not have an active SNA session.

v Telnet uses one timer for INACTIVE, PRTINACTIVE, and KEEPINACTIVE. Refer
to z/OS Communications Server: IP Configuration Guide for details.

352 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|

KEEPLU statements
The KEEPLU parameter statement keeps the LU reserved for the Client Identifier
when the LU is unassigned from the connection. The first reconnection request from
the same Client Identifier mimics an end user requesting a specific connection with
the kept LU name.

Syntax

��
KEEPLU 0
KEEPLU sec

�

Parameters
0 A KEEPLU timeout of 0 disables the KEEPLU function.

sec
Sets the KEEPLU timeout to the specified number of seconds. When the LU
has remained unassigned for the specified number of seconds, it becomes
generally available. This number must be an integer in the range 0 to
99 999 999.

Usage notes
v KEEPLU 0 is the Telnet default.

v KEEPLU can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v The KeepLU function cannot be performed for specific connection requests or
Associated Printer requests.

v If both KeepLU and SequentialLU are active, KEEPLU will be used.

Chapter 11. TN3270 Telnet Server 353

|
|
|
|
|

|

|||||||||||||||||||

|

|

||

|
|
|
|
|

|
|

|
|
|

|
|

|

KEYRING statement
The KEYRING parameter statement defines the keyring to be used by TN3270 SSL
processing. This keyring contains the server certificate and keys to be used by the
TN3270 server and any CA Certificates required to do client authentication checks.
If this statement is not coded, a secure port cannot be established.

Syntax

��
KEYRING HFS hfsdsname

MVS mvsdsname
SAF keyringname

�

Parameters
HFS hfsdsname

The HFS path and file name of the keyring file.

MVS mvsdsname
The fully qualified MVS data set name of the keyring data set.

SAF keyringname
The ring name specified when creating a keyring using the RACF ADDRING
function.

Usage notes
v KEYRING can be coded in TELNETGLOBALS or TELNETPARMS. See “General

rules for parameter statements” on page 335 for more information about the
hierarchy of parameter values.

v KEYRING is valid only with a secure port. See “Rules for security parameters” on
page 336 for details.

v All uses of KEYRING must specify the same data type and name. If coded in
TELNETGLOBALS, any TELNETPARMS KEYRING values must match. If they
do not, the port update is rejected. If KEYRING is not coded in
TELNETGLOBALS but is coded on several TELNETPARMS, the last
TELNETPARMS KEYRING value is assumed to be correct, and all other values
must match it.

v If a secure port is active during a profile update, the KEYRING name cannot
change. If a change is attempted, an error message is issued for this parameter
and the profile update for the related port is rejected. To change the KEYRING
name, all secure ports must first be stopped.

v If all SECUREPORTs are stopped when a profile update occurs, the KEYRING
file is refreshed when a new SECUREPORT is activated.

354 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|

LUSESSIONPEND statements
The LUSESSIONPEND parameter statement allows the server to redrive the
DEFAULTAPPL, USS, or Solicitor screen after LOGOFF of the current session. If
NOLUSESSIONPEND is specified, the Telnet server connection is dropped after
session LOGOFF.

Syntax

��
NOLUSESSIONPEND
LUSESSIONPEND

�

Parameters
This statement has no parameters.

Usage notes
v NOLUSESSIONPEND is the Telnet default.

v LUSESSIONPEND and NOLUSESSIONPEND can be coded in BEGINVTAM,
TELNETGLOBALS, TELNETPARMS, and PARMSGROUP. If coded in
BEGINVTAM, it is treated as if it were coded in TELNETPARMS. If coded in
BEGINVTAM and TELNETPARMS, the TELNETPARMS setting is used. See
“General rules for parameter statements” on page 335 for more information about
the hierarchy of parameter values.

v You can specify only LUSESSIONPEND or QUEUESESSION; they are mutually
exclusive. If both are specified, LUSESSIONPEND is used and a message is
issued during TCP/IP initialization.

Chapter 11. TN3270 Telnet Server 355

|

MAXRECEIVE statement
The MAXRECEIVE parameter statement limits the number of bytes received from a
client without an End of Record (EOR) being received. If the amount of data
received exceeds the limit, the connection is dropped. This parameter protects
against a client in a send-data loop.

Syntax

��
MAXRECEIVE 0
MAXRECEIVE num_bytes

�

Parameters
0 A MAXRECEIVE value of 0 disables the limit check function.

num_bytes
Sets the number of data bytes permitted to be received without receiving an
EOR. This number must be an integer in the range 0 to 99 999 999.

Usage notes
v The Telnet default value is 65535.

v MAXRECEIVE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v A low value (under 10000) may cause unintended connection drops.

356 z/OS V1R4.0 CS: IP Configuration Reference

||

|
|
|

|

|

MAXREQSESS statement
The MAXREQSESS parameter statement limits the number of session requests
received by Telnet in a 10-second period. For this parameter, a BIND received by
Telnet defines a session request. If the number of BINDs received in a 10-second
period exceeds the limit, the connection is dropped and an error is reported.

Syntax

��
MAXREQSESS 0
MAXREQSESS num_req

�

Parameters
0 A MAXREQSESS value of 0 disables the limit check function.

num_req
Sets the number of session requests permitted in a 10 second period. This
number must be an integer in the range 0 to 99 999 999.

Usage notes
v The Telnet default value is 20.

v MAXREQSESS can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

Chapter 11. TN3270 Telnet Server 357

||

|
|

|

|
|
|

MAXVTAMSENDQ statement
The MAXVTAMSENDQ parameter statement limits the number of data segments
(RPLs) queued to be sent to VTAM. If the queue size exceeds the limit, the
connection is dropped. This parameter protects against using large amounts of
storage to contain data destined for a host VTAM application that is not receiving
data.

Syntax

��
MAXVTAMSENDQ 0
MAXVTAMSENDQ num_rpls

�

Parameters
0 A MAXVTAMSENDQ of 0 disables the limit check function.

num_rpls
Sets the number of RPLs permitted to be queued to VTAM at one time. This
number must be an integer in the range 0 to 99 999 999.

Usage notes
v The Telnet default is 50.

v MAXVTAMSENDQ can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v A low value (under 10) can cause unintended connection drops.

358 z/OS V1R4.0 CS: IP Configuration Reference

||

|
|

|

|
|
|

|

MSG07 statement
Use the MSG07 parameter statement to activate logon error message processing.
Specifying this statement provides information to the client when a session attempt
to the target application fails. If NOMSG07 is specified, the connection is dropped if
a session initiation error occurs.

Syntax

��
NOMSG07
MSG07

�

Parameters
This statement has no parameters.

Usage notes
v NOMSG07 is the Telnet default.

v MSG07 and NOMSG07 can be coded in BEGINVTAM, TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. If coded in BEGINVTAM, it is treated as if it
were coded in TELNETPARMS. If coded in BEGINVTAM and TELNETPARMS,
the TELNETPARMS setting is used. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

Chapter 11. TN3270 Telnet Server 359

|

OLDSOLICITOR statements
The OLDSOLICITOR parameter statement places the initial cursor on the solicitor
panel after:
Enter Your Userid:

If NOOLDSOLICITOR is specified, the cursor is placed after:
Application:

Syntax

��
NOOLDSOLICITOR
OLDSOLICITOR

�

Parameters
This statement has no parameters.

Usage notes
v NOOLDSOLICITOR is the Telnet default.

v OLDSOLICITOR and NOOLDSOLICITOR can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

360 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|
|
|
|

PORT and SECUREPORT statements
The PORT parameter statement defines which port the Telnet server listens on for
non-secure (basic) connection requests.

The SECUREPORT parameter statement defines which port the Telnet server
listens on for secure connection requests from a client using the SSL protocol. If
SECUREPORT is not coded, the Telnet server does not support secure access
from a client.

Syntax

��
PORT 23

PORT num
,qual

SECUREPORT num
,qual

�

Parameters
,qual

Qualifies the PORT address with a destination IP address or with a specific link
name.

num
A specified port number.

Usage notes
v The Telnet default is PORT 23.

v PORT or SECUREPORT can be coded only in TELNETPARMS.

v If SECUREPORT is specified, several Telnet security parameter statements can
be specified. See “Rules for security parameters” on page 336 for details.

v SECUREPORT implies CONNTYPE SECURE; PORT implies CONNTYPE
BASIC. See “CONNTYPE statement” on page 340 for more information.

v In the BEGINVTAM block, the PORT statement serves a different purpose. It
links the BEGINVTAM block to the TELNETPARMS block with the same port
number.

v If qual is coded, it must match the qualifier used in the PORT statement in the
BEGINVTAM block.

Chapter 11. TN3270 Telnet Server 361

|
|
|

|

|
|

PRTINACTIVE statement
The PRTINACTIVE parameter statement defines the printer inactivity timeout. A
printer connection with no client-VTAM activity for the specified time is dropped.

Syntax

��
PRTINACTIVE 0
PRTINACTIVE sec

�

Parameters
0 A PRTINACTIVE timeout value of 0 disables inactivity timeout.

sec
Sets the inactivity timeout to a specified number of seconds. When a printer
connection has been inactive for the specified number of seconds, it is closed.
The number must be an integer in the range of 0 to 99 999 999.

Usage notes
v The Telnet default value is 0.

v PRTINACTIVE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

v Telnet uses one timer for INACTIVE, PRTINACTIVE, and KEEPINACTIVE. Refer
to z/OS Communications Server: IP Configuration Guide for more details.

362 z/OS V1R4.0 CS: IP Configuration Reference

|

|

SCANINTERVAL and TIMEMARK statements
The SCANINTERVAL parameter statement defines the interval at which Telnet
checks connections for inbound TCP/IP activity. It is used in conjunction with the
TIMEMARK parameter statement, which defines the elapsed time the server uses
to determine whether a connection is considered inactive. During SCANINTERVAL
processing, if the elapsed time since the last inbound activity is greater than the
TIMEMARK value, the connection is considered inactive and a TIMEMARK request
is sent to the client. If the connection is still considered inactive at the next
SCANINTERVAL, that means the client neither responded to the TIMEMARK
request nor sent in data. Telnet drops the connection.

Syntax

��
SCANINTERVAL 1800
SCANINTERVAL sec1

TIMEMARK 10,800
TIMEMARK sec2

�

Parameters
1800

The default SCANINTERVAL time in seconds between scanning for idle
connections or connections waiting to receive a TIMEMARK.

sec1
Sets the SCANINTERVAL time to a specified number of seconds, in the range
of 1 to 99 999 999. 0 is not valid.

10,800
The default TIMEMARK time (in seconds) that the Telnet server uses when
checking inbound activity.

sec2
Sets the TIMEMARK time to a specified number of seconds, in the range of 1
to 99 999 999. 0 is not valid.

Usage notes
v The Telnet default values are SCANINTERVAL 1800 and TIMEMARK 10800.

v SCANINTERVAL and TIMEMARK can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

v If the SEND TIMEMARK does not complete immediately, the next
SCANINTERVAL attempts to send TIMEMARK again. If five SEND TIMEMARKs
do not complete immediately and no data or TIMEMARK response is received,
the connection is dropped.

v If the SCANINTERVAL is greater than the TIMEMARK value, it is reset to the
TIMEMARK value.

Chapter 11. TN3270 Telnet Server 363

|

SECUREPORT statement
For a description of the TELNETPARMS SECUREPORT statement, see “PORT
statement” on page 401.

364 z/OS V1R4.0 CS: IP Configuration Reference

SEQUENTIALLU statements
The SEQUENTIALLU parameter statement allows sequential LU selection from the
LU group. If NOSEQUENTIALLU is specified, the first LU available in the group is
used.

Syntax

��
SEQUENTIALLU
NOSEQUENTIALLU

�

Parameters
This statement has no parameters.

Usage notes
v SEQUENTIALLU is the Telnet default.

v SEQUENTIALLU and NOSEQUENTIALLU can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

Chapter 11. TN3270 Telnet Server 365

|
|
|
|

|

|||||||||||||||

|

|
|

|
|

|
|
|
|

SGA statements
The NoSGA (DISABLESGA) parameter statement permits the transmission of GO
AHEAD by Telnet. It is negotiated by both client and server. Using NoSGA
increases the overhead for a full duplex terminal and a full duplex connection. If
SGA is specified, transmission of GO AHEAD is suppressed.

Syntax

��
SGA
NOSGA (DISABLESGA)

�

Parameters
This statement has no parameters.

Usage notes
v SGA is the Telnet default.

v SGA and NOSGA can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

366 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|

|||||||||||||||

|

|
|

|
|

|
|
|

SIMCLIENTLU statements
The SIMCLIENTLU parameter statement causes Telnet to send a standard LU
name (EZBSIMLU) during negotiation to any TN3270E client requesting a Generic
connection. Instead of assigning a Telnet LU, the LU assignment is deferred until
after application selection, just like TN3270 clients. If NOSIMCLIENTLU is specified,
normal device name negotiation occurs for TN3270E connections.

Syntax

��
NOSIMCLIENTLU
SIMCLIENTLU

�

Parameters
This statement has no parameters.

Usage notes
v NOSIMCLIENTLU is the Telnet default.

v SIMCLIENTLU and NOSIMCLIENTLU can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

v When the TN3270E client requests a connection with a Specific LU, the selection
of the LU is handled like normal TN3270E Specific processing, regardless of the
SIMCLIENTLU statement.

v Printer requests are not affected by the SIMCLIENTLU statement.

Chapter 11. TN3270 Telnet Server 367

|

SINGLEATTN statements
The SINGLEATTN parameter statement causes Telnet to check the data for a
double ATTENTION key combination, x’6CFFEFFFF3’, in the data stream sent from
the client. If found, Telnet sends only a single ATTENTION. If NOSINGLEATTN is
specified, the data is not checked.

Syntax

��
NOSINGLEATTN
SINGLEATTN

�

Parameters
This statement has no parameters.

Usage notes
v NOSINGLEATTN is the Telnet default.

v SINGLEATTN and NOSINGLEATTN can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

368 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|
|
|
|

SMFINIT and SMFTERM statements
The SMFINIT and SMFTERM parameter statements are used to configure the
Telnet server to write SMF records. These statements control the invocation of the
TN3270 Sever SNA Session Initiation (or LOGON, subtype 20) and TN3270 Server
SNA Session Termination (or LOGOFF, subtype 21) SMF records.

Two different record formats are available: format 118 and format 119. The format
119 records are controlled by use of the TYPE119 operand on the SMFINIT and
SMFTERM statements. The specification of the STD operand or a nonstandard
subtype number on the SMFINIT and SMFTERM statements control the usage of
the older format 118 record processing.

Syntax

��
SMFINIT STD

nn
SMFINIT TYPE119

NOTYPE119
SMFTERM STD

nn

�

�
SMFTERM TYPE119

NOTYPE119

�

Parameters
STD

Specifies that format 118 SMF records should be written using standard
subtypes for LOGON (20) or LOGOFF (21) records.

nn Specifies the format 118 SMF record subtype for LOGON or LOGOFF records.
Valid values are integers from 0 to 255. A value of 0 for SMFINIT and
SMFTERM indicates that no SMF record is written for that function. The user
can only change the subtype value for the Format 118 records.

TYPE119
Specifies that format 119 SMF records should be written for TN3270 Server
SNA Session Initiation (subtype 20) or TN3270 Server SNA Session Termination
(subtype 21) records.

NOTYPE119
Specifies that format 119 SMF records should not be written.

Usage notes
v The Telnet defaults are SMFINIT 0, SMFINIT NOTYPE119, SMFTERM 0, and

SMFTERM NOTYPE119.

v SMFINIT and SMFTERM can be coded in TELNETGROUP, TELNETPARMS,
and PARMSGROUP. See “General rules for parameter statements” on page 335
for more information about the hierarchy of parameter values.

v TCP/IP SMF records are independent of the IP connection. They are created for
Telnet LU/HOST application sessions.

v Many products use standard SMF record subtypes. A standard subtype avoids
potential double usage and makes it easier for other vendors to write SMF output
processing programming and for Telnet administrators to be consistent across
multiple machines.

Chapter 11. TN3270 Telnet Server 369

|
|

|
|

SNAEXT statements
The SNAEXT parameter statement allows negotiation for contention resolution and
SNA sense functions for TN3270E connections. If NOSNAEXT is specified, the
Telnet server does not negotiate these SNA functional extensions.

Syntax

��
SNAEXT
NOSNAEXT

�

Parameters
This statement has no parameters.

Usage notes
v SNAEXT is the Telnet default.

v SNAEXT and NOSNAEXT can be coded in TELNETGLOBALS, TELNETPARMS,
or PARMSGROUP. See “General rules for parameter statements” on page 335
for more information about the hierarchy of parameter values.

v NOSNAEXT is useful in the unlikely case there are a significant number of clients
that cannot tolerate the negotiation of these functions. Most clients do not have a
problem with the SNAEXT specification in the server, but, in the unlikely case
that some do, specify and map NOSNAEXT to that set of clients.

370 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|
|
|
|

SSLTIMEOUT statement
The SSLTIMEOUT parameter statement provides a unique timeout value for SSL
handshake processing. This timeout limits the time SSL handshake processing
waits for a client response.

Syntax

��
SSLTIMEOUT 5
SSLTIMEOUT sec

�

Parameters
5 The default SSLTIMEOUT in seconds that the server waits for a client

response.

sec
Sets the SSLTIMEOUT time to a specified number of seconds in the range 1 to
86400.

Usage notes
v SSLTIMEOUT 5 is the Telnet default.

v SSLTIMEOUT can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “General rules for parameter statements” on page 335 for
more information about the hierarchy of parameter values.

Chapter 11. TN3270 Telnet Server 371

|

|
|
|

TELNETDEVICE statement
The TELNETDEVICE parameter statement lets you specify a logmode for a device
type. This statement accepts two logmodes: one for TN3270 connections and one
for TN3270E connections.

Syntax

��
TELNETDEVICE telnet_device_type

tn3270_logmode ,tn3270e_logmode

�

Parameters
telnet_device_type

The type of Telnet device. See the table below for accepted device types.

tn3270_logmode
The logmode name used on TN3270 connections for the specified
telnet_device_type.

tn3270e_logmode
The logmode name used on TN3270E connections for the specified
telnet_device_type.

Device type and logmode table

Table 17. Device type and logmode table

Telnet device type TN3270 logmode entry TN3270E logmode entry

IBM-3277 D4B32782 Not applicable

IBM-3278-2-E NSX32702 SNX32702

IBM-3278-2 D4B32782 SNX32702

IBM-3278-3-E NSX32702 SNX32703

IBM-3278-3 D4B32783 SNX32703

IBM-3278-4-E NSX32702 SNX32704

IBM-3278-4 D4B32784 SNX32704

IBM-3278-5-E NSX32702 SNX32705

IBM-3278-5 D4B32785 SNX32705

IBM-3279-2-E NSX32702 SNX32702

IBM-3279-2 D4B32782 SNX32702

IBM-3279-3-E NSX32702 SNX32703

IBM-3279-3 D4B32783 SNX32703

IBM-3279-4-E NSX32702 SNX32704

IBM-3279-4 D4B32784 SNX32704

IBM-3279-5-E NSX32702 SNX32705

IBM-3279-5 D4B32785 SNX32705

IBM-3287-1 Not applicable D6328904

LINEMODE INTERACT Not applicable

TRANSFORM D4B32782 Not applicable

372 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

||||||||||||||||||||||||

|

|

|
|

|
|
|

|
|
|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

Usage notes
v The Telnet default logmode names are listed in Table 17 on page 372 and are

defined in VTAM. The TN3270 logmodes are non-SNA and the TN3270E
logmodes are SNA. For more details, refer to z/OS Communications Server: SNA
Resource Definition Reference.

v TELNETDEVICE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. If coded in BEGINVTAM, it is treated as if it were coded in
TELNETPARMS. If coded in BEGINVTAM and TELNETPARMS, the
TELNETPARMS setting is used. See “General rules for parameter statements” on
page 335 for more information about the hierarchy of parameter values.

v Telnet supports non-SNA (LU0) and SNA (LU2) terminal sessions. Telnet
supports SNA character stream (SCS) (LU1) and 3270 data character stream
(DCS) (LU3) printer sessions.

v The specified logmode name can be an IBM-supplied logmode or user-created. If
user-created, the BIND characteristics must be compatible with the LU type.
TN3270 and TN3270E connections support either non-SNA or SNA BINDs.

v The LOGMODE name NONE prevents Telnet from specifying a LOGMODE
request with the REQSESS.

v Telnet cannot verify that the logmode specified is valid at configuration time.
Problems are detected at run time.

v For more information about logmodes, refer to z/OS Communications Server:
SNA Resource Definition Reference.

Chapter 11. TN3270 Telnet Server 373

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

TESTMODE statement
The TESTMODE parameter statement allows an operator to try a profile without
applying it. All the processing and checking are done for an actual update, but at
the end of the process, instead of applying the new profile, all data structures are
released. If this statement is not coded, the profile becomes the CURRent profile
when processed.

Syntax

��
TESTMODE

�

Parameters
This statement has no parameters.

Usage notes
v TESTMODE can be coded only in TELNETPARMS.

v With the TESTMODE statement, a Telnet administrator can issue an OBEYFILE
for a profile and see if there are any syntax or semantic errors without concern
for applying a profile that is not valid. TESTMODE profiles can be processed as
often as desired.

v TESTMODE can be included in the initial startup profile. However, the end result
is that no port is opened and clients cannot connect. It would be as if no profile
statements existed in the initial profiles.

374 z/OS V1R4.0 CS: IP Configuration Reference

TIMEMARK statement
For a description of the TELNETPARMS TIMEMARK statement, see
“SCANINTERVAL and TIMEMARK statements” on page 363.

Chapter 11. TN3270 Telnet Server 375

TKOSPECLU and TKOSPECLURECON statements
The TKOSPECLU or TKOSPECLURECON parameter statement allows an operator
to specify the period of time, in seconds, the server waits before checking to see if
a response was received from an original client during a takeover attempt by a new
client. The TKOSPECLU or TKOSPECLURECON function suspends a new
connection request that specifies an already active LU name and sends a
TIMEMARK to the original connection that is using the requested LU name. After
the specified period of time, the server checks whether there was a response to the
TIMEMARK. If a response or any data is received by the original connection since
the TIMEMARK was sent out, the server fails the new connection attempt,
indicating the LU name is already in use. If no response is received, the original
connection is dropped. If TKOSPECLU is in effect, the session is also dropped. If
TKOSPECLURECON is in effect, the session is retained. In both cases, a new
connection is established. If TKOSPECLURECON is specified, the saved SNA
session is now active over the new connection. If NOTKO is specified, whichever
takeover is in effect is turned off and takeover does not occur.

Syntax

��
NOTKO
TKOSPECLU sec

NOKEEPONTMRESET
TKOSPECLURECON sec

KEEPONTMRESET

�

Parameters
sec Number of seconds the server waits before checking to see if a response

was received from the original client. The range is 0 to 99 999 999.

Usage notes
v NOTKO is the Telnet default.

v TKOSPECLU, TKOSPECLURECON, and NOTKO can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “General rules for
parameter statements” on page 335 for more information about the hierarchy of
parameter values.

v If you code 0, the server always performs the takeover, whether the original
session is active or not.

v To take over the session, the new connection must specify the LU name. If
administrators want to use this function for a more general purpose, code the
@@LUNAME character substitution in the MSG10 screen so end users know
their LU name if they need to issue a takeover. Also, some clients display the LU
name assigned by the server.

v In some cases, the TKOSPECLURECON session cannot be maintained. Refer to
z/OS Communications Server: IP Configuration Guide, Advanced Application
topics for details.

376 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

TN3270E statements
The TN3270E parameter statement allows TN3270E functions to be negotiated by
the server. If NOTN3270E is specified, all TN3270E functions, such as printer
support and client response, are disabled.

Syntax

��
TN3270E
NOTN3270E

�

Parameters
This statement has no parameters.

Usage notes
v TN3270E is the Telnet default.

v TN3270E and NOTN3270E can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “General rules for parameter
statements” on page 335 for more information about the hierarchy of parameter
values.

v NOTN3270E is useful in the unlikely case there are a significant number of
clients that cannot tolerate negotiating for a TN3270E connection. Most clients do
not have a problem with the TN3270E specification in the server, but, in the
unlikely case that some do, specify and map NOTN3270E to that set of clients.

Chapter 11. TN3270 Telnet Server 377

|

|
|
|
|

WLMCLUSTERNAME statement
The WLMCLUSTERNAME parameter statement is used to register Telnet with the
domain name server (DNS) so that the work load manager can be used to balance
requests across multiple processors. The work load manager allows the system
administrator to balance work load among several machines (and therefore, several
VTAMs and Telnet servers) while clients connect using a single name. Without this
statement, no names are registered.

Syntax

��

1WLMClustername wlm_name ENDWLMClustername

�

Parameters
wlm_name

Any legal DNS name up to 18 characters. All servers in a group must register
with this name. You can specify an unlimited number of names.

Usage notes
WLMCLUSTERNAME can be coded only in TELNETPARMS.

378 z/OS V1R4.0 CS: IP Configuration Reference

Telnet mapping statements in the TCP/IP profile
Mapping statements for the Telnet server are specified in the BEGINVTAM block. All
mapping statements are optional for the BEGINVTAM block.

Some statements combine mapping and object functions. For example,
DEFAULTLUS defines the LU GROUP Object and implicitly maps the group to the
NULL Client Identifier. ALLOWAPPL defines the security level of application Objects
and optionally provides LU mapping function.

Table 18 provides a list of Telnet mapping statements and the page location to see
for more information.

Table 18. Telnet mapping statements

Statement Mapping
statement

Client
identifier

Object See page

ALLOWAPPL X X 383

DEFAULTAPPL X 384

DEFAULTLUS X X 386

DEFAULTLUSSPEC X X 387

DEFAULTPRT X X 388

DEFAULTPRTSPEC X X 389

DESTIPGROUP X 390

HNGROUP X 391

INTERPTCP X 392

IPGROUP X 393

LINEMODEAPPL X 394

LINKGROUP X 395

LUGROUP X 396

LUMAP X 397

PARMSGROUP X 399

PARMSMAP X 400

PORT 401

PRTDEFAULTAPPL X 402

PRTGROUP X 403

PRTMAP X 404

QUEUESESSION 406

RESTRICTAPPL X X 407

USERGROUP X 410

USSTCP X 411

General rules for BEGINVTAM statements
v If the BEGINVTAM block represents more than one port, the first statement in the

BEGINVTAM block must be the port designation statement.

v Telnet must have an application and Telnet LUs defined in order to connect to a
host application.

Chapter 11. TN3270 Telnet Server 379

|
|

|||||

v During configuration, Telnet ensures that names are the appropriate length. If a
name is too long, Telnet issues a message and the statement fails.

v Error messages are issued for incorrect statements. A DEBUG message displays
the profile line number of the statement in error and other pertinent information.
Error messages can be turned off by coding DEBUG OFF or DEBUG SUMMARY
in TELNETGLOBALS.

v Object and Client Identifier group names can include the following special
characters: -, ¢, <, >, ?, :, ″, !, %, ¬, &, *, (, and).

v Any Object or Client Identifier group name must be defined with the appropriate
statement before it can be specified on a mapping statement.

v LUGROUPs and PRTGROUPs must be mapped to a Client Identifier to be used.

v If one element in a group is not valid, Telnet flags the element that is not valid
and processes the statement as if the element were not part of the statement. If
all elements are not valid, Telnet issues a debug message indicating the GROUP
is empty.

v Do not use the name of a Profile statement or parameter as a variable name in a
statement. For example, do not assign a USS table the name USSTCP. Do not
use GENERIC as a PRTGROUP name.

v If duplicate statements appear in TELNETGLOBALS, TELNETPARMS,
PARMSGROUP, or BEGINVTAM blocks, Telnet uses the last valid statement that
was specified. However, if the REPLACEMENT statement is not valid, the
statement being replaced is REMOVED and the REPLACEMENT does not occur.
The only exception to the last one wins rule is Client Identifiers defined in their
respective group statement.

v The second instance of the Client Identifier in the second group is ignored and a
message is issued. For example:

IPGROUP ABC 1.1.1.1. 2.2.2.2 ENDIPGROUP
IPGROUP XYZ 2.2.2.2 3.3.3.3 ENDIPGROUP

The second IPGROUP statement generates a debug warning message indicating
that “2.2.2.2” is already defined in an IPGROUP.

v An IPGROUP with a subnet mask of 0.0.0.0:0.0.0.0 specified will match all
clients.

Rules for LU name specification
v The first character must be in the range A through Z, @, #, or $. In addition,

remaining characters can also be numeric (any single digit 0 through 9).
Unprintable characters are not allowed. If a name that is not valid is found, an
error message is issued and the statement is ignored.

v LUs can be defined as a range. Use the following syntax to specify a range of
LUs:

�� LowerRange..UpperRange
..rangerule

�

– No spaces are allowed within a range definition.

– UpperRange must be greater than the LowerRange.

– The lengths of LowerRange or UpperRange, and rangerule must be the same
and each must be less than or equal to eight characters.

– All LUs in the range must be valid and defined to VTAM for a successful
session.

380 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|

|

|
|

|
|
|
|

|

|

|
|

|
|

– The number of LU names in one range is limited to 4 294 967 295. The total
number of LU names in the group is also limited to 4 294 967 295. Storage is
not used until the LU name is assigned to the connection.

– The rangerule represents the variant used for wildcarding. For example:
TCP000A0..TCP9F$ZZ..FFFNX?AB

where:

F The position is fixed and will not change.

A Alphabetic range.

N Numeric range.

B Alphanumeric range.

X Hexadecimal range.

? Alphanumeric including national characters @, #, and $.

If an incorrect range definition is parsed, it is ignored and a debug warning
message is issued.

Refer to the z/OS Communications Server: IP Configuration Guide for LU range
usage examples.

Client identifier types and definitions
Table 19 shows the Client Identifier types and their definitions available for use on
mapping statements.

Table 19. Client identifier types and definitions

Client identifier
type

Definition

USERID The client User ID derived from the client certificate at connection
time when ClientAuth SAFcert is specified on an SSL connection.

HOSTNAME The completely qualified client host name.

IPADDR The client IP address expressed in dotted decimal form. This can be
an IPv4 address only.

USERGRP The USERGROUP name that contains exact or wildcarded client user
IDs.

HNGRP The HNGROUP name that contains exact or wildcarded client host
names.

IPGRP The IPGROUP name that contains exact or subnetted client IP
addresses.

DESTIP The destination IP address expressed in dotted decimal form.

LINKNAME The link name defined by the LINK statement in PROFILE.TCPIP.

DESTIPGRP The DESTIPGROUP name that contains exact or subnetted
destination IP addresses.

LINKGRP The LINKGROUP object name that contains exact or wildcarded link
names.

NULL Not coded, but listed here for completeness. This Client Identifier type
indicates that no Client Identifier was specified. This is valid for the
DEFAULTAPPL, LINEMODEAPPL, USSTCP, and INTERPTCP
mapping statements. It is the implied Client Identifier for the
DEFAULTLUS, DEFAULTLUSSPEC, DEFAULTPRT, and
DEFAULTPRTSPEC Object statements.

Chapter 11. TN3270 Telnet Server 381

|
|
|

|

|

|

||

||

||

||

||

||

|

|
|

Refer to the z/OS Communications Server: IP Configuration Guide for Object
selection priority based on Client Identifiers.

Rules for client identifier specification
v All IP addresses must be IPv4 format addresses.

v When the Client Identifier is a single entity on a mapping statement rather than
part of a group, no wildcarding is allowed.

v Any group name must be defined with the appropriate statement before it can be
specified on a MAPPING statement. Otherwise, the name is assumed to be a
link name.

v User ID and destination IP address require the clid_type keyword to correctly
identify the Client Identifier. If clid_type is not used, a user ID Client Identifier is
assumed to be a link name and a destination IP address Client Identifier is
assumed to be the traditional client (source) IP address.

v Client Identifiers of a particular type, such as IP address or host name, can be
defined within only one group of that type. If the Client Identifier is defined in
more than one group, a debug warning message is issued showing the Client
Identifier that is ignored and the name of the owning group. No error is issued if
a Client Identifier is listed twice in the same group.

Refer to z/OS Communications Server: IP Configuration Guide for exact mapping
rules.

Rules for host name specification
v Host name specification requires that Telnet be able to resolve a host name from

an IP address by use of the resolver. To do this, a valid TCPIP.DATA data set
must be provided. For overview information about TCP/IP application
configuration files, refer to z/OS Communications Server: IP Configuration Guide
for a description of how TCPIP.DATA is located. Telnet uses the native MVS
sockets search order to find a resolver. Neither the z/OS environmental variable
(Resolver_Config) nor the /etc/resolv.conf HFS is used when searching for
TCPIP.DATA.

v The TN3270 client IP address and port are automatically added to the z/OS CS
SNA displays. An HNGROUP statement is required if you also want the DNS
name of the client. If you are mapping objects using host names, the DNS
names of the TN3270 clients is provided to the z/OS CS SNA displays
automatically. This occurs automatically because the names must have been
resolved for mapping purposes. If you are not mapping by host names, but want
to have TN3270 client host names provided to the z/OS CS SNA displays, add
an HNGROUP name and ENDGROUP name to your TN3270 profile. Choose an
unused host name (such as AA.AA). If you add the HNGROUP statement to get
DNS name resolution, some delay may occur during connection processing for
name resolution.

382 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

|
|
|
|
|

|
|

ALLOWAPPL statement
The optional ALLOWAPPL mapping and security statement is used to specify which
VTAM application names clients can access and optionally, which LU names are
valid.

Syntax

��

1

ALLOWAPPL application_name
DISCONNECTABLE QSESSion

LU lu_name
LUG lu_group_name

�

Parameters
application_name

The host application name, as specified in VTAMLST.

Single-character position wildcards (%) are permitted anywhere in the
application name and the multi-character wildcard (*) is permitted at the end of
an application name. For example, A%CICS* allows connections to A1CICS01,
A1CICS02, ABCICS4A, and so on. A single * allows all applications.

DISCONNECTABLE
When DISCONNECTABLE is specified, VTAM notifies the application to
disconnect, rather than log off a user, when the session is dropped.

QSESSion
Indicates this application queues a session request when passing the session to
another primary application. When Telnet receives an UNBIND of the new
session, Telnet will wait for a BIND to reestablish the original queued session.

LU lu_name
The logical name of the Telnet LU. This option allows you to specify which LUs
can be used to establish a session with the named application.

LUG lu_group_name
The name of an LUGROUP. This option allows you to specify an LUGROUP,
where any LUs in the LUGROUP can be used to establish a session with the
named application.

Usage notes
v Applications that perform CLSDST PASS also require an ALLOWAPPL or

RESTRICTAPPL statement for the target application.

v LU and LUG keywords are mutually exclusive. If both are specified in any order,
only the last LUG is accepted and processed. If multiple LUG keywords are
specified, only the last is accepted and processed.

Chapter 11. TN3270 Telnet Server 383

|
|
|
|

|
|
|

|
|

DEFAULTAPPL statement
The optional DEFAULTAPPL mapping statement maps the initial application to be
tried when a Telnet client establishes a connection other than linemode. The
application might be a particular VTAM application such as CICS or could be a
network solicitor or front-end menu system such as TPX. DEFAULTAPPL allows a
user to establish a session with an application without having to know the actual
VTAM name of the application.

Syntax

�� DEFAULTAPPL application_name
Client_Identifier

clid_type,

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

�

Parameters
application_name

The host application name, as specified in VTAMLST. The application_name
can be network qualified in the format of a 1- to 8-character name of the
network ID separated by a period (.), followed by a 1- to 8-character application
name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions” on
page 381 for details. If no Client Identifier is specified, then it is considered the
NULL Client Identifier.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

384 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|
|

Usage notes
v Always map a unique Client Identifier on each DEFAULTAPPL statement.

Otherwise, the last DEFAULTAPPL mapping for the Client Identifier is used.

v If a USS table is mapped to the Client based on a higher priority Client Identifier,
the DEFAULTAPPL statement is ignored.

Chapter 11. TN3270 Telnet Server 385

DEFAULTLUS statement
The optional DEFAULTLUS Object and mapping statement defines a list or range of
LUs with a default mapping to the NULL Client Identifier. This LU pool is used by a
terminal emulator requesting a Generic connection if no other LU group maps
Generically to the client.

Syntax

�� 1DEFAULTLUS lu_name ENDDEFAULTLUS
lu_name1..lu_name2

..range_rule

�

Parameters
lu_name

The name of the terminal LU.

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU range
specification rules.

386 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

DEFAULTLUSSPEC statement
The optional DEFAULTLUSSPEC Object and mapping statement defines a list or
range of LUs with a default mapping to the NULL Client Identifier. This pool is used
by a terminal emulator requesting a Specific connection if no other LU group maps
Specifically or Generically to the client.

Syntax

�� 1DEFAULTLUSSPEC lu_name ENDDEFAULTLUSSPEC
lu_name1..lu_name2

..range_rule

�

Parameters
lu_name

The name of the terminal LU.

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU range
specification rules.

Chapter 11. TN3270 Telnet Server 387

|
|

|
|

DEFAULTPRT statement
The optional DEFAULTPRT Object and mapping statement defines a list or range of
printer LUs with a default mapping to the NULL Client Identifier. This LU pool is
used by a printer emulator requesting a Generic connection if no other printer LU
group maps.

Syntax

�� 1DEFAULTPRT prt_name ENDDEFAULTPRT
prt_name1..prt_name2

..range_rule

�

Parameters
prt_name

The name of the printer LU.

prt_name1..lu_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU range
specification rules.

388 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|

|
|

DEFAULTPRTSPEC statement
The optional DEFAULTPRTSPEC Object and mapping statement defines a list or
range of printer LUs with a default mapping to the NULL Client Identifier. This LU
pool is be used by a printer emulator requesting a Specific connection if no other
printer LU group maps Specifically or Generically to the client.

Syntax

�� 1DEFAULTPRTSPEC prt_name ENDDEFAULTPRTSPEC
prt_name1..prt_name2

..range_rule

�

Parameters
prt_name

The name of the printer LU.

prt_name1..lu_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU range
specification rules.

Chapter 11. TN3270 Telnet Server 389

|
|

|
|

DESTIPGROUP statement
Use the optional DESTIPGROUP Client Identifier statement to define a group of
destination IP addresses. The group name can be used on several mapping
statements.

Syntax

�� 1DESTIPGROUP DESTIP_group_name ip_subnet_mask:ip_subnet ENDDESTIPGROUP
ip_address

�

Parameters
DESTIP_group_name

The group name (up to 16 characters) that contains the destination IP
addresses or subnets.

ip_subnet_mask
A subnet mask, expressed in dotted decimal notation, that identifies which bits
of the host field define the network. If the network has no subnets, a subnet
mask of 0 can be specified.

ip_subnet
The IP address, expressed in dotted decimal form, of the network.

ip_address
The IP address, expressed in dotted decimal form, of a particular client. Only
IPv4 addresses are supported.

Usage notes
v Any given IP address or combination of IP subnet mask and IP subnet can only

appear once within all destination IP groups.

v The subnet and mask combination has no restrictions, including specific class
address specifications.

390 z/OS V1R4.0 CS: IP Configuration Reference

|
|

HNGROUP statement
Use the optional HNGROUP Client Identifier statement to define a group of host
names. The group name can be used on several mapping statements.

Syntax

�� 1HNGROUP hngroup_name hn_name ENDHNGROUP �

Parameters
hngroup_name

The group name (up to 16 characters) that contains the host names.

hn_name
An exact, completely qualified host name or a wildcard host name.

Wildcards can be specified in two ways:

v Use a single asterisk (*) to indicate that any value is acceptable for a
particular qualifier in a particular position within the host name. For example,
..IBM.COM matches USER1.RALEIGH.IBM.COM, but does not match
USER1.TCP.RALEIGH.IBM.COM because this name includes an extra
qualifier.

v Use a double asterisk (**) to indicate that any number of qualifiers are
acceptable to the left of the asterisks. For example, **.IBM.COM matches
USER1.IBM.COM, USER1.RALEIGH.IBM.COM, and
USER1.TCP.RALEIGH.IBM.COM.

Both wildcard techniques require that the entire qualifier be wildcarded. For
example, *USER.IBM.COM is not a valid use of a wildcard. In this case, use
*.IBM.COM instead.

Usage notes
v Any given host name or wildcard host name can only appear one time within all

HNGROUPs.

v See “Rules for host name specification” on page 382 for host name resolution
and display information.

Chapter 11. TN3270 Telnet Server 391

INTERPTCP statement
The optional INTERPTCP mapping statement allows you to map a customized
interpret table to a Client Identifier. This table is used to interpret incoming USS
commands before the USS command processor is invoked. If the input string does
not match any interpret table entry, the USS command processor parses the input
string.

Syntax

�� INTERPTCP table_name
Client_Identifier

clid_type,

�

Parameters
table_name

The name of the interpret table load module.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions” on
page 381 for details. If no Client Identifier is specified, then it is considered the
NULL Client Identifier.

Usage notes
v An assembled interpret table load module from VTAM can be used or one can be

created. Refer to z/OS Communications Server: IP Configuration Guide for
coding details. Also see “Telnet INTERPRET table setup” on page 423.

v Always map a unique Client Identifier on each INTERPTCP statement.
Otherwise, the last INTERPRET table mapping for the Client Identifier is used.

v The most common setup error is to fail to include the table load module in a load
library accessible by TCP/IP.

v The INTERPRET table is used to check USS commands only. Therefore,
INTERPRET table function is provided only for connections that are using a USS
table.

392 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

IPGROUP statement
Use the optional IPGROUP Client Identifier statement to define a group of IP
addresses. The group name can be used on several mapping statements.

Syntax

�� 1IPGROUP ip_group_name ip_subnet_mask:ip_subnet ENDIPGROUP
ip_address

�

Parameters
ip_group_name

The group name (up to 16 characters) that contains the Client IP addresses or
subnets.

ip_subnet_mask
A subnet mask, expressed in dotted decimal notation, that identifies which bits
of the host field define the network. If the network has no subnets, a subnet
mask of 0 can be specified.

ip_subnet
The IP address, expressed in dotted decimal form, of the network.

ip_address
The IP address, expressed in dotted decimal form, of a particular client. Only
IPv4 addresses are supported.

Usage notes
v Any given client IP address can only appear one time within all IP Groups. A

given combination of IP subnet mask and IP subnet can only appear once within
all IP groups.

v The subnet and mask combination has no restrictions, including specific class
address specifications.

Chapter 11. TN3270 Telnet Server 393

|
|

LINEMODEAPPL statement
The optional LINEMODEAPPL mapping statement maps the initial application to be
attempted when a Telnet client establishes a linemode connection.

Syntax

�� LINEMODEAPPL application_name
Client_Identifier

clid_type,

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

�

Parameters
application_name

The host application name, as specified in VTAMLST. The application_name
can be network qualified in the format of a 1- to 8-character name of the
network ID separated by a period (.), followed by a 1- to 8-character application
name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions” on
page 381 for details. If no client identifier is specified, then it is considered the
NULL client identifier.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

Usage notes
Always map a unique Client Identifier on each LINEMODEAPPL statement.
Otherwise, the last LINEMODEAPPL mapping for the Client Identifier is used.

394 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

LINKGROUP statement
The optional LINKGROUP Client Identifier statement defines a group of link names.
The group name can be used on several mapping statements.

Syntax

�� 1LINKGROUP linkgroup_group_name link_name ENDLINKGROUP �

Parameters
linkgroup_group_name

The group name (up to 16 characters) that contains the exact link names or
wildcard link names.

link_name
An exact linkname or a wildcard link name.

Linknames can be wildcarded when specified in a group.

v % or ? is a single-character position wildcard. It can be placed anywhere.

v * is a multi-position wildcard. It can only be placed at the end of the
linkname.

v The two wildcard types can be used together. For example, L%%V5* is a
valid wildcard name.

The position of the single wildcard (%) is used first to determine the most
specific match. For example, the following wildcard names are checked in the
order listed.

v C5CLINK*

v C5C%%%%*

v C5%LINK*

v C%CLINK*

v C%CLI%K*

v C%CLI%*

v C%CL%NK*

v C*

Chapter 11. TN3270 Telnet Server 395

LUGROUP statement
The optional LUGROUP Object statement defines a group of LUs. These group
names can be used on the LUMAP statement to represent an LU pool.

Syntax

�� LUGROUP lu_group_name
,nnn%
,EXIT

�

� 1 lu_name
lu_name1..lu_name2

..range_rule

ENDLUGROUP �

Parameters
lu_group_name

The group name (up to eight characters) that contains the terminal LUs.

nnn%
Checks the capacity left in the LUGROUP when Telnet assigns an LU from that
group and issues a message when the specified percentage is reached. After
the group goes over the specified capacity, no other message is issued. After
the in-use number has dropped 10 percent of the total below the capacity check
amount, another capacity warning message is issued.

EXIT
Indicates the lu_group_name is a user-written exit routine. When the LUGROUP
is mapped to a Client Identifier, Telnet LU assignment invokes the exit routine to
select an LU name. When the LU group is defined as an LU exit, the LU names
or LU ranges are optional. When provided, they act as seed values for the LU
exit to use however it specifies. See “Telnet LU exit setup” on page 430 for exit
details.

lu_name
The name of the terminal LU.

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU Range
specification rules.

396 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

LUMAP statement
The optional LUMAP mapping statement defines the mapping of an LU or group of
LUs object to a Client Identifier.

Syntax

�� LUMAP lu_name
lu_group_name clid_type,

Client_Identifier
GENERIC

SPECIFIC
�

�
DEFAPPL application_name

FIRSTONLY LOGAPPL DEFONLY
QINIT

�

�
PMAP parms_group_name KEEPOPEN prt_name

prt_group_name

�

Parameters
lu_name

The name of the terminal LU.

lu_group_name
The group name that contains the terminal LUs.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 381 for details.

GENERIC
Indicates that the LU or LUGROUP is checked for Generic connection requests.
Generic mapping statements also support Specific connection requests if there
is no LU or LUGROUP mapped specifically to the client.

SPECIFIC
Indicates that the LU or LUGROUP is checked for Specific connection requests.
Specific mapping statements are not used for Generic connection requests.

DEFAPPL application_name
Specifying DEFAPPL indicates the initial application to which Telnet connects.
The application_name can be network qualified in the format of a 1- to
8-character name of the network separated by a period (.), followed by a 1- to
8-character application name.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not

Chapter 11. TN3270 Telnet Server 397

|
|
|
|
|

active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

PMAP parms_group_name
Maps a ParmsGroup to an LU group. With this, parameters can be assigned
based on the chosen LU name or group.

KEEPOPEN
Specifying KEEPOPEN means that all LUs identified in the lu_group_name or
the LU identified by lu_name always have an OPEN ACB as long as the
connection exists, whether or not a session exists. When KEEPOPEN is
mapped to a connection, the MSG07 and LUSESSIONPEND functions are in
effect whether or not they were explicitly coded.

prt_name
The name of an associated printer LU. Printer association requires a one-to-one
match. A single LU name or an LUGROUP with a single LU must be specified
when prt_name is used.

prt_group_name
The group that contains the printer LUs. Printer association requires a
one-to-one match. The number of single names in the print group must equal
the number of single names in the LUGROUP. The number of ranges and the
number of LUs in each range must also match.

Usage notes
v A single Client Identifier can have several LU names or LU groups mapped to it.

Refer to the LU assignment information in the Telnet section in z/OS
Communications Server: IP Configuration Guide for details.

v See “Rules for LU name specification” on page 380 for LU name specification
rules.

398 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

PARMSGROUP statement
The optional PARMSGROUP Object statement defines parameters that are mapped
to a subset of all clients. The PARMSGROUP statements mapped to a client
override those defined in the TELNETGLOBALS, TELNETPARMS, or BEGINVTAM
block.

Syntax

�� 1PARMSGROUP parmsgroup_name valid_stmts ENDPARMSGROUP �

Parameters
parmsgroup_name

The group name (up to eight characters) that contains the Telnet parameter
statements.

valid_stmts
Any Telnet statement that is permitted in PARMSGROUP. See Table 16 on
page 334 for a list of valid statements.

Usage notes
v Security parameters are accepted for ports defined as secure ports. See “Rules

for security parameters” on page 336 for details.

Chapter 11. TN3270 Telnet Server 399

PARMSMAP statement
The optional PARMSMAP mapping statement allows you to map a PARMSGROUP
to a Client Identifier.

Syntax

�� PARMSMAP parmsgroup_name Client_Identifier
clid_type,

�

Parameters
parmsgroup_name

The name of the PARMSGROUP.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 381 for details.

Usage notes
A single Client Identifier can have several PARMSGROUPS mapped to it. Refer to
the PARMSGROUP assignment information in the Telnet section in z/OS
Communications Server: IP Configuration Guide for details.

400 z/OS V1R4.0 CS: IP Configuration Reference

PORT statement
The optional PORT statement is used to associate the BEGINVTAM block with the
correct TELNETPARMS block when multiple ports are used.

Syntax

�� 1PORT num
,qual

num1..num2

�

Parameters
num

A specified port number.

,qual
Qualifies the PORT address with a destination IP address or with a specific link
name.

num1..num2
A consecutive range of ports starting with num1 and ending with num2. num2
must be greater than num1.

Usage notes
v If port,qual is coded, it must match the qualifier used in the PORT or

SECUREPORT statement in the TELNETPARMS block.

v The PORT statement must be the first statement following the BEGINVTAM
statement.

v If the PORT statement is specified, the 3277 device number cannot be the first
telnet_device_name when using the old style of LOGMODE assignment. Telnet
interprets the 3277 as a port number. The best solution is to use the
TELNETDEVICE statement to define logmodes.

Chapter 11. TN3270 Telnet Server 401

|
|
|

|
|

PRTDEFAULTAPPL statement
The optional PRTDEFAULTAPPL mapping statement maps the initial application to
be tried when a Telnet client establishes a printer connection. The application might
be a particular VTAM application, such as CICS.

Syntax

�� PRTDEFAULTAPPL application_name
Client_Identifier

clid_type,

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

�

Parameters
application_name

The host application name, as specified in VTAMLST. The application_name
can be network qualified in the format of a 1- to 8-character name of the
network ID separated by a period (.), followed by a 1- to 8-character application
name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions” on
page 381 for details. If no Client Identifier is specified, then it is considered the
NULL Client Identifier.

FIRSTONLY
When FIRSTONLY is specified, the printer LU remains active with an open ACB
after initial session logoff. When FIRSTONLY is not specified, Telnet always
requests a new session to the default application after logoff from the session
when LUSESSIONPEND is coded. If LUSESSIONPEND is not coded, the
connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

Usage notes
Always map a unique Client Identifier on each PRTDEFAULTAPPL statement.
Otherwise, the last PRTDEFAULTAPPL mapping for the Client Identifier is used.

402 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|||||||||||||||||||
|

|
|||||||||||||||||||||||||||||

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

PRTGROUP statement
The optional PRTGROUP Object statement defines a group of printer LUs. These
group names can be used on the PRTMAP statement to represent a printer pool.

Syntax

�� PRTGROUP prt_group_name
,nnn%
,EXIT

�

� 1 prt_name
prt_name1..prt_name2

..range_rule

ENDPRTGROUP �

Parameters
prt_group_name

The group name (up to eight characters) that contains the printer LUs.

prt_name
The name of the printer LU.

nnn%
Checks the capacity left in the LUGROUP when Telnet assigns an LU from that
group and issues a message when the specified percentage is reached. After
the group goes over the specified capacity, no other message is issued. After
the in-use number has dropped 10 percent of the total below the capacity check
amount, another capacity warning message is issued.

EXIT
Indicates the prt_group_name is a user-written exit routine. When the
PRTGROUP is mapped to a Client Identifier, Telnet LU assignment invokes the
exit routine to select an LU name. When the LU group is defined as an LU exit,
the LU names or LU ranges are optional. When provided, they act as seed
values for the LU exit to use however it specifies. See “Telnet LU exit setup” on
page 430 for exit details.

prt_name1..prt_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Usage notes
See “Rules for LU name specification” on page 380 for LU name and LU range
specification rules.

Chapter 11. TN3270 Telnet Server 403

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

PRTMAP statement
The optional PRTMAP mapping statement defines the mapping of a printer LU or
group of printer LUs objects to a client identifier.

Syntax

��
GENERIC

PRTMAP prt_name
prt_group_name Client_Identifier SPECIFIC

clid_type,

�

�
DEFAPPL application_name

FIRSTONLY LOGAPPL DEFONLY
QINIT

�

�
PMAP parms_group_name

KEEPOPEN
�

Parameters
prt_name

The name of the printer LU.

prt_group_name
The group name that contains the printer LUs.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 381 for details.

GENERIC
Indicates that the LU or PRTGROUP are checked for Generic connection
requests. Generic mapping statements also support Specific connection
requests if there is no LU or PRTGROUP mapped specifically to the client.

SPECIFIC
Indicates that the LU or PRTGROUP are checked for Specific connection
requests. Specific mapping statements are not used for Generic connection
requests.

DEFAPPL application_name
Specifying DEFAPPL indicates the initial application to which Telnet connects.
The application_name can be network qualified in the format of a 1- to
8-character name of the network separated by a period (.), followed by a 1- to
8-character application name.

FIRSTONLY
When FIRSTONLY is specified, the printer LU remains active with an open ACB
after initial session logoff from the default session. When FIRSTONLY is not
specified, Telnet always requests a new session to the default application after
logoff from the session when LUSESSIONPEND is coded. If LUSESSIONPEND
is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for

404 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|
|
|
|

|
|
|

the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

PMAP parms_group_name
Maps a ParmsGroup to an LU group. With this, parameters can be assigned
based on the chosen LU name or group.

KEEPOPEN
Specifying KEEPOPEN means that all LUs identified in the lu_group_name or
the LU identified by lu_name always have an OPEN ACB as long as the
connection exists, whether or not a session exists. For printers, this option is
always set. When KEEPOPEN is mapped to a connection, the MSG07 and
LUSESSIONPEND functions are in effect whether or not they were explicitly
coded.

Usage notes
v A single Client Identifier can have several printer LU names or printer LU groups

mapped to it. Refer to the LU assignment information in the Telnet section of the
z/OS Communications Server: IP Configuration Guide.

v See “Rules for LU name specification” on page 380 for LU name specification
rules.

Chapter 11. TN3270 Telnet Server 405

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

QUEUESESSION statement
The optional QUEUESESSION parameter statement signifies that all
DEFAULTAPPL applications queue their sessions within VTAM when performing a
CLSDST-PASS. At session logoff, Telnet leaves the LU ACB open and waits for a
BIND from the DEFAULTAPPL application.

Syntax

��
QUEUESESSION

�

Parameters
This statement has no parameters.

Usage notes
v You can specify only LUSESSIONPEND or QUEUESESSION; they are mutually

exclusive. If both are specified, LUSESSIONPEND is used and a message is
issued during TCP/IP initialization.

v The QSESSION parameter on the ALLOWAPPL and RESTRICTAPPL statements
is a better choice for performing this function.

406 z/OS V1R4.0 CS: IP Configuration Reference

RESTRICTAPPL statement
The optional RESTRICTAPPL mapping and security statement restricts access to
the specified application. This statement should be followed by user parameters
defining each user who is authorized to use the application. Users are prompted to
identify themselves with a password. RACF or an equivalent security program is
used to validate the password. If no user parameters are specified, the application
cannot be accessed.

Syntax

�� RESTRICTAPPL application_name
DISCONNECTABLE QSESSion CERTAUTH

�

� 1

1

USER –user_id

LU lu_name
LUG lu_group_name

�

Parameters
application_name

The host application name, as specified in VTAMLST.

Single-character position wildcards (%) are permitted anywhere in the
application name and the multi-character wildcard (*) is permitted at the end of
an application name. For example, A%CICS* restricts connections to
A1CICS01, A1CICS02, ABCICS4A, and so on. A single * restricts all
applications.

DISCONNECTABLE
When DISCONNECTABLE is specified, VTAM notifies the application to
disconnect, rather than log off a user, when the session is dropped.

QSESSion
Indicates this application queues a session request when passing the session to
another primary application. When Telnet receives an UNBIND of the new
session, Telnet will wait for a BIND to reestablish the original queued session.

CERTAUTH
Specifies to use the derived User ID based on the SSL Client Certificate
(enhanced LU mapping support for dynamic IP environments) and skips the
Restrictappl password validation process. If Express Logon is being used, the
User ID returned from security lookup for the latest Client Certificate/Applid
combination is used. If not using Express Logon, the User ID returned at initial
connection time from security lookup for just the Client Certificate is used.

USER user_id
The user ID, one to eight characters long. Single-character wildcards (%) are
permitted anywhere in the user name and the multi-character wildcard (*) is
permitted at the end of the user name. A single * allows all users.

LU LU_name
The logical name of the Telnet LU. This parameter allows you to optionally
specify which LUs can be used to establish a session with the VTAM host
application.

Chapter 11. TN3270 Telnet Server 407

|
|
|
|
|

|
|
|

|
|
|

LUG LU_group_name
The name of an LUGROUP. This parameter allows you to optionally specify an
LUGROUP, where any LUs in the LUGROUP can be used to establish a
session with the named application.

Usage notes
v LU and LUG keywords are mutually exclusive. If both are specified in any order,

only the LUG is processed. If multiple LUG keywords are specified, only the last
is accepted and processed.

v Applications that do CLSDST Pass also require a RESTRICTAPPL or
ALLOWAPPL statement for the target application.

408 z/OS V1R4.0 CS: IP Configuration Reference

TELNETDEVICE statement
The preferred location for this statement is within one of the three parameter blocks.
See “TELNETDEVICE statement” on page 372 for more information about this
statement.

Chapter 11. TN3270 Telnet Server 409

|
|
|
|

USERGROUP statement
The optional USERGROUP object statement defines a group of user IDs. The
group name can be used on several mapping statements.

Syntax

�� 1USERGROUP user_group_name user_IDs ENDUSERIDGROUP �

Parameters
user_group_name

The group name (up to 16 characters) that contains user ID names which
represent clients when the client certificate is translated into a user ID.

user_IDs
An exact user ID name or a wildcard user ID name.

User ID names can be wildcarded when specified in a group.

v % or ? is a single character position wildcard. It can be placed anywhere.

v * is a multi-position wildcard. It can only be placed at the end of the user ID.

v The two wildcard types can be used together. For example, U%%V5* is a
valid wildcard name.

The position of the single wildcard (%) is used first to determine the most
specific match. For example, the following wildcard names are checked in the
order listed.

v M5MUSER*

v M5M%%%%*

v M5%USER*

v M%MUSER*

v M%MUS%R*

v M%MUS%*

v M%MU%ER*

v M*

410 z/OS V1R4.0 CS: IP Configuration Reference

|
|

USSTCP statement
The optional USSTCP mapping statement allows you to map a customized USS
table to a Client Identifier. You can use an existing table or create a USS table,
assemble it and load it into your system library.

Syntax

�� USSTCP table_name
Client_Identifer

clid_type,

�

Parameters
table_name

The name of the USS table load module.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 382 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 381 for details. If no Client Identifier is specified, then it is considered the
NULL Client Identifier.

Usage notes
v An assembled USS table load module from VTAM can be used or one can be

created. For coding details, refer to z/OS Communications Server: IP
Configuration Guide. Also see “Telnet USS table setup” on page 412.

v Always map a unique Client Identifier on each USSTCP statement. Otherwise,
the last USS table mapping for the Client Identifier is used.

v The most common setup error is to fail to include the table load module in a load
library accessible by TCP/IP.

v If a default application and a USS table are both mapped to the same Client
Identifier, the default application is used. The USS messages are used in case of
an error or if FIRSTONLY is specified on DEFAULTAPPL.

Chapter 11. TN3270 Telnet Server 411

Telnet USS table setup
USSCMD

The USSCMD macroinstruction is used to define Telnet terminal operator
commands.

USSMSG
The USSMSG macroinstruction defines Telnet terminal operator messages
(USSMSGxx).

USSPARM
The USSPARM macroinstruction defines an operand or positional
parameter that can be specified on a command identified by the USSCMD
macroinstruction. It also defines default values for the operand or positional
parameter.

There can be multiple USSPARM macroinstructions associated with a
USSCMD macroinstruction. For each operand (keyword or positional), code
a USSPARM macroinstruction.

USSEND
The USSEND macroinstruction delimits the end of the USS table.

USSTAB
The USSTAB macroinstruction indicates the beginning of a USS table.

General usage rules for Telnet USS macroinstructions
v The Telnet USS macroinstructions can be coded exactly as the VTAM

macroinstructions. A few VTAM parameters are not supported by Telnet. In these
cases, the parameter value is ignored and does not interfere with the execution
of the macroinstruction. Differences between Telnet and VTAM are listed under
usage notes for each macroinstruction.

v An assembled and linked VTAM USS table can be used directly by Telnet.
Unsupported statements are ignored and do not interfere with the processing of
the command.

v For additional information about installing or changing an interpret table, refer to
the z/OS Communications Server: SNA Resource Definition Reference, which
contains instructions for using the Telnet solicitor or USS Logon Panel.

v A sample USS table is located in hlq.SEZAINST(EZBTPUST).

v The USS Macroinstructions can be found in hlq.SISTMAC1, the VTAM macro
library.

412 z/OS V1R4.0 CS: IP Configuration Reference

USSCMD macroinstruction
The USSCMD macroinstruction is used to define a Telnet operator or terminal
operator command.

Syntax

��
name

USSCMD CMD=command_name
FORMAT=PL1

PL1
FORMAT=

BAL

�

�
REP=replace_command_name

�

Parameters
name

Specifies the name assigned to the macroinstruction.

CMD=command_name
Specifies the command name assigned to the macroinstruction.

FORMAT=BAL
Specifies the user-defined command indicated on this USSCMD
macroinstruction in Basic Assembler Language (BAL) syntax.

�� 1

1

command
, keyword=

value
p

�

command
Identifies the command. It is followed by one or more blanks.

p Specifies one or more positional operands. Positional operands are
entered in the format Pn, where n is the position number of the
operand. Each operand (unless it is the last in the command) is
followed by a comma. Positional operands must appear before any
keyword operands.

keyword
Specifies keyword operand associated with the command. Each
operand (unless it is the last in a command) is followed by a comma.

value Determines the value assigned to a keyword operand.

FORMAT=PL1
Specifies the user-defined command specified on this USSCMD
macroinstruction in PL/1 programming syntax.

Chapter 11. TN3270 Telnet Server 413

�� 1

1

command
, keyword

(value)
(p)

�

command
Identifies the command. It is followed by one or more blanks or by a left
parenthesis (that is, positional operands).

p Specifies one or more positional operands. Positional operands are
entered in the format Pn, where n is the position number. If positional
operands are used, the parentheses must be coded.

keyword
Used to enter each operand parameter. Each operand must be followed
by one or more blanks or by a value enclosed in parentheses.

value The value assigned to a keyword operand.

REP=replace_command_name
Specifies the valid command that is to replace the user-defined command
indicated by the CMD operand. If the REP operand is not coded, the value
specified in the CMD operator in used.

414 z/OS V1R4.0 CS: IP Configuration Reference

USSMSG macroinstruction
The USSMSG macroinstruction defines Telnet terminal operator messages
(USSMSGxx).

Syntax

��
name

USSMSG BUFFER= buffer_address
(buffer_address,LUNAME)
(buffer_address,SCAN)

OPT=BLKSUP
TEXT=’MESSAGE_TEXT’

BLKSUP
OPT=

NOBLKSUP

�

�

1

MSG= message_id
,

(message_id)

�

Parameters
name

Specifies the name assigned to the macroinstruction.

buffer_address
Specifies the address (name) of an area of storage defined to contain the
message text and a header indicating the length of the message text. The
storage area must be formatted as shown in Figure 15.

The message text defined in the storage area must follow the USSEND
macroinstruction.

The message text is sent to the terminal operator as it appears in the storage
area. Telnet does not modify or translate the message text. You are responsible
for including any device-dependent control characters within the message. The
data format must be 3270 data stream. SNA character stream (SCS) is not
supported by Telnet.

LUNAME|SCAN
Specifies that the character strings listed in Table 20 on page 416 are replaced

Figure 15. USS message layout in storage

Chapter 11. TN3270 Telnet Server 415

with the appropriate values in the position in the message where the character
string occurred. The entire string specified by BUFFER is searched, using the
character @.

Table 20. Variables substituted for USSMSG

Character string Message text Format

@@@@DATE Current Date 8 bytes, in the format
specified by the
DATEFRM and
DATEDLM operands on
the USSTAB
macroinstruction.

@@@@@@@@@IPADDR Client IP Address 15 bytes, leading 0’s
suppressed, left-justified,
with trailing blanks if
needed.

@...@IPHOSTNAME (1) Client host name 40 bytes, name
left-justified with trailing
blanks if needed.

@@LUNAME (2) Client LU Name
(SLU)

8 bytes, name
left-justified with trailing
blanks if needed.

@@PRT Client Port Address 5 bytes and leading 0’s
are not suppressed

@@@@RUNAME Failing operation
Name

10 bytes, name
left-justified with trailing
blanks if needed.

@@@SENSE Sense Code or
Return Code

8 bytes

@@@@TIME Current Time 8 bytes in the
HH_MM_SS format,
where an underscore (_)
is the delimiter specified
on the TIMEDLM
operand of the USSTAB
macroinstruction.

@HOSTNET

@@SSCPNM

@@@NETID

@...@NQN (3)

Placeholders for Telnet.
Accepted for use, but
are set to blanks.

Notes:

1. IPHOSTNAME must be preceded by 30 @ symbols.

2. @@LUNAME is substituted when it is known. For TN3270 connections, the LU name is
not known until after the MSG10 screen is sent to the end-user because the application
name is not yet known.

3. NQN must be preceded by 14 @ symbols.

message_id
Specifies which message or messages are defined by this macroinstruction.
Table 21 on page 417 shows the default table variable substitution and
examples.

416 z/OS V1R4.0 CS: IP Configuration Reference

For terminal operator messages, enter decimal integers in the range 0–14. The
numbers 0–14 correspond to the USS messages with message IDs of
USSMSG00 through USSMSG14, respectively.

Note: USSMSG00 is not defined in the IBM-supplied USS table. If you do not
define this message, no message is sent in this case.

Table 21. Default table variable substitution

Message Variable Example

MSG00 Command % COMMAND ACCEPTED

MSG01 Command INVALID % COMMAND SYNTAX

MSG02 Command % COMMAND UNRECOGNIZED

MSG03 Command parameter % PARAMETER EXTRANEOUS

MSG04 v Command parameter

v Command parameter
value

% PARAMETER VALUE %(2) NOT VALID

MSG05 None UNSUPPORTED FUNCTION

MSG06 Message not used Not applicable — NOT USED BY TELNET

MSG07 v LU name

v Operation that failed

v Sense Code 3 or
Return Code

%(1) UNABLE TO ESTABLISH SESSION — %(2)
FAILED WITH SENSE %(3)

MSG08 None INSUFFICIENT STORAGE

MSG09 Message not used Not applicable — NOT USED BY TELNET

MSG10 None A 3270 data format screen

MSG11 Message not used Not applicable — NOT USED BY TELNET

MSG12 None REQUIRED PARAMETER OMITTED

MSG13 Text after IBMTEST
echoed back

IBMECHO %

MSG14 Message number that
could not be displayed

USS MESSAGE % NOT DEFINED

OPT=BLKSUP|NOBLKSUP
BLKSUP specifies that extraneous blanks are suppressed from the message.
Any sequence of two or more blanks is converted into a single blank.
NOBLKSUP specifies that extraneous blanks are not suppressed from the
message. Any sequence of two or more blanks is presented unchanged in the
message.

message_text

Specifies the text to use in the USS messages identified by the MSG operand.
Within message_text, you can place any combination of the character strings
described in Table 20 on page 416. Telnet places the strings with the values
shown in the table.

Note: Blank suppression always occurs, even if OPT=NOBLKSUP is coded.

Usage notes
For TN3270E, this limitation exists. Unless specific IP-to-LU mapping is used, the
LU name is not known for non-TN3270E sessions until an application is chosen

Chapter 11. TN3270 Telnet Server 417

from the MSG10 screen. Therefore, no @@LUNAME substitution takes place on
the MSG10 screen for non-TN3270E sessions.

418 z/OS V1R4.0 CS: IP Configuration Reference

USSPARM macroinstruction
The USSPARM macroinstruction defines an operand or positional parameter that
can be specified on a command identified by the USSCMD macroinstruction. It also
defines values for the operand or positional parameter. There can be multiple
USSPARM macroinstructions associated with a USSCMD macroinstruction. For
each operand (keyword and positional), code a USSPARM macroinstruction.

Syntax

��
name

USSPARM PARM= parm_operand_name
P_number DEFAULT=default_value

�

�
REP=rep_operand_name VALUE=value_value

�

Parameters
name

Specifies the name assigned to the macroinstruction.

parm_operand_name
Specifies the keyword parameter in the user-entered command to which this
USSPARM macroinstruction applies. parm_operand_name must be 1–8
alphanumeric characters.

P_number
Specifies a positional parameter, where number is a decimal integer from 1 to
the maximum number of positional parameters for the command. P_number
indicates the positional parameter in the user-entered command to which this
USSPARM macroinstruction applies.

default_value
Specifies a default value to be used if the operand is omitted when the
command is entered. If DEFAULT is not specified, the operand is treated as if it
were not entered.

If the parameter in the PARM operand allows a network-qualified name to be
specified, then the value of DEFAULT can be a network-qualified name.

rep_operand_name
Specifies the parameter is replaced with rep_operand_name. The value for
rep_operand_name must be 1–8 alphanumeric characters. The value of the
operand is assigned from the parameter specified by PARM. If PARM specifies
a keyword parameter, its value is assigned to the operand specified by REP. If
PARM specifies a positional parameter, its value is treated as if it were an
operand value and it is assigned to the operand specified by REP.

If REP is not coded, it takes the value of PARM. (That is, the user-entered
parameter is used as entered.)

Positional parameters such as P1 and P2 can also be used as operands.

value_value
Specifies the default value to be used if the operand specified by the PARM
operand is entered without a value.

VALUE is in contrast with the DEFAULT operand, which specifies the default to
be used if the operand itself is not entered.

If multiple VALUE operands are specified for the same operand, the first VALUE
operand is used.

Chapter 11. TN3270 Telnet Server 419

If the parameter in the PARM operand allows a network-qualified name to be
specified, then the value of VALUE can be a network-qualified name.

Usage notes
v The DEFAULT and VALUE operands cannot be coded on the same USSPARM

macroinstruction. To use both operands, code two USSPARM macroinstructions
with the same value specified for PARM. The macroinstruction specifying VALUE
must precede the one containing the DEFAULT operand. If REP is to be
specified, it must be on the macroinstruction containing the VALUE operand. For
example,
USSPARM P=T,REP=TYPE,VALUE=COND
USSPARM P=T,REP=TYPE,DEFAULT=COND

v For multiple specifications of the same parameter, the last value specified is
used. An exception is if positional parameters are used to represent the DATA
parameter. Specifying multiple data positional parameters permits a data string
with a blank to be entered. Each blank acts as a parameter delimiter. If the
number of blanks is known, multiple DATA parameters can be used instead of
using an interpret table. For example, a LOGON TSO command can have two
DATA parameters. The first could be USERID and the second could be the
PROC. Telnet accepts both parameters and passes both as data to the host
application with a blank between the parameters.

v Parameters used by Telnet are:
LOGON APPLID,LOGMODE,DATA
LOGOFF
IBMTEST # of retries

420 z/OS V1R4.0 CS: IP Configuration Reference

USSTAB macroinstruction
The USSTAB macroinstruction indicates the beginning of a USS table.

Syntax

��
name

USSTAB
FORMAT=DYNAMIC

TABLE=name
�

�
DATEDLM=/

DATEDLM=delimeter

DATEFRM=MDY

DATEFRM=
MDY
DMY
YMD

TIMEDLM=:

TIMEDLM=delimiter
�

Parameters
name

Specifies the required CSECT name for the USS table.

FORMAT= DYNAMIC
Specifies how the USS table is formatted. Dynamic is required for Telnet.

TABLE=name
Specifies the translation table that is used by Telnet to translate
character-coded commands. If a translation table is coded in the specified USS
table, the table that is used. If no table is coded, the table in the IBM default
EZBTPUST is used. If EZBTPUST has been altered and no longer contains a
translation table, an internal translation table is used that is the same as the
table in EZBTPUST.

DATEDLM
Specifies the character to be used as a delimeter to separate the month, day,
and year parts of the date where @@@@DATE is specified in the message
text. The slash (/) is used if DATEDLM is not specified. An ampersand (&) and
single quotation mark (’) are not valid delimiters.

DATEFRM
Specifies the date format to be used where @@@@DATE is specified in the
message text. Note that the delimiter used between the month, day, and year is
specified on the DATEDLM operand.

DMY Specifies the day, followed by month, followed by year as
dd_mm_yy, where an underscore (_) is the delimiter specified
on the DATEDLM operand.

MDY Specifies the month, followed by day, followed by year as
mm_dd_yy, where an underscore (_) is the delimiter specified
on the DATEDLM operand.

YMD Specifies the year, followed by month, followed by day as
yy_mm_dd, where an underscore (_) is the delimiter specified
on the DATEDLM operand.

TIMEDLM
Specifies the character to be used as a delimeter to separate the hour, minutes,
and seconds parts of the time where @@@@TIME is specified in the message
text. The colon (:) is used if TIMEDLM is not specified. An ampersand (&) and
single quotation mark (’) are not valid delimiters.

Chapter 11. TN3270 Telnet Server 421

USSEND macroinstruction
The USSEND macroinstruction delimits the end of a USS table.

Syntax

��
name

USSEND �

Parameters
name

Specifies the name assigned to the macroinstruction.

422 z/OS V1R4.0 CS: IP Configuration Reference

Telnet INTERPRET table setup
INTAB The INTAB macroinstruction defines an interpret table that lists the Telnet

application programs with which one or more logical units can establish a
session. One INTAB macroinstruction defines the name of the interpret
table and a group of logon messages definitions.

LOGCHAR
The LOGCHAR (logon-characters) macroinstruction defines a single logon
message and the name of a host application program. More than one
LOGCHAR can be included in an interpret table.

General usage rules for Telnet INTERPRET macroinstructions
v The Telnet interpret macroinstructions can be coded exactly as the VTAM

macroinstructions. Telnet supports all functions supported by VTAM.

v An assembled and linked VTAM interpret table can be used directly by Telnet.

v For additional information about installing or changing an interpret table, refer to
the z/OS Communications Server: SNA Resource Definition Reference, which
contains instructions for using the Telnet solicitor or USS Logon Panel.

v A sample interpret table is located in hlq.SEZAINST(EZBTPINT).

v The INTERPRET macros can be found in hlq.SISTMAC1, the VTAM macro
library.

Chapter 11. TN3270 Telnet Server 423

INTAB macroinstruction
The INTAB macroinstruction defines an interpret table that lists the VTAM
application programs with which one or more logical units can establish a session.
One INTAB macroinstruction defines the name of the interpret table and a group of
logon message definitions.

Syntax

��
name

INTAB
NAME

�

Parameters
name

Specifies an optional name for the macroinstruction. If specified, name must be
unique and should be used as the operand for the assembler language END
statement. When the macroinstruction is assembled, this name is used to
identify the entry point to the interpret table CSECT.

424 z/OS V1R4.0 CS: IP Configuration Reference

LOGCHAR macroinstruction
Each LOGCHAR (logon-characters) macroinstruction defines a single logon
message and the name of an application program, a logon interpret routing, or a
USERVAR. More than one LOGCHAR macroinstruction can be included in an
interpret table.

Syntax

��
name

LOGCHAR APPLID= (APPLICID,application_name)
(ROUTINE,routine_name)
(USERVAR,uservar_name)

�

�
REMOVE=NO

REMOVE= NO
YES

SEQNCE=’characters’
�

Parameters
name

Specifies an optional name on the macroinstruction. This name is not used by
Telnet and is ignored.

APPLID
Specifies the name of an application program, a logon interpret routine, or a
USERVAR.

(APPLICID,application_name)
Specifies the name of the application program. application_name can be any of
the following:
v ACBNAME of an application program in this host
v applname of an application program in this host
v applname of an application program in another host
v USERVAR representing an application program

application_name can be a network-qualified name. A network-qualified name
takes the form of netid.application_name. If application_name is
network-qualified, the network identifier is considered real and is not allowed to
change. The resource name of the network-qualified name is considered
Generic and can undergo USERVAR translation.

Note: If ACBNAME and the network name on the APPL definition statement for
the application program are different, you cannot use a network-qualified
ACBNAME.

(ROUTINE,routine_name)
Specifies the routine name of the associated logon-interpret routine. All
logon-interpret routines specified in an interpret table must be assembled and
link-edited with that interpret table.

(USERVAR,user_var_name)
The same as specifying APPLICID.

REMOVE=YES
Specifies that Telnet is to remove the first nonblank set of characters from the
user logon sequence data being processed. The remaining data is left-justified
and padded with blanks on the right. You can substitute Y for YES when coding
this parameter.

Chapter 11. TN3270 Telnet Server 425

REMOVE=NO
Specifies that Telnet is not to remove any data from the user logon sequence.
You can substitute N for NO when coding this parameter.

For example, if the following information is sent and REMOVE=Y is specified,
Telnet removes “IMS10” before it passes the information to the application
program in the user data field of the CINIT RU.
IMS10 NAME PASSWORD =====> NAME PASSWORD

SEQNCE
Specifies the required part of a logical unit’s logon message.

The logon message might have additional data beyond the characters specified
in the LOGCHAR macroinstruction. That data can be used and possibly
changed by the logon-interpret routine if the ROUTINE operand is specified.
Whether or not the data is changed or if a routine is called at all, the data is
passed to the application program as user data.

To specify an apostrophe (’) or an ampersand (&) within the logon message,
code a double apostrophe (’’) or a double ampersand (&&) within the character
string. If the terminal user enters the logon message in lowercase and the
message is not translated to uppercase (for example, by USS translate table),
the value for 'characters' must be coded in lowercase.

Do not specify leading and trailing device-control characters within a character
string that is to be interpreted, because the USS facility deletes these
characters. Device control characters coded within a logon message are
deleted; therefore, a blank should not be coded for each occurrence of these
characters. However, if a character within the logon message is translated to a
blank by the interpret table, code a blank to represent that character.

LOGCHAR without SEQNCE or with SEQNCE=’*’ is considered a default match
to the logon message. Telnet accepts the logon message and requests logon to
the application program specified in the LOGCHAR macroinstruction. Therefore,
place a default match LOGCHAR macroinstruction at the end of the interpret
table. Otherwise, the remaining logon messages in the interpret table are not
compared with the logon message entered by the terminal user.

Note: If you use two or more LOGCHAR macroinstructions, arrange them so
that their SEQNCE fields are in reverse collating order.

Usage notes
v Telnet compares the logon message (character by character) with successive

entries in the specified interpret table. If the leading characters in the logon
message correspond to all the characters in an entry in the interpret table, Telnet
accepts the logon message as valid (even though the logon message can be
longer than the corresponding entry in the interpret table). If the first character or
characters of several logon messages are identical, you should arrange the
LOGCHAR macroinstructions so the logon sequences for the logon messages
are from the most restrictive (greatest number of characters) to the least
restrictive (fewest number of characters). For example:
SEQ1 LOGCHAR APPLID=(APPLICID,AP2),SEQNCE=’LOG2’
SEQ2 LOGCHAR APPLID=(APPLICID,AP1),SEQNCE=’LOG’

v Otherwise, in the preceding example, if sequence LOG had preceded LOG2 in
the interpret table, both logon messages LOG and LOG2 would be valid logons
to application program AP1. If you use two or more LOGCHAR
macroinstructions, they must be arranged so that their SEQNCE fields are in
reverse collating order.

Coding LOGON-INTERPRET routines

426 z/OS V1R4.0 CS: IP Configuration Reference

You can code logon-interpret routines to validate logons and determine the name of
the application program that is to receive the logons. The entry point name must
match the routine name specified in the APPLID=(ROUTINE,routine name) operand
in the LOGCHAR macroinstruction. All logon-interpret routines specified in an
interpret table must be assembled and link-edited with that interpret table.

The logon-interpret routine interface allows the routine to supply a network-qualified
application name for interpreted logons.

If you want the logon-interpret routine to supply a network-qualified application
name, you need to change the interpret routine parameter list. If you do not want
the routine to supply a network-qualified name, you do not need to change the
routine parameter list. You can use Registers 0 and 1 to supply the application
name.

Requirements for logon-interpret routines:

Entry from:
Telnet

Entry point:
routine name

Contents of registers at entry:
Register 0:

Length of logon message (any length from 1 to 80)
Register 1:

Address of first byte of logon message. For LOGON requests, Telnet
searches the interpret table again, after USS translation, looking only for the
specified APPLID. After USS translation, register 1 contains the address of
the first byte of the APPLID.

Register 2:
Address of an 8-byte logical unit name

Register 4:
Address of parameter list for the network identifier and resource name.

Register 13:
Address of a 72-byte save area provided by Telnet.

Register 14:
Return address

Register 15:
Address of entry point of this routine.

Contents of Registers at Exit: If the interpreted name in the parameter list is
blank, Registers 0 and 1 contain the name of the VTAM application program (in
EBCDIC characters) with which Telnet is to establish a session:

Register 0:
First 4 characters of name (left-justified).

Register 1:
Last 4 characters of name (left-justified).

Registers 2–14:
Restored to condition at entry.

Register 15:
Return code:

00 Application program was found and the name is placed in registers
0 and 1.

Chapter 11. TN3270 Telnet Server 427

Non0 Application program was not found and the name is not placed in
registers 0 and 1.

If the name of the application program contains fewer than 8 characters, use blanks
to provide a name with 8 characters.

Logon-interpret routine parameter list

When the exit gets control, the address of the following parameter list is in register
4. Offsets 0 through 27 include information about the fixed or interpreted name.
Offset 28 includes the uninterpreted name.

Table 22. Logon interpret routine parameter list

Dec offset Size (bytes) Description Input or output

0 2 Length of parameter list Input

2 8 Name of requesting LU Input

10 17 Interpreted name (in the form
or either name or netid.name)

Output

27 1 Length of uninterpreted name Input

28 n Uninterpreted name Input

Operation: The logon-interpret routine is run synchronously in pageable storage
under the control of Telnet and not under the control of an application program. For
the application program to receive the logon, this routine must validate the logon,
obtain the name of the application program to receive control, and provide this
name back to Telnet. Otherwise, the routine specifies that the logon is not valid or
that the name of the application program was not found inTelnet.

The logon-interpret routine must also:

v Save and restore the contents of registers 2–14 when receiving and passing
control.

v Use re-enterable code (the routine must not store anything within itself or modify
itself during execution).

v Perform no I/O operations; an I/O request causes the routine to terminate
abnormally.

The routine gets control in supervisor state with a Telnet storage key, so errors
within the routine could cause damage to Telnet or to system control blocks and
modules.

Note: You can modify the logon message pointed to by register 1 that is passed to
the interpret routine. However, remember these two points:
v Telnet does not look at the changed storage; it is passed as user data to

the application.
v You should modify with caution, as modification outside the message

storage boundaries could result in Telnet or TCP/IP stack outages.

The uninterrupted Logon message in the parameter list should not be
changed as it is not passed as user data to the application.

428 z/OS V1R4.0 CS: IP Configuration Reference

ENDINTAB macroinstruction
The ENDINTAB macroinstruction defines the end of an interpret table. Code one
ENDINTAB macroinstruction after one or more LOGCHAR macroinstructions to
define the end of an interpret table. You can also follow the ENDINTAB
macroinstruction with an assembler language END statement.

Syntax

��
name

ENDINTAB
NAME

�

Parameters
name

Specifies an optional name on the macroinstruction. This name is not used by
Telnet and is ignored.

Usage notes
v If you code an assembler language END statement, it must be in the format:

END name

where name is the label of the INTAB macroinstruction and specifies the main
entry point.

v Follow the ENDINTAB macroinstruction with an assembler language END
statement unless the interpret table is to be followed by CSECTs containing one
or more user-written APPLID routines.

Chapter 11. TN3270 Telnet Server 429

Telnet LU exit setup
You can code LU exit routines to specify the LU name used to represent the client.
The entry point name must match the routine name specified as the LUGROUP
group name. Each LU exit routine specified must be assembled and link-edited as a
stand-alone load module.

Operation
The LU exit routine runs synchronously in pageable storage under the control of
Telnet; it is not under the control of the application program. The LU exit Routine
can use non-reentrant code. Telnet ensures that only one process at a time calls
the LU exit so it can maintain local storage in the routine for LU name
management. The LU exit cannot perform I/O operations. An I/O request causes the
routine to terminate abnormally. The routine gets control in supervisor state with the
Telnet storage key. Errors in the LU exit might damage Telnet or the entire TCP/IP
stack. Telnet monitors the number of abends by the LU exit. If 3 abends occur
within a 10-minute period, the LU exit will be disabled by Telnet. Telnet will fail any
future LU exit lookup without calling the LU exit.

Mapping rules apply to the LU exit as if it were an LU group. For example, if the LU
exit is LUMAPed to a Client Identifier as a Specific group, only connections
requesting specific LUs use the LU exit. The only difference between an LU group
and an LU exit is whether Telnet or the LU exit generates the LU name to use. At
this time, the LU exit must be used on the LUMAP or PRTMAP statement alone. If
Associated Printer function is being used on the LUMAP statement, neither the LU
group nor the PRT group can be an LU exit. If the LU name is generated by an LU
exit, an LU or LUG parameter cannot be associated with the chosen application
name.

In addition to the several Client Identifiers passed to the LU exit using the
parameter list pointed to by Register 1, the parameter list also includes any LU
names or ranges that were coded in the LUGROUP and the requested application
name, if specified. Telnet does not use the LU list. The LUGROUP can be defined
without any LUs specified. The LUs specified can be used as seed values if the LU
name exit wants to use them.

Telnet specifies the function code in Register 0.

v Function code 01 indicates the LU exit should create an LU name. Any algorithm
can be used in the LU exit to generate an LU name. The LU exit either returns
the LU name in the LU name field of the parameter list with a return code of 0 in
Register 15, or the LU exit indicates that no LU name should be used and
specifies a return code of 8 in Register 15. If Register 15 is 0, Telnet uses the LU
name value, tries to register the LU name in the Telnet master LU database, and
then assigns the LU to the connection. At this time, any nonzero return code is
treated by Telnet as an indicator that the function did not work. It is
recommended that you use 8. In future releases, other values might be used to
indicate specific reasons.

v Function code 02 indicates the LU name is no longer representing the connection
and is being unassigned from the Telnet connection. The LU name is now
available for assignment to another connection. It is up to the LU exit to manage
the list of available LU names. If LU names are not reused, the LU exit might
ignore the unassign function code. Whether or not the LU exit records the state
change, Telnet ignores the return code value and deregisters the LU name from
the Telnet master LU database.

430 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

v Function code 03 indicates the LU name is being inactivated because the
operator issued the V TCPIP,,T,INACT,luname command or the ACB failed to
open. If the LU exit is tracking the state of LU names, an inactive LU should be
considered not available to represent a client. Whether or not the LU exit
changes the LU state within the exit, Telnet ignores the return code value, adds
the LU name to the inactive LU list, and will not allow it to be registered in the
master LU database.

v Function code 04 indicates the LU name is being activated because the operator
issued the V TCPIP,,T,ACT,luname command. If the LU exit is tracking the state
of LU names, the LU name should be considered available to represent a client.
Whether or not the LU exit changes the LU state within the exit, Telnet ignores
the return code value, removes the LU name from the inactive LU list, allows
registration in the master LU database, and allows assignment to a Telnet
connection.

If a specific LU name was requested by the client and it is not an LUGROUP name,
that LU name is in the LU name field of the parameter list as input to the Exit. The
LU exit can leave that LU name or override it with another name. In either case,
Telnet then attempts to register the returned LU name.

If the LU name is already assigned or has been inactivated, Telnet fails the
connection but does not notify the LU exit that the LU was already in use. If the
OPEN ACB fails, Telnet notifies the Exit that the LU name is being inactivated in the
Telnet Registration database by calling the LU exit with function code 03. If the LU
name is activated using the Telnet ACT command, the LU exit is called with function
code 04, indicating the LU name is reactivated.

Requirements for LU exit routines
Entry from: Telnet
Entry point: Routine name

Contents of registers at entry
Register 0: Function code. 01 - Assign LU

02 - Unassign LU
03 - Inact LU
04 - Act LU

Register 1: Address of parameter list specifying LU name, LUGROUP, and
client known information.

Register 13: Address of a 72-byte save area provided by Telnet.

Register 14: Return address.

Register 15: Address of entry point of this routine.

Contents of registers at exit
Registers 0-14: Restored to condition at entry.

Register 15: Return code:
00 - Use the LU name in the parameter area.
08 - LU name is not to be used

If the name of the LU contains fewer than 8 characters, pad with blanks to the right
to provide a name with 8 characters. The LU exit routine must save and restore the
contents of registers 2-14 when receiving and passing control. Do not modify any

Chapter 11. TN3270 Telnet Server 431

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

values in the parameter list other than the LU name field. Do not alter more than
the 8 bytes needed for the LU name. The R15 return code indicates to Telnet what
action to take.

LU exit routine parameter list
When the exit gets control, the address of the following parameter list is in register
1.
Dec Size Description Input Assign/Unassign Inact/ACT
Offset (Bytes) or Inact (ACB fail) Command

Output

Parameter list pointed to by Register 4. Value if Value if
not set not set

0 8 LU name Both Blanks Always present
8 4 Flag Bytes (Currently not used) Both Always 0 Always 0
12 16 Client IP address in hex Input Always present Always 0
28 4 Client Port Input Always present Always 0
32 16 Destination IP address in hex Input Always present Always 0
48 4 Destination Port Input Always present Always 0
52 16 Linkname Input Blanks Always Blanks
68 8 Userid from Client Certificate Input Blanks Always Blanks
76 4 Ptr to hostname structure Input 0 Always 0
80 8 Application netid Input Blanks Always Blanks
88 8 Application name Input Blanks Always Blanks
96 8 Userid from solicitor panel Input Blanks Always Blanks
104 4 Ptr to LUGroup structure Input 0 0

Hostname structure

0 1 Total length of Hostname Input 0
1 255 Client hostname Input

LuGroup structure

0 4 Number of single LU names Input
4 n List of all single LU names,

each 8 characters
(n=8*number of LUs) Input 0

n+4 4 Number of LU range structures Input 0
n+8 m List of all LU range structures,

each 24 characters (low/high/variant)
(m=24*number of structures) Input

432 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 12. EXPRESS LOGON using DCAS (Digital Certificate
Access Server)

Digital Certificate Access Server (DCAS) is the certificate server in the three-tier
Express Logon Feature (ELF) environment. This requires a middle-tier TN3270
server, so called because it does not reside on the host, but rather between the
TN3270 workstation and the host.

For additional overview and configuration information about Express Logon, refer to
z/OS Communications Server: IP Configuration Guide.

This chapter contains the following sections:

v “Starting DCAS”

v “Express Logon sample procedure (EZADCASP)” on page 434

v “PassTicket server configuration file processing” on page 434

v “DCAS configuration file keywords and parameters” on page 435

Starting DCAS
You can start the DCAS from the z/OS UNIX shell or with an MVS started
procedure using optional parameters for debugging, logging, and specifying the
configuration file. To start the DCAS from the z/OS UNIX shell, use the following
format:
dcas <parameter_1> <parameter_2> <parameter_3> &

To start the DCAS from an MVS started procedure, use the following format:
PARM=.../<parameter_1> <parameter_2> <parameter_3>

The following optional parameters can be used with both the DCAS UNIX command
and the MVS started procedure:

-d or -D
Indicates debugging. The following levels apply:

1 Specifies log error and warning messages.

2 Specifies log error, warning, and informational messages.

3 Specifies log error, warning, informational, and debug messages. This is
the default.

-l or -L
Indicates logging to SYSLOGD or to a designated log file. If you do not specify
this parameter, logging defaults to /tmp/dcas.log.

If you specify a debug level, but not logging, then the DCAS attempts to open
the default log file /tmp/dcas.log. If this fails, debugging is turned off.

For SYSLOGD, the DCAS uses the log facility local0.

-c or -C
Indicates the requested configuration file (for example, /u/userx/passtick.conf). If
you do not specify this parameter, the DCAS looks for the configuration file
using the following search order:

1. DCAS_CONFIG_FILE environment variable

2. /etc/dcas.conf

© Copyright IBM Corp. 2000, 2002 433

|

|
|
|
|

3. tsouserid.DCAS.CONF

4. TCPIP.DCAS.CONF

Note: If the DCAS does not find a valid configuration file, it will not start.

Express Logon sample procedure (EZADCASP)
The following is a sample procedure in hlq.SEZAINST(EZADCASP):
//DCAS PROC
//*
//* IBM Communications Server FOR OS/390
//* SMP/E distribution name: EZADCASP
//*
//* 5647-A01 (C) Copyright IBM Corp. 2000.
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV2R10
//*
//* Function: Sample procedure for running the Digital
//* Certificate Access Server (DCAS)
//*
//DCAS EXEC PGM=EZADCDMN,REGION=4096K,TIME=NOLIMIT,
//PARM=’POSIX(ON) ALL31(ON) / -d 1 SYSLOGD’
//*
//*** Notes:
//*
//* - DCAS can also be invoked from the Unix System Services shell
//* as a shell command: dcas
//*
//* - The OS/390 Secure Socket Layer (SSL) product libraries must
//* be accessible at runtime to DCAS- hlq.mlq.SGSKLOAD.
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//*
//* - To pass parameters to DCAS, specify them after the final slash
//* on the PARM statement. For example:
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("LIBPATH=/usr/lib")/-d 3 -l SYSLOGD’)
//*
//* - Other examples
//* // PARM=(’POSIX(ON) ALL31(ON) TERMTHDACT(UATRACE) TRAP(ON)’,
//* // ’ENVAR("DCAS_CONFIG_FILE=/u/us1/xxx.conf")/ -d 3 -l SYSLOGD’)
//*
//*
//*
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

For more information, see “EXPRESSLOGON statements” on page 349.

PassTicket server configuration file processing
The following are some rules for processing a PassTicket server configuration file:

v The # symbol as the first character in a configuration file indicates a comment.
The format for specifying keywords and values is <keyword> <value> with a
space between the keyword and the value.

434 z/OS V1R4.0 CS: IP Configuration Reference

v If a keyword is unrecognized as one of the valid DCAS keywords, a message is
sent to the console indicating a keyword that is not valid was detected, but that
processing will continue. If the same keyword is specified more than one time in
the profile, the last value specified for that keyword is used.

v You can use upper or lowercase for keywords and most values, but values
representing file names in the HFS are case sensitive.

v HFS file names can be 128 characters or fewer in length. This includes the path
name, file name, forward slashes (/), and periods (.). File names longer than 128
characters are truncated.

DCAS configuration file keywords and parameters
This section describes the keywords and parameters used in the DCAS
configuration file.

CLIENTAUTH keyword
Use the CLIENTAUTH keyword and parameters to specify client authentication.

�� CLIENTAUTH
LOCAL2
LOCAL1 LOCAL2 �

Parameters

LOCAL1
Specifies that the SSL handshake process authenticates the client certificate as
well as the server certificate. This check verifies the client has received a
certificate from a trusted certificate CA.

LOCAL2
Specifies that the SSL handshake process authenticates the client certificate
and provides additional access control through the installation’s SAF-compliant
security product (for example, RACF). The following conditions apply:

v LOCAL2 verifies the client certificate has an associated user ID defined to
the security product. The certificate must first be defined to the security
product to obtain this validation. For more information about adding
certificates to RACF, refer to the description of the RACDCERT command in
the z/OS Security Server RACF Command Language Reference.

v For security products that support the SERVAUTH class, installations can
also obtain a more granular level of access control. If the installation has
activated the SERVAUTH class and provided a profile for the DCAS in the
SERVAUTH class, only users specified in the profile are allowed to connect
to the port. The security product profile name is specified using the following
format:
EZA.DCAS.sysname

where sysname is the name of the MVS system image.

Note: Client certificate refers to the TN3270 middle-tier server.

IPADDR keyword
Use this keyword to define the IP address to which the DCAS will bind.

Chapter 12. EXPRESS LOGON using DCAS (Digital Certificate Access Server) 435

��
IPADDR ipaddr

�

Parameters

ipaddr
Specifies the dotted-decimal Internet address (IPv4 only) to which the DCAS
binds. If you do not specify ipaddr, the DCAS binds to INADDR_ANY.

KEYRING keyword
Use the KEYRING keyword to define the HFS file containing the certificate to be
used during the SSL handshake.

�� KEYRING hfsfilename �

Parameters

hsffilename
Specifies the path and file name of the keyring file.

Usage notes

The keywords KEYRING and SAFKEYRING are mutually exclusive. If neither
KEYRING nor SAFKEYRING is specified, the default keyring file, key.kdb, is used.

LDAPPORT keyword
Use the LDAPPORT keyword to allow authentication of the client certificate by an
X.500 host. LDAPPORT is used in combination with LDAPSERVER.

��
LDAPPORT port

�

Parameters

port
Specifies the port number of the X.500 host.

LDAPSERVER keyword

Use the LDAPSERVER keyword to allow authentication of the client certificate by
an X.500 host. LDAPSERVER is used in combination with LDAPPORT.

�� LDAPSERVER
ipaddr

fqname �

Parameters

fqname
Specifies the fully qualified host name of the X.500 host.

ipaddr
Specifies the dotted-decimal Internet address of the X.500 host.

436 z/OS V1R4.0 CS: IP Configuration Reference

|
|

PORT keyword
Use the PORT keyword to define a basic port to the DCAS.

��
PORT
8990

PORT
num �

Parameters

8990
Specifies the port over which the DCAS accepts incoming requests. Port 8990
is the default.

num
Specifies a particular port number.

SAFKEYRING keyword
Use the SAFKEYRING keyword to define the RACF-defined keyring containing the
certificate to be used during the SSL handshake.

�� SAFKEYRING keyringname �

Parameters

keyringname
Specifies the name to use when creating a keyring with the RACF ADDRING
function. This name is case sensitive.

Usage notes

The keywords SAFKEYRING and KEYRING are mutually exclusive. If neither
SAFKEYRING nor KEYRING is specified, the default keyring file, key.kdb, is used.

STASHFILE keyword
Use the STASHFILE keyword to specify the keyring password file to the associated
keyring file. This password file contains the encrypted password.

�� STASHFILE hfsfilename �

Parameters

hfsfilename
Specifies the path and file name of the password file.

Usage notes

STASHFILE is normally associated with the file used on the KEYRING parameter.
The file name defaults to key.sth. The file is not needed for SAFKEYRING.

TCPIP keyword
Use the TCPIP keyword to specify the active TCP/IP stack name with which the
DCAS establishes affinity.

Chapter 12. EXPRESS LOGON using DCAS (Digital Certificate Access Server) 437

�� TCPIP stackname �

Parameters

stackname
Specifies the name of the TCP/IP stack with which the DCAS establishes
affinity.

V3CIPHER keyword
Use the V3CIPHER keyword to specify a subset of the supported SSL V3 cipher
algorithms.

��
V3CIPHER cipherspec

�

Parameters

cipherspec
Specifies the level of the SSL V3 cipher to use for a DCAS (for example,
V3CIPHER 0306090201). The following cipher levels are valid:

v 01 = NULL MD5

v 02 = NULL SHA

v 03 = RC4 MD5 Export

v 04 = RC4 MD5 US

v 05 = RC4 SHA US

v 06 = RC2 MD5 Export

v 09 = DES SHA

v 0A = Triple DES SHA US

Usage notes

If you do not specify V3CIPHER, it defaults to the cipher level supported by the
SSL library installed on your system.

438 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 13. File Transfer Protocol (FTP)

FTP server cataloged procedure (FTPD)
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//***
//* Descriptive Name: FTP Server Start Procedure *
//* File Name: tcpip.SEZAINST(EZAFTPAP) *
//* tcpip.SEZAINST(FTPD) *
//* SMP/E Distribution Name: EZAFTPAP *
//* *
//* Licensed Materials - Property of IBM *
//* "Restricted Materials of IBM" *
//* 5694-A01 *
//* (C) Copyright IBM Corp. 1995, 2001 *
//* Status = CSV1R2 *
//***
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/&PARMS’
//* PARM=(’POSIX(ON) ALL31(ON)’,
//* ’ENVAR("RESOLVER_CONFIG=//’’TCPIVP.TCPPARMS(TCPDATA)’’")/&PARMS’)
//*
//* PARM=(’POSIX(ON) ALL31(ON) ENVAR("_BPX_JOBNAME=myftp")/’,
//* ’&PARMS’)
//*
//* PARM=(’POSIX(ON) ALL31(ON) ENVAR("KRB5_SERVER_KEYTAB=1")/’,
//* ’&PARMS’)
//*
//**** IVP Note **
//*
//* If executing the FTP installation verification procedures (IVP),
//* - Comment the first PARM card and uncomment both lines of the
//* second PARM card
//* - Uncomment the appropriate SYSFTPD and SYSTCPD DD cards for the IVP
//*
//**
//**** _BPX_JOBNAME Note ***
//*
//* The environment variable _BPX_JOBNAME can be specified
//* here in the FTPD procedure, so that all of the logged on
//* FTP users will have the same jobname. This can then
//* be used for performance control and identifying all FTP users.
//* To use this:
//* - Comment the first PARM card and uncomment both lines of the
//* third PARM card
//*
//**
//**** KRB5_SERVER_KEYTAB Note ***************************************
//*
//* The environment variable KRB5_SERVER_KEYTAB can be specified
//* here in the FTPD procedure, so that the FTP server will use the
//* local instance of the Kerberos security server to decrypt tickets
//* instead of obtaining the key from the key table.
//* To use this:
//* - Comment the first PARM card and uncomment both lines of the
//* fourth PARM card
//*
//***
//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//* To submit SQL queries to DB2 through FTP, the DB2 load
//* library with the suffix DSNLOAD should be in the system’s

© Copyright IBM Corp. 2000, 2002 439

//* link list, or added to the STEPLIB definition here. If
//* you add it to STEPLIB, it must be APF authorized.
//*
//CEEDUMP DD SYSOUT=*
//*
//* SYSFTPD is used to specify the FTP.DATA file for the FTP
//* server. The file can be any sequential data set, member
//* of a partitioned data set (PDS), or HFS file.
//*
//* The SYSFTPD DD statement is optional. The search order for
//* FTP.DATA is:
//*
//* SYSFTPD DD statement
//* jobname.FTP.DATA
//* library with the suffix DSNLOAD should be in the system’s
//* link list, or added to the STEPLIB definition here. If
//* you add it to STEPLIB, it must be APF authorized.
//*
//CEEDUMP DD SYSOUT=*
//*
//* SYSFTPD is used to specify the FTP.DATA file for the FTP
//* server. The file can be any sequential data set, member
//* of a partitioned data set (PDS), or HFS file.
//*
//* The SYSFTPD DD statement is optional. The search order for
//* FTP.DATA is:
//*
//* SYSFTPD DD statement
//* jobname.FTP.DATA
//* /etc/ftp.data
//* SYS1.TCPPARMS(FTPDATA)
//* tcpip.FTP.DATA
//*
//* If no FTP.DATA file is found, FTP default values are used.
//* For information on FTP defaults, see OS/390 eNetwork
//* Communications Server: IP Configuration Reference.
//*SYSFTPD DD DISP=SHR,DSN=TCPIP.SEZAINST(FTPSDATA)
//*SYSFTPD DD DISP=SHR,DSN=TCPIVP.TCPPARMS(FTPSDATA)
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*SYSTCPD DD DISP=SHR,DSN=TCPIP.SEZAINST(TCPDATA)
//*SYSTCPD DD DISP=SHR,DSN=TCPIVP.TCPPARMS(TCPDATA)
//*

FTPD parameters
The system parameters required by the FTP server are passed by the PARM
parameter on the EXEC statement of the FTPD cataloged procedure. Add your
parameters to PARMS=’ in the PROC statement of the FTPD cataloged procedure,
making certain that:
v Each parameter is separated by a blank.
v All parameters are in uppercase.

For example: //FTPD PROC MODULE=’FTPD’,PARMS=’TRACE ANONYMOUS PORT 21’

Figure 16. FTP Server cataloged procedure (FTPD)

440 z/OS V1R4.0 CS: IP Configuration Reference

ANONYMOUS
Allows remote users to enter ANONYMOUS as a user ID and log on without
supplying a logon password. Specifying ANONYMOUS makes your universally
permitted data sets accessible to all users on the TCP/IP network.

Note: The following descriptions refer to ANONYMOUSLEVEL 1 only. See
“ANONYMOUSLEVEL statement” on page 470 for information about the
anonymous level settings.

ANONYMOUS=user_id
Allows a remote user to enter ANONYMOUS as a user ID. When
ANONYMOUS is entered as the user ID, the FTP server treats the login
request as though the specified user_id was entered instead of
ANONYMOUS. The user is prompted for the password to user_id and, if the
user enters the correct password, the user is logged in as the specified
user_ID.

ANONYMOUS=user_id/password
Allows a remote user to enter ANONYMOUS as a user ID. When
ANONYMOUS is entered as the user ID, the FTP server treats the login
request as though the specified user_id was entered instead of
ANONYMOUS. The FTP server parses the password from the keyword,
and automatically provides the specified password to the RACF. If the
specified password is not correct for the specified user ID, the client is not
able to log in.

ANONYMOUS=user_id/SURROGATE
Allows a remote user to enter ANONYMOUS as a user ID. When
ANONYMOUS is entered as the user ID, the FTP server treats the login
request as though the specified user_id was entered instead of
ANONYMOUS. The FTP server calls RACF and checks if this user_ID is
allowed to log in without a password. In order to use this option,
ANONYMOUSLEVEL must be greater than or equal to 3. See
“ANONYMOUSLEVEL statement” on page 470 for more information.

AUTOMOUNT
Permits a DASD volume to be mounted when attempts are made to access
data sets on that volume.

AUTORECALL
Permits data sets migrated by a storage manager, such as hierarchical storage
manager (HSM), to be recalled automatically.

DATASETMODE
Treats all lower qualifiers of address space names as part of the same
directory. This affects the behavior of DIR, LS, MGET, and MDLETE because all
lower qualifiers are returned.

DIRECTORYMODE
Treats each level of an address space name as if it were a directory. This
affects the behavior of DIR, LS, MGET, and MDLETE because only the next
lower qualifier is returned.

INACTIVE number_seconds
Sets the inactivity timeout to the specified number of seconds. A control
connection inactive for this amount of time is closed. The default inactivity
timeout is 300 seconds (5 minutes). The maximum inactive time is 86400
seconds. A value of 0 disables the inactivity timer, and inactive control
connections do not time out.

Chapter 13. File Transfer Protocol (FTP) 441

NOAUTOMOUNT
Prevents a DASD volume from being mounted when attempts are made to
access data sets on that volume.

NOAUTORECALL
Prevents data sets migrated by a storage manager, such as HSM, from being
recalled automatically. Migrated data sets can still be deleted even though
NOAUTORECALL is specified.

Note: Only sequential and whole partitioned data sets can be deleted without
recalling. Partitioned data set members require the whole data set to be
recalled.

PORT port_num
Accepts incoming requests on the specified (decimal) port number rather than
the port specified in /etc/services or the default port of 21. (port_num – 1) is
used for data transfer. The maximum port number is 65534.

TRACE
Running TRACE may affect performance and should only be used when
diagnosing problems with FTP sessions.

FTP configuration statements in FTP.DATA
The FTP.DATA data set is optional. The FTP daemon searches for this data set
during initialization, following this sequence:
1. A data set specified by the //SYSFTPD DD statement
2. ftpserve_job_name.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA data set

If you use an MVS data set, this data set should have a logical record length of 80
and a block size that is a multiple of 80.

The default values for the FTP server parameters are in the FTPD module. You can
change these defaults using statements in the FTP.DATA configuration data set. It is
not necessary to include all statements in the FTP.DATA data set. Only include the
statements if the default value is not what you want, because the default is used for
any statement not included in the FTP.DATA data set. SEZAINST(FTPSDATA) is a
shipped copy of the FTP.DATA data set.

Some FTP server parameters can be changed during an FTP session by issuing
the SITE subcommand from the FTP client. The client FTP.DATA data set can also
be used to change the parameters for the FTP client local site parameters. See the
z/OS Communications Server: IP User’s Guide and Commands for more information
about using the client FTP.DATA data set for the FTP client local site parameters.

Data set attributes play a significant role in FTP performance. If your environment
permits, tune both BLOCKSIZE and LRECL according to the following
recommendations:

v Use half a track as the block size.

v For IBM 3380 DASD, use 23424 as the block size with an LRECL of 64 bytes.

v For IBM 3390 or IBM 9334, use 27968 as the block size with an LRECL of 64
bytes.

v Use FB as the data set allocation format.

v Use cached DASD controllers.

442 z/OS V1R4.0 CS: IP Configuration Reference

v If your environment permits, use a preallocated data set for FTP transfer
operations into MVS.

FTP server user exits
To limit access to an FTP server, you can use any of the user exits described in this
section. The FTP server provides increased security by using user exits. The user
exit load modules must be placed in an APF-authorized library to which the FTP
server has access by way of STEPLIB, linklist, or LPA. Also, the authorization state
(JSCBAUTH) must be the same after exiting from the user exit as it was upon
entry. If a user exit is not found, processing continues as though a return code of 0
was received from the user exit call.

A user exit is passed the address of a parameter list in register 1. The parameter
list is a series of pointers to values. The first word of the parameter list always
points to the return code. If the user exit sets the return code to 0, processing
continues as normal. If the return code is not 0, authorization is denied and the user
receives a negative reply indicating that the command has failed. Upon entry, the
return code is 0, so a correct return can be indicated by leaving the return code
alone. The return code field in the FTPOSTPR exit is included for consistency; it
has no effect on processing.

The second word of the parameter list always points to a word containing the
number of parameters that follow. This helps handle any future releases that might
increase the number of parameters in these parameter lists.

The remainder of the parameter list points to values the FTP user exit uses in its
processing. Sample user exits are shipped in SEZAINST.

Because the FTPCHKIP user exit is loaded at FTP daemon initialization time, if you
want the server to use a new version of your exit routine, you need to recycle the
FTP server (stop and start it). If you are debugging a user exit routine, you should
have a test version of a server to work with so that you can stop and start without
affecting other users. You can do that by putting a PORT parameter in the EXEC
statement of the FTP JCL, such as PARMS=’PORT 1073’. To connect to this server,
code the following:
FTP nodename 1073

You can use any number as a port number for your test FTP server. IBM suggests
that you choose a number that does not conflict with any well-known port numbers
used on your host.

Note: You cannot use the System Programming C Facilities for the user exits.

z/OS FTP follows the MVS search order to load the FTP exit routines. If you are not
using the user exit facility, put a dummy user exit load module in the first library in
the MVS search order. This prevents other users from putting their own modules in
a library later in the concatenation sequence. This also increases the need to have
that library protected using SAF.

The FTCHKCMD user exit
FTCHKCMD is called whenever the client enters a command to execute such as
GET, PUT, or any other FTP command. The user exit is passed as follows:

v The user ID

v The command

v The command parameters

Chapter 13. File Transfer Protocol (FTP) 443

|
|

v The current directory type of MVS or HFS

v The file type of SEQ, JES, or SQL

v The current working directory value

v The address of a buffer that can be used to return modified command arguments

v A buffer to hold a 500 reply extension to explain why the exit denied the request

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v A buffer containing the session instance identifier

v A 256-byte scratchpad buffer

The exit can accept the command, reject the command, or modify the arguments
passed to the command. When the exit rejects the command, the FTP server
always replies 500 User Exit denies Userid userid from using Command command.
If the exit routine places text into the 500 reply extension buffer, the FTP server
replies to the client with reply code 500 and the supplied text before it replies 500
User Exit denies Userid userid from using Command command.

The FTP server sometimes replies to a client with the arguments of the
subcommand the client sent to the server. For example, if a client enters SITE
FNIDDER=FNAT, a 200 message is returned to the client: 200-Unrecognized
parameter ’FNIDDER=FNAT’ on site command. For such replies, the command
arguments included are those returned by FTCHKCMD rather than those originally
entered by the client.

The following parameter list is passed to FTCHKCMD:

Offset Value

+0 Pointer to the fullword return code. Return 0 to accept the command or to
pass new arguments to the command. Return a nonzero value to reject the
command.

+4 Pointer to a word containing the number of following parameters (12).

+8 Pointer to the 8-byte user ID that is logged in.

+12 Pointer to the 8-byte command being entered.

+16 Pointer to a string containing arguments after the command. The first
halfword of the string contains the number of characters that follow.

+20 4-byte character string with current directory type: MVS or HFS
(left-justified).

+24 4-byte character string with current file type: SEQ, JES, or SQL.

+28 Buffer with current directory value. The first bytes hold length of remaining
buffer. This is an 1102-byte output buffer in which to return modified
argument strings. The first 2 bytes must be initialized to the length of the
returned command string.

+32 1102-byte output buffer in which to return modified argument strings. You
can modify the arguments passed to the command by placing the modified
arguments in this buffer. The first 2 bytes must be initialized to the length of
the returned command string.

+36 Pointer to a 71-byte buffer in which to return a 500 reply extension to be
used only when the exit denies the request. The exit can place text in this
buffer to explain why it denied the request. If the exit supplies text in this

444 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|

|

|
|
|
|
|
|

|

||
|
|

buffer, the server appends this text to the string 500-UX- and sends this
reply prior to the reply 500 Userid userid from using Command command.
The buffer is initialized to blanks before each call to FTCHKCMD.

+40 Pointer to a copy of the socket address structure for the client’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+44 Pointer to a copy of the socket address structure for the server’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+48 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

+52 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. If extended tracing of the
scratchpad is requested, the contents are dumped after execution of the
user exit.

Note: To function with the FTP server, AMODE must be coded as 31 and RMODE
must be coded as ANY.

The FTPOSTPR user exit
FTPOSTPR is called upon completion of the FTP commands RETR, STOR, STOU,
APPE, DELE, and RNTO. The user exit is passed as follows:

v The user ID

v The client IP address

v The client port number

v The current directory type

v The length of the parameter string

v The current working directory

v The current file type

v The FTP reply code

v A buffer containing the FTP reply string

v The FTP command code

v The current CONDDISP setting

v The file transfer completion code

v Name of the data set or HFS file retrieved or stored

v Two words containing the bytes transferred during execution of this command

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

Chapter 13. File Transfer Protocol (FTP) 445

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|

|

|

|

|

v A buffer containing the session instance identifier

v A 256-byte scratchpad buffer

The user exit can take action based on any of the information passed to it. The
close reason code indicates whether the command completed successfully. The
scratchpad buffer can be used to communicate information to other exits or the next
instance of this exit.

The following parameter list is passed to FTPOSTPR:

Offset Value

+0 Pointer to the fullword return code. The value is always 0 and is passed
only for consistency with other FTP user exits and parameter lists.

+4 Pointer to a word containing the number of following parameters (17).

+8 Pointer to the 8-byte buffer containing the user ID.

+12 Pointer to the 4-byte client IP address. If the client’s address is an IPv6
address, this field points to a word containing x’FFFFFFFF’ and the passed
socket address structure for the client must be used instead. If the client’s
address is an IPv4 address, either this field or the socket address structure
can be used.

+16 Pointer to the 2-byte client port number. Valid only when the 4-byte client IP
address is not x’FFFFFFFF’.

+20 Pointer to the 4-byte character string with current directory type: MVS or
HFS (left-justified).

+24 Pointer to a buffer containing the current directory value. The first 2 bytes
hold the length of the remaining buffer.

+28 Pointer to the 4-character byte field containing the current file type (SEQ,
JES, SQL) left-justified.

+32 Pointer to the 3-character byte field containing the current FTP reply code.

+36 Pointer to buffer containing FTP reply string. The first 2 bytes contain the
length of the remaining buffer.

+40 Pointer to the 4-byte field containing the current FTP command code.

+44 Pointer to the 1-character byte field containing the current CONDDISP
setting: C for catalog, D for delete.

+48 Pointer to the 4-byte binary field with close reason code:

v 0 —Transfer completed normally.

v 4 — Transfer completed with errors; see FTP reply code and text string.

v 8 — Transfer completed with socket communication errors; transfer is
ended and no response can be sent to client.

v 12 — Transfer aborted after data connection was established.

v 16 — Transfer aborted with SQL file errors after data connection was
established.

+52 Pointer to a buffer containing the name of the data set or HFS file just
retrieved or stored. The first two bytes hold the length of the remainder, and
the remainder of the buffer (up to 1023 bytes) holds any additional path
specification beyond the current working directory and the file name.

+56 Pointer to two contiguous words containing the bytes transferred during
execution of the current FTP command. The first word holds the number of

446 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|
|
|
|
|

|
|

||
|
|
|

||
|

gigabytes transferred. The second word holds the number of bytes
transferred in addition to the number of gigabytes transferred. The number
of bytes value (word 2) can be up to 4 gigabytes.

+60 Pointer to a copy of the socket address structure for the client’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+64 Pointer to a copy of the socket address structure for the server’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+68 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

+72 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. The extended tracing (DUMP)
identifier of the scratchpad is 87. If extended tracing of the scratchpad is
requested, the contents are dumped after execution of the user exit.

The FTCHKIP user exit
FTCHKIP is called at the initial stage of login or whenever the user issues an
OPEN command to open a new connection. The IP and PORT addresses of the
local and remote hosts are passed to the user exit. The user exit can use them to
determine whether the remote host’s control connection should be canceled. The
message 421 User Exit rejects open for connection is sent to the user if the
connection is denied. The following parameter list is passed to FTCHKIP.

Offset Value

+0 Pointer to the word with the return code

+4 Pointer to a word containing the number of following parameters (7)

+8 Pointer to the fullword remote IP address. If the client’s address is an IPv6
address, this field points to a word containing x’FFFFFFFF’ and the passed
socket address structure for the client must be used instead. If the client’s
address is an IPv4 address, either this field or the socket address structure
can be used.

+12 Pointer to the halfword remote port number. Valid only when the fullword
remote IP address is not x’FFFFFFFF’.

+16 Pointer to the fullword local IP address. If the server’s address is an IPv6
address, this field points to a word containing x’FFFFFFFF’ and the passed
socket address structure for the server should be used instead. If the
server’s address is an IPv4 address, either this field or the socket address
structure can be used.

Chapter 13. File Transfer Protocol (FTP) 447

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|
|

||

||

||

|
|
|
|
|

|
|

|
|
|
|
|

+20 Pointer to the halfword local port number. Valid only when the fullword local
IP address is not x’FFFFFFFF’.

+24 Pointer to a copy of the socket address structure for the client’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+28 Pointer to a copy of the socket address structure for the server’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+32 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

Note: FTCHKIP has been placed before the user logs in, and if access is denied,
the user receives a message and the control connection is severed. This
message comes at a point when most clients expect to continue with the
login process by sending the user ID and password. Even though it is
possible, some FTP clients might not expect a 421 message at this point,
but it is the most appropriate place for this exit.

Note: To function with the FTP server, AMODE must be coded as 31 and RMODE
must be coded as ANY.

The FTCHKPWD user exit
FTCHKPWD is called after the user enters the password. The exit has the option of
rejecting the logon. The reply 530 User Exit rejects logon by ’xxxxx’ is sent to
the user if the logon is denied. The following parameter list is passed to
FTCHKPWD.

Offset Value

+0 Pointer to the word with the return code

+4 Pointer to a word containing the number of following parameters (7)

+8 Pointer to the 8-byte ID of the user logging on

+12 Pointer to the 8-byte password of the user logging on

+16 Pointer to the string containing the 2-byte length field followed by the user
data

+20 Pointer to a word containing the total number of bad passwords input in this
login attempt

+24 Pointer to a copy of the socket address structure for the client’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure

448 z/OS V1R4.0 CS: IP Configuration Reference

|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|

|
|
|
|

||

||

||

||

||

||
|

||
|

||
|
|
|

contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+28 Pointer to a copy of the socket address structure for the server’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+32 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

Note: To function with the FTP server, AMODE must be coded as 31 and RMODE
must be coded as ANY.

The FTCHKJES user exit
FTCHKJES is called if the server is in FILETYPE=JES mode and the client tries to
submit a job. The exit can allow or refuse the job to be submitted to the JES
internal reader based on any criteria passed to the exit. For example, the exit can
look for a USER= parameter on the JOB statement and check it against the client’s
user ID. The message 550 User Exit refuses this job to be submitted by
userid is sent to the user if the remote job submission is denied. The following
parameter list is passed to FTCHKJES.

Offset Value

+0 Pointer to the word with the return code

+4 Pointer to a word containing the number of following parameters (13)

+8 Pointer to the 8-character user ID that is logged on

+12 Pointer to the buffer containing the current logical record being submitted

+16 Pointer to a word with the number of bytes in the buffer

+20 Pointer to a word containing the JES LRECL being used

+24 Pointer to a word containing the logical record number

+28 Pointer to a word containing the total number of bytes transferred so far

+32 Pointer to a word containing the unique client ID

+36 Pointer to a word containing the JES RECFM (0 for fixed, 1 for variable)

+40 Pointer to a word containing the JES user exit anchor. (One possible use of
this anchor is to provide the exit routine with a location to store the address
of a persistent storage area for handling multiple calls.)

+44 Pointer to a copy of the socket address structure for the client’s control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+48 Pointer to a copy of the socket address structure for the server’s control

Chapter 13. File Transfer Protocol (FTP) 449

|
|
|

||
|
|
|
|
|
|

||
|
|
|

|
|

|
|
|
|

|

||
|
|
|
|
|
|

||

connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+52 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier is unique within this instance of the daemon.
It is included in messages written to SYSLOG and can be used similarly by
the exit. It is preferred over the similar client ID found at +32 in the
parameter list.

+56 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer,
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. The extended tracing (DUMP)
identifier of the scratchpad is 87. If extended tracing of the scratchpad is
requested, the contents are dumped after execution of the user exit.

The return code word is initialized to 0 so the user exit can return without changing
it if there is a correct return code. Any other return code denies access to the
resource in question.

Note: To function with the FTP server, AMODE must be coded as 31 and RMODE
must be coded as ANY.

FTP server SMF user exit

Note: This exit is called for type 118 records only. To access the (preferred) type
119 FTP SMF records, use the system-wide SMF user exits IEFU83,
IEFU84, and IEFU85. Refer to z/OS MVS System Management Facilities
(SMF) for more information.

Type 118 SMF record types to be written are based on the SMFCONFIG statement
in SMF.DATA. The FTP server SMF user exit is called before a matching type 118
SMF record is written to the SYS1.MANx data set. The user exit allows site-specific
modifications to the record and can prevent the record’s being written to the
SYS1.MANx data set.

To enable the exit, include the SMFEXIT statement in the FTP.DATA data set. The
routine must be named FTPSMFEX and placed in an installation-defined link library
or an APF-authorized data set defined by a STEPLIB DD statement in the FTPD
cataloged procedure. FTP calls the SMF user exit before each type 118 SMF record
is written.

On entry to FTPSMFEX, register 1 contains a pointer to the following 2-word
parameter list:

Offset Value

0 Pointer to the return code

4 Pointer to the type 118 SMF record

450 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

Prior to calling the SMF user exit, the return code is set to 0. A return code of 0
specifies that the SMF record is written. To suppress writing the SMF record to the
SYS1.MANx data set, the user exit must change the return code to a nonzero
value.

Appendix C, “SMF type 118 records” on page 921 contains descriptions of TCP/IP
Type 118 SMF records.

Summary of FTP server configuration statements
The statements for the FTP.DATA data set are summarized in Table 23 and
explained in detail in “FTP.DATA data set statements” on page 457.

If you plan to share the FTP server FTP.DATA data set with the FTP client, note that
some of the values for the statements in the FTP.DATA data set have different
meanings in the two environments. If the files are shared, error messages could be
generated or values that are not valid could be used for each client using the
FTP.DATA data set containing server-only keywords. To avoid these errors, use
separate FTP.DATA data sets for the FTP client and the FTP server if you are
specifying any conflicting keywords.

Table 23. Summary of FTP server configuration statements

Statement Description Additional information

ACCESSERRORMSGS Allow FTP Server to send detailed login
failure replies.

458

ADMINEMAILADDRESS Specify a value to use with %E keyword
for banner text.

459

ANONYMOUS Allow a remote user to issue USER
ANONYMOUS without supplying a
logon password.

460

ANONYMOUSFILEACCESS Specify the type of files (MVS or HFS)
that anonymous clients are allowed to
access.

462

ANONYMOUSFILETYPEJES Control access to the FILETYPE SITE
keyword of anonymous users when
ANONYMOUSLEVEL 2 or greater is
specified.

463

ANONYMOUSFILETYPESEQ Control access to the FILETYPE SITE
keyword of anonymous users when
ANONYMOUSLEVEL 2 or greater is
specified.

464

ANONYMOUSFILETYPESQL Control access to the FILETYPE SITE
keyword of anonymous users when
ANONYMOUSLEVEL 2 or greater is
specified.

465

ANONYMOUSFTPLOGGING Specify whether the FTP server should
log FTP session activity for anonymous
users.

466

ANONYMOUSHFSDIRMODE Specify the mode bits used for
directories created by anonymous
users.

467

ANONYMOUSHFSFILEMODE Specify the mode bits used when
storing files created by anonymous
users.

468

Chapter 13. File Transfer Protocol (FTP) 451

|
|

||
|
|

||
|
|

|

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

ANONYMOUSHFSINFO Specify an anonymous user HFS
directory information file mask.

469

ANONYMOUSLEVEL Specify the type of anonymous access
permitted to users who issue USER
ANONYMOUS.

470

ANONYMOUSLOGINMSG Specify anonymous user login
messages.

473

ANONYMOUSMVSINFO Specify anonymous user MVS
information file (LLQ).

474

ASATRANS Specify how print control characters
should be handled.

475

AUTOMOUNT Specify whether to mount DASD
volumes containing data sets to be
accessed.

476

AUTORECALL Automatically recall data sets migrated
by the storage manager.

477

AUTOTAPEMOUNT Specify whether to mount tape volumes
containing data sets to be accessed.

478

BANNER Request that a welcome banner page is
displayed immediately after a new
connection is established.

479

BLKSIZE Specify the block size of newly allocated
data sets.

480

BUFNO Specify the number of access method
buffers.

481

CCXLATE Specify the translation table data set for
the control connection.

482

CHKPTINT Specify the checkpoint interval when the
FTP server is the sending site in a file
transfer request.

483

CIPHERSUITE Specifies the name of a CipherSuite
that is used during the TLS handshake.

484

CONDDISP Keep and catalog or delete a data set
when a file transfer ends prematurely.

485

CTRLCONN Specify codeset to be used for the
control connection.

486

DATACLASS Specify the SMS-managed data class
as defined by your organization for the
FTP server.

487

DATATIMEOUT This is the time that the server waits for
a response to a send or for the
completion of a passive connection. The
connection is aborted if it times out. The
default is 300 seconds.

488

DB2® Specify the name of the DB2
subsystem.

489

DB2PLAN Specify the name of the DB2 plan to be
used by the FTP server.

490

452 z/OS V1R4.0 CS: IP Configuration Reference

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

DCBDSN Specify a data set to be used as a
model for allocation of new data sets.

491

DCONNTIME Defines the amount of time to wait after
attempting to close a data transfer
before terminating the connection and
reporting an error.

493

DEBUG Specify to activate a specific trace type. 494

DEBUGONSITE Specify whether an FTP client is
allowed to enter the SITE DEBUG
command to change general tracing
options.

496

DEST Specify the NJE destination to which the
files are routed when you enter a PUT
command.

497

DIRECTORY Specify the number of directory blocks
to be allocated for the directory of a
PDS.

498

DIRECTORYMODE Specify how to treat the data set
qualifiers below the current directory

499

DUMP Specify to activate an extended trace
dump ID.

500

DUMPONSITE Specify whether an FTP client is
allowed to enter the SITE DUMP
command to change the extended
tracing options.

502

EMAILADDRCHECK Control the extent to which the FTP
server validates e-mail addresses
entered by FTP clients while logging in
to the FTP server.

503

ENCODING Indicates the type of data encoding on
the network.

504

EXTENSIONS Enable the FTP server to recognize
FTP commands not described in RFC
959.

505

FILETYPE Specify the operational mode of the
server.

507

FTPKEEPALIVE Defines the control connection keepalive
timer value in seconds.

508

FTPLOGGING Specify whether the FTP server logs
FTP session activity for unknown users
(that is, users that are not anonymous
users)

509

HFSINFO Specify a file containing welcome
messages specific to each FTP server
directory visited by an FTP client.

510

INACTIVE Set the inactivity timer to a specified
number of seconds.

511

ISPFSTATS Allow FTP to create and maintain
statistics for partitioned data set
members.

512

Chapter 13. File Transfer Protocol (FTP) 453

||
|
|

||
|
|
|

|

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

JESENTRYLIMIT Specify how many JES entries can be
displayed at one time with the LIST or
NLST command.

513

JESINTERFACELEVEL Specify the JES interface level. 514

JESLRECL Specify the record length of the job
being submitted.

516

JESPUTGETTO Specify the number of seconds for the
JES PutGet timeout.

517

JESRECFM Specify the record format of the job
being submitted.

518

KEYRING Defines the keyring that contains the
certificate to be used during the TLS
handshake.

519

LISTSUBDIR Specify whether subdirectories of the
parent directory are listed when
processing the NLST command.

520

LOGINMSG Specify the file containing messages to
be displayed to FTP clients when they
have successfully logged in.

521

LRECL Specify the size of the records in a data
set.

522

MBDATACONN Specifies the multi-byte data translation
code pages for data connections.

523

MGMTCLASS Specify the SMS management class to
be assigned to newly allocated data
sets.

524

MIGRATEVOL Specify the volume ID for migrated data
sets not under the control of IBM
Storage Management Systems.

525

MVSINFO Specify the MVS data sets whose
contents are to be returned to the FTP
client and displayed to the end user
when a user changes directories.

526

MVSURLKEY Specify a token users can enter as part
of an FTP URL to encode an MVS data
set name.

527

PORTCOMMAND Specify whether the PORT and EPRT
commands are accepted or rejected.

528

PORTCOMMANDIPADDR Specify the server to accept only PORT
or EPRT commands whose IP address
matches that of the client.

529

PORTCOMMANDPORT Specify what range or port values the
server accepts as a parameter for the
PORT and EPRT commands.

530

PRIMARY Specify the number of tracks, blocks, or
cylinders for primary allocation.

531

QUOTESOVERRIDE Specify use of single quotation marks in
file name.

532

454 z/OS V1R4.0 CS: IP Configuration Reference

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

RDW Specify whether RDWs are discarded
upon retrieval.

533

RECFM Specify the record format of a data set. 534

REPLYSECURITYLEVEL Specify level of secure information
returned in FTP replies.

536

RETPD Specify the number of days a newly
allocated data set should be retained.

537

SBDATACONN Specify single-byte data translation for
the data connection.

538

SBSUB Specifies whether a substitution is
allowed for a data byte that cannot be
translated.

540

SBSUBCHAR Specifies the single-byte substitution
character for untranslatable data
characters.

541

SECONDARY Specify the number of tracks, blocks, or
cylinders for secondary allocation.

542

SECURE_CTRLCONN Use the SECURE_CTRLCONN
statement to specify the minimum level
of security allowed for the control
connection.

543

SECURE_DATACONN Use the SECURE_DATACONN
statement to specify the minimum level
of security required on the data
connection.

544

SECURE_FTP Use the SECURE_FTP statement to
specify whether authentication is
required.

545

SECURE_LOGIN Use the SECURE_LOGIN statement to
set the authorization level required for
users.

546

SECURE_PBSZ Specify the maximum size of the
encoded data blocks sent during file
transfer.

548

SMF Specify the default SMF record subtype
for all SMF records.

549

SMFAPPE Specify the SMF record subtype for the
APPEND subcommand.

551

SMFDEL Specify the SMF record subtype for the
DELETE subcommand.

552

SMFEXIT Call the FTPSMFEX user exit routine. 553

SMFJES Collect SMF records when FILETYPE is
JES.

554

SMFLOGN Specify the SMF record subtype when
recording logon failures.

555

SMFREN Specify the SMF record subtype for the
RENAME subcommand.

557

Chapter 13. File Transfer Protocol (FTP) 455

||
|
|

||
|
|

|

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

SMFRETR Specify the SMF record subtype for the
RETR subcommand.

559

SMFSQL Collect SMF records when FILETYPE is
SQL.

561

SMFSTOR Specify the SMF record subtype for the
STOR and STOU subcommands.

562

SPACETYPE Specify whether newly allocated data
sets are allocated in blocks, cylinders,
or tracks.

565

SPREAD Specify output in spreadsheet format
when file type is SQL.

566

SQLCOL Specify the column headings of the
output file.

567

STARTDIRECTORY Specify which file system is used initially
when a new user logs in.

568

STORCLASS Specify the SMS-managed storage
class for the FTP server.

569

TLSTIMEOUT Specify the maximum time between full
TLS handshakes.

570

TRACE Start tracing for the FTP server. 571

TRAILINGBLANKS Include trailing blanks in fixed format
data sets when retrieved.

572

TRUNCATE Allow truncating records that are longer
than LRECL.

573

UCOUNT Specify the unit count for new data set
allocations.

574

UCSHOSTCS Specify the EBCDIC code set to be
used for data conversion to or from
Unicode.

575

UCSSUB Specify whether Unicode-to-EBCDIC
conversion should use the EBCDIC
substitution character or cause the data
transfer to be terminated if a Unicode
character cannot be converted to a
character in the target EBCDIC code
set.

576

UCSTRUNC Specify whether the transfer of Unicode
data should be aborted if truncation
occurs at the MVS host.

577

UMASK Specify the file mode creation mask. 578

UNITNAME Specify the unit type for allocation of
new data sets.

579

VCOUNT Specify the volume count for allocation
of new data sets.

580

VOLUME Specify the volume serial number or
numbers for allocation of new data sets.

581

456 z/OS V1R4.0 CS: IP Configuration Reference

||
|
|

Table 23. Summary of FTP server configuration statements (continued)

Statement Description Additional information

WLMCLUSTERNAME Use the WLMCLUSTERNAME
statement to instruct the FTP Daemon
to register in a DNS/WLM Sysplex
Connection Balancing Group.

582

WRAPRECORD Specify whether data is wrapped or
truncated if no new-line character is
encountered before the logical record
length is reached.

583

WRTAPEFASTIO Allows write to tape of ASCII stream
data to use BSAM I/O routines.

584

XLATE Specify the translation table data set for
the data connection.

585

FTP.DATA data set statements
These sections cover, in detail, the statements you can use in the FTP.DATA data
set.

Chapter 13. File Transfer Protocol (FTP) 457

||
|
|

ACCESSERRORMSGS statement
Use the ACCESSERRORMSGS statement to allow FTP server to send detailed
login failure replies to an FTP client.

Syntax

��
ACCESSERRORMSGS FALSE
ACCESSERRORMSGS

FALSE
TRUE

�

Parameters
FALSE

Do not send detailed login failure replies to an FTP client.

TRUE
Send detailed login failure replies to an FTP client.

Examples
To send detailed login failure replies to an FTP client, code the following:
ACCESSERRORMSGS TRUE

Usage notes
The text of detailed login failure replies can be traced using the ACC parameter of
the DEBUG statement. You do not need to code ACCESSERRORMSGS TRUE to
trace this information.

Related topics
v “DEBUG statement” on page 494

458 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|

||||||||||||||||||||||

|

|

|
|

|
|

|

|

|

|

|
|
|

|

|

ADMINEMAILADDRESS statement
Use the ADMINEMAILADDRESS statement to specify a value to substitute for the
%E keyword used for the data set or file specified in the BANNER, LOGINMSG,
ANONYMOUSMVSINFO, ANONYMOUSLOGINMSG, HFSINFO, and MVSINFO
statements. This statement is used to specify the e-mail address of the FTP server
administrator.

Syntax

�� ADMINEMAILADDRESS value �

Parameters
value

The e-mail address displayed when %E is used in BANNER, LOGINMSG,
ANONYMOUSMVSINFO, ANONYMOUSLOGINMSG, HFSINFO, and MVSINFO
displays.

Examples
ADMINEMAILADDRESS TheWebMaster@Myhost.MyCompany.Com

Related topics
v “ANONYMOUSHFSINFO statement” on page 469

v “ANONYMOUSMVSINFO statement” on page 474

v “ANONYMOUSLOGINMSG statement” on page 473

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “LOGINMSG statement” on page 521

v “MVSINFO statement” on page 526

Chapter 13. File Transfer Protocol (FTP) 459

ANONYMOUS statement
Use the ANONYMOUS statement to allow remote users to log in as anonymous
users.

You can use ANONYMOUSLEVEL, ANONYMOUSFILEACCESS,
ANONYMOUSFILETYPESQL, ANONYMOUSFILETYPEJES, and
ANONYMOUSFILETYPESEQ in conjunction with ANONYMOUSLEVEL 3 to restrict
anonymous users’ access to data sets and files. Use ANONYMOUSMVSINFO,
ANONYMOUSLOGINMSG, ANONYMOUSHFSINFO, and EMAILADDRCHECK to
customize the FTP session for anonymous users.

Note: If you choose ANONYMOUSLEVEL greater than 1 and you choose
STARTDIRECTORY HFS, you must create an anonymous directory structure
in the HFS.

Syntax

�� ANONYMOUS
user_id
user_id/password
user_id/SURROGATE

�

Parameters
user_id

The security access facility (SAF) identity of the anonymous user. When a
remote user enters ANONYMOUS as a user ID, the FTP server treats the login
request as though the specified user_id was entered instead of ANONYMOUS.
The user is prompted for the password to user_id and, if the user enters the
correct password, the user is logged in as the specified user_id.

If you are using RACF, the system builds a user accessor environment element
(ACEE), and the ANONYMOUS user has access to any resources available to
the specified user ID.

user_id/password
The security access facility (SAF) identity and password the FTP server uses
for anonymous user. When a remote user enters ANONYMOUS as the user ID,
the FTP server treats the login request as though the specified user_id was
entered instead of ANONYMOUS. The FTP server automatically provides the
password for the specified user_id and the user is logged in as the specified
user_id. If you are using RACF, the system builds the user ACEE for the
specified user_id and the ANONYMOUS user has authorized access to the
same resources as the specified user_id.

If ANONYMOUSLEVEL 3 is specified, the behavior is different. See
“ANONYMOUSLEVEL statement” on page 470 for details.

user_id/SURROGATE

Allows a remote user to enter ANONYMOUS as a user ID. When
ANONYMOUS is entered as the user ID, the FTP server treats the login
request as though the specified user_ID was entered instead of ANONYMOUS.
The FTP Server calls RACF and checks if this user_ID is allowed to login
without a password. In order to use this option, ANONYMOUSLEVEL must be
greater or equal to 3. See “ANONYMOUSLEVEL statement” on page 470 for
details.

460 z/OS V1R4.0 CS: IP Configuration Reference

Examples
Allow a remote user to enter ANONYMOUS as a user ID and be connected to the
server system with the user ID of TERMABC:
ANONYMOUS TERMABC/ILLBBACK

Usage notes
v If you define ANONYMOUSLEVEL 3, you have more parameters available to

define ANONYMOUS support and security.

v If you specify ANONYMOUS without a user ID:

– The user ID ANONYMOUS must be defined and must have a z/OS UNIX
segment defined or defaulted.

– The end user is not prompted for a password.

– If you are using the FTCHKPWD user exit, the exit is called with user ID =
’ANONYMO’ and password = ’*’.

– If ANONYMOUSLEVEL 3 is specified and the FTP server prompts the FTP
client for an e-mail address, a third field, a note field, and this is passed to the
FTCHKPWD exit. The note field contains the e-mail address entered by the
FTP client.

– The initial working directory is ’ANONYMO.’ or the home directory for the
ANONYMO user ID , depending upon the setting of the STARTDIRECTORY
FTP.DATA statement.

– If you are using RACF, a user who logs in as ’anonymous’ has access to any
resources accessible to the ANONYMO user ID.

v If you specify a user ID on the ANONYMOUS statement, that user ID must be
defined and have a z/OS UNIX segment defined or defaulted.

v There is no default for ANONYMOUS. If you do not include the ANONYMOUS
statement in FTP.DATA, anonymous user login is not allowed.

v Refer to z/OS Communications Server: IP Configuration Guide for more
information.

Related topics
v “ANONYMOUSLEVEL statement” on page 470

v “ANONYMOUSFILEACCESS statement” on page 462

v “ANONYMOUSFILETYPEJES statement” on page 463

v “ANONYMOUSHFSFILEMODE statement” on page 468

v “ANONYMOUSHFSDIRMODE statement” on page 467

v “ANONYMOUSHFSINFO statement” on page 469

v “ANONYMOUSFILETYPESEQ statement” on page 464

v “ANONYMOUSFILETYPESQL statement” on page 465

v “EMAILADDRCHECK statement” on page 503

v “STARTDIRECTORY statement” on page 568

Chapter 13. File Transfer Protocol (FTP) 461

ANONYMOUSFILEACCESS statement
Use ANONYMOUSFILEACCESS to set the type of files (MVS, HFS, or both) that
anonymous clients are allowed to access. ANONYMOUSFILEACCESS is valid only
when ANONYMOUSLEVEL 3 or greater is specified. If STARTDIRECTORY is HFS
and ANONYMOUSFILEACCESS is HFS, the anonymous user is not allowed to
access MVS data sets. If STARTDIRECTORY is MVS and
ANONYMOUSFILEACCESS is MVS, the anonymous user is not allowed to access
HFS files. If STARTDIRECTORY and ANONYMOUSFILEACCESS contradict each
other, the anonymous user is not allowed to log in (the login fails). A value of BOTH
allows the anonymous user to switch back and forth between MVS and HFS data
sets.

Syntax

��
ANONYMOUSFILEACCESS HFS

ANONYMOUSFILEACCESS BOTH
MVS
HFS

�

Parameters
BOTH

Allows anonymous users to access both HFS and MVS.

MVS
Allows anonymous users access to only MVS data sets.

HFS
Allows anonymous users access to only HFS data sets. This is the default.

Examples
Set the anonymous clients to access both MVS and HFS files:
ANONYMOUSFILEACCESS BOTH

Usage notes
ANONYMOUSFILEACCESS is valid only when ANONYMOUSLEVEL 3 is specified.

Related topics
v “ANONYMOUS statement” on page 460

v “ANONYMOUSLEVEL statement” on page 470

v “ANONYMOUSHFSDIRMODE statement” on page 467

v “ANONYMOUSHFSFILEMODE statement” on page 468

v “STARTDIRECTORY statement” on page 568

462 z/OS V1R4.0 CS: IP Configuration Reference

ANONYMOUSFILETYPEJES statement
Use the ANONYMOUSFILETYPEJES statement to control the access of
anonymous users to the SITE FILETYPE command. The
ANONYMOUSFILETYPEJES statement is recognized only when ANYMOUSLEVEL
3 or greater is specified.

Syntax

��
ANONYMOUSFILETYPEJES FALSE

ANONYMOUSFILETYPEJES FALSE
TRUE

�

Parameters
TRUE

Allow anonymous clients to enter SITE FILETYPE=JES.

FALSE
Restrict anonymous clients so that SITE FILETYPE=JES is not allowed.

Examples
Set the anonymous environment to allow anonymous clients to enter SITE
FILETYPE=JES:
ANONYMOUSFILETYPEJES TRUE

Usage notes
If you specify the FILETYPE statement, its setting must be consistent with the
ANONYMOUSFILEYTPEJES setting or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPESEQ statement” on page 464

v “ANONYMOUSFILETYPESQL statement” on page 465

v “ANONYMOUSLEVEL statement” on page 470

v “FILETYPE statement” on page 507

Chapter 13. File Transfer Protocol (FTP) 463

ANONYMOUSFILETYPESEQ statement
Use the ANONYMOUSFILETYPESEQ statement to control the access of
anonymous users to the SITE FILETYPE command. This statement is recognized
only when ANONYMOUSLEVEL 3 or greater is specified.

Syntax

��
ANONYMOUSFILETYPESEQ TRUE

ANONYMOUSFILETYPESEQ TRUE
FALSE

�

Parameters
TRUE

Allow anonymous clients to enter SITE FILETYPE=SEQ.

FALSE
Restrict anonymous clients so that SITE FILETYPE=SEQ is not allowed.

Examples
Set the anonymous environment to allow anonymous clients to enter SITE
FILETYPE=SEQ:
ANONYMOUSFILETYPESEQ TRUE

Usage notes
Most FTP servers allow anonymous users to use filetype SEQ.

If you specify the FILETYPE statement in FTP.DATA, its setting must be consistent
with ANONYMOUSFILETYPESEQ or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPEJES statement” on page 463

v “ANONYMOUSFILETYPESQL statement” on page 465

v “ANONYMOUSLEVEL statement” on page 470

v “FILETYPE statement” on page 507

464 z/OS V1R4.0 CS: IP Configuration Reference

ANONYMOUSFILETYPESQL statement
Use the ANONYMOUSFILETYPESQL statement to control the access of
anonymous users to the SITE FILETYPE command. This statement is recognized
only when ANONYMOUSLEVEL 3 or greater is specified.

Syntax

��
ANONYMOUSFILETYPESQL FALSE

ANONYMOUSFILETYPESQL FALSE
TRUE

�

Parameters
TRUE

Allow anonymous clients to enter SITE FILETYPE=SQL.

FALSE
Restrict anonymous clients so that SITE FILETYPE=SQL is not allowed.

Examples
Set the anonymous environment to allow anonymous clients to enter SITE
FILETYPE=SQL:
ANONYMOUSFILETYPESQL TRUE

Usage notes
If you specify the FILETYPE statement, its setting must be consistent with the
ANONYMOUSFILEYTPESQL setting or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPEJES statement” on page 463

v “ANONYMOUSFILETYPESEQ statement” on page 464

v “ANONYMOUSLEVEL statement” on page 470

v “FILETYPE statement” on page 507

Chapter 13. File Transfer Protocol (FTP) 465

ANONYMOUSFTPLOGGING statement
Use the ANONYMOUSFTPLOGGING statement to indicate whether the FTP server
should log FTP server activity for an anonymous user. The following types of
activities are logged:

v Connectivity

v Authentication

v Access

v Allocation

v Deallocation

v Data transfer

v JES job submission

v SQL query

v Abnormal end

The activities are logged in the SYSLOGD file. Each logging entry has a message
number.

Syntax

��
ANONYMOUSFTPLOGGING FALSE

ANONYMOUSFTPLOGGING TRUE
FALSE

�

Parameters
TRUE

The FTP server should log FTP session activity.

FALSE
The FTP server should not log FTP session activity.

Examples
To request that the FTP server log session activity for an anonymous user:
ANONYMOUSFTPLOGGING TRUE

Usage notes
v Each activity logging message has a message number within the range of

EZYFS50 to EZYFS95.

v ANONYMOUSFTPLOGGING controls logging for anonymous users.

v If ANONYMOUSFTPLOGGING is TRUE, connectivity, authentication, and access
activity log entries are made for all sessions because the server does not know
whether the login is anonymous or not.

Related topics
See “FTPLOGGING statement” on page 509 to control logging for a
non-anonymous user.

466 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

||||||||||||||||||||||

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|
|

|

|
|

ANONYMOUSHFSDIRMODE statement
Use the ANONYMOUSHFSDIRMODE statement to specify the mode bits used for
directories created by anonymous users. This statement is recognized only when
ANONYMOUSLEVEL 3 or greater is specified. This statement has no meaning if
ANONYMOUSLEVEL 3 is not specified.

Syntax

��
ANONYMOUSHFSDIRMODE 333

ANONYMOUSHFSDIRMODE nnn
�

Parameters
nnn

The three octal digits that describe the mode bits. It is passed directly to
chmod() function to set the mode bits for directories created by anonymous
users.

Examples
To prevent anyone from listing new directories created by anonymous users, use
the following example.
ANONYMOUSHFSDIRMODE 333

Usage notes
v This statement is recognized only when ANONYMOUSFILEACCESS HFS or

ANONYMOUSFILEACCESS BOTH is specified.

Related topics
v “ANONYMOUSFILEACCESS statement” on page 462

v “ANONYMOUSHFSFILEMODE statement” on page 468

v “ANONYMOUSLEVEL statement” on page 470

Chapter 13. File Transfer Protocol (FTP) 467

ANONYMOUSHFSFILEMODE statement
Use the ANONYMOUSHFSFILEMODE statement to specify the mode bits used
when storing files created by anonymous users. This statement is recognized only
when ANONYMOUSLEVEL 3 or greater is specified. This statement has no
meaning if ANONYMOUSLEVEL 3 is not specified.

Syntax

��
ANONYMOUSHFSFILEMODE 000

ANONYMOUSHFSFILEMODE nnn
�

Parameters
nnn

The three octal digits describing the mode bits. It is passed directly to the
chmod() function to set the mode bits for files created by anonymous users.

Examples
To prevent anyone from accessing files written by anonymous users, use the
following example.
ANONYMOUSHFSFILEMODE 000

Usage notes
v This statement is recognized only when ANONYMOUSFILEACCESS HFS or

ANONYMOUSFILEACCESS BOTH is specified.

Related topics
v “ANONYMOUSFILEACCESS statement” on page 462

v “ANONYMOUSHFSDIRMODE statement” on page 467

v “ANONYMOUSLEVEL statement” on page 470

468 z/OS V1R4.0 CS: IP Configuration Reference

ANONYMOUSHFSINFO statement
Use the ANONYMOUSHFSINFO statement to specify a file containing information
messages specific to each FTP server directory visited by an FTP client. This
statement affects only FTP clients logged in as anonymous users.

Syntax

�� ANONYMOUSHFSINFO file-mask �

Parameters
file-mask

The file-mask is an HFS file mask used to find an HFS information file for
anonymous users. The file mask can contain wildcards or it can be a full file
name (for example, readme*). When a user changes directories, a search is
made with the specified mask. The contents of the first file found is returned to
the FTP client and is displayed to the end user. If no file matches the specified
mask, no information is displayed to the end user. If multiple files satisfy a
generic file-mask, the first is chosen.

Note: The generic file name only works when an asterisk (*) is at the end of a
character string.

Examples
Use the following example to display the contents of the first file matching readme*
in any HFS directory to which an anonymous user changes. If the directory has no
files matching readme*, no messages are displayed.
ANONYMOUSHFSINFO readme*
; Anonymous HFS info file-mask
; login

Usage notes
v If an anonymous user changes to a directory containing no files matching the

file-mask, no information is displayed to the anonymous user.

Related topics
v “ADMINEMAILADDRESS statement” on page 459

v “ANONYMOUS statement” on page 460

v “ANONYMOUSMVSINFO statement” on page 474

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “MVSINFO statement” on page 526

Chapter 13. File Transfer Protocol (FTP) 469

ANONYMOUSLEVEL statement
Use the ANONYMOUSLEVEL statement to set the type of access permitted to
users who log in as anonymous users.

Syntax

��
ANONYMOUSLEVEL 1

ANONYMOUSLEVEL 1
2
3

�

Parameters
1 Anonymous logins are as documented in the ANONYMOUS statement.

Anonymous users are not affected by the keywords and function of the
following:

v ANONYMOUSFILETYPESEQ

v ANONYMOUSFILETYPEJES

v ANONYMOUSFILETYPESQL

v ANONYMOUSFILEACCESS

v ANONYMOUSHFSFILEMODE

v ANONYMOUSHFSDIRMODE

2 Anonymous logins are allowed as documented in “ANONYMOUS statement” on
page 460, with the exception of the UNIX call chroot(). This call is used to set
the anonymous user’s root directory to the anonymous user’s home directory.
When the STARTDIRECTORY is HFS, the UNIX call chroot() is used to set the
anonymous user’s root directory to the anonymous user’s home directory. A
umask of 777 is used for all files and directories created by anonymous users.

3 Anonymous logins are allowed as is documented in the ANONYMOUS
statement, but more control is given to customize access.

The FTP.DATA statements used to give this control are:

v ANONYMOUSFILETYPESEQ

v ANONYMOUSFILETYPEJES

v ANONYMOUSFILETYPESQL

v ANONYMOUSFILEACCESS

v ANONYMOUSHFSFILEMODE

v ANONYMOUSHFSDIRMODE

The FTP server prompts the user to enter an e-mail address as the password.

When the STARTDIRECTORY is HFS, the UNIX call chroot() is used to set the
anonymous user’s root directory to that user’s home directory.

Instead of establishing a fixed UMASK for files and directories created by the
anonymous user, the permission bits for files and directories are as defined by
the ANONYMOUSHFSFILEMODE and ANONYMOUSHFSDIRMODE
statements.

470 z/OS V1R4.0 CS: IP Configuration Reference

FTP clients are not allowed to issue the USER command to enter or leave
anonymous login mode.

The password prompting behavior for anonymous users is different than for
ANONYMOUSLEVEL 1 and 2. When the ANONYMOUS statement is coded
with no user ID or password, the FTP server prompts the user to enter an
e-mail address as a password. When the ANONYMOUS statement is coded
with a user ID, the FTP server prompts the user to enter a password, as
documented in “ANONYMOUS statement” on page 460. When the
ANONYMOUS statement is coded with a user ID and password, the user is
prompted to enter an e-mail address as a password. Control the degree of
e-mail address validation with the EMAILADDRCHECK password.

When customizing FTP server to support ANONYMOUS logins, FTP server
supports a way to avoid placing a plain-text password in the ANONYMOUS
statement by supporting a special parameter, SURROGATE. This is shown in
the following example:
ANONYMOUS userid/SURROGATE

For more information, refer to z/OS Communications Server: IP Configuration
Guide or “ANONYMOUS statement” on page 460.

In order to support this function, the FTP user ID must be defined to process
users without passwords.

Examples
Set the anonymous environment to use controls for accessing different resources:
ANONYMOUSLEVEL 3

Usage notes
v For ANONYMOUSLEVEL 2 and greater, the chroot() call is used to set the

anonymous user’s root directory only when STARTDIRECTORY is HFS. If
STARTDIRECTORY is MVS, no chroot() is created and the user has unrestricted
access to the HFS.

v For ANONYMOUSLEVEL 2 and greater, when STARTDIRECTORY is HFS, you
must create a specific directory structure and contents within the anonymous
user’s home directory. This directory structure is needed so the FTP client
maintains addressability to needed executables once the chroot() is executed.
Refer to z/OS Communications Server: IP Configuration Guide for details about
creating the required directory structure.

v If you specify ANONYMOUSLEVEL 3 and either ANONYMOUS with no
parameters or ANONYMOUS with both user ID and password, the user is
prompted for an e-mail address to log in to FTP. The EMAILADDRCHECK
keyword controls the extent to which the e-mail address entered is validated. See
“EMAILADDRCHECK statement” on page 503 for more information.

Related topics
v “ANONYMOUS statement” on page 460

v “ANONYMOUSHFSFILEMODE statement” on page 468

v “ANONYMOUSHFSDIRMODE statement” on page 467

v “ANONYMOUSFILETYPEJES statement” on page 463

v “ANONYMOUSFILETYPESEQ statement” on page 464

Chapter 13. File Transfer Protocol (FTP) 471

v “ANONYMOUSFILETYPESQL statement” on page 465

v “EMAILADDRCHECK statement” on page 503

v “STARTDIRECTORY statement” on page 568

472 z/OS V1R4.0 CS: IP Configuration Reference

ANONYMOUSLOGINMSG statement
Use the ANONYMOUSLOGINMSG statement to specify an HFS file or MVS data
set whose contents are to be returned to the FTP client and displayed to the end
user when an anonymous user logs in.

Syntax

�� ANONYMOUSLOGINMSG file-path �

Parameters
file-path

Either a fully qualified HFS path or a fully qualified MVS data set name. This is
determined by the standard method; it is the first character, a slash, or some
other character.

Examples
To display the contents of the TCPIP.ANONYM.LOGIN.MSG data set when an
anonymous user logs in to FTP, enter the following:
ANONYMOUSLOGINMSG TCPIP.ANONYM.LOGIN.MSG

Usage notes
v ANONYMOUSLOGINMSG is not dependent upon the value of

ANONYMOUSLEVEL.

v If an installation is required to display the same login messages to both
anonymous and known users, the same file-path can be specified on both the
ANONYMOUSLOGINMSG and LOGINMSG statements.

Related topics
v “ANONYMOUS statement” on page 460

v “ANONYMOUSMVSINFO statement” on page 474

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “MVSINFO statement” on page 526

Chapter 13. File Transfer Protocol (FTP) 473

ANONYMOUSMVSINFO statement
Use the ANONYMOUSMVSINFO statement to specify the MVS data sets whose
contents should be returned to the FTP client and displayed to the end user when
an anonymous user changes directories. The statement identifies a low-level
qualifier (LLQ) to be appended to the current path whenever an anonymous FTP
user changes directories to an MVS data set.

Syntax

�� ANONYMOUSMVSINFO MVS-LLQ �

Parameters
MVS-LLQ

The MVS-LLQ is the MVS low-level qualifier (LLQ) to be appended to the
current MVS path whenever an anonymous FTP client changes directories to
an MVS data set. If a data set matches the current path appended LLQ, the
contents of the data set are to be returned to the FTP client and displayed to
the end user (when the end user is an anonymous user).

Examples
To display a readme file the first time an anonymous user changes directory to
high-level qualifiers, use the statement shown below. In this example, an MVS
high-level qualifier of productname might have a readme file for each product, and
when an anonymous user changes directory to the product, the readme file would
be displayed.
ANONYMOUSMVSINFO README

Usage notes
v You can use MVSINFO to specify the same LLQ and ANONYMOUSMVSINFO. In

this way, anonymous and known users can display the same information.

v The data set read for the ANONYMOUSMVSINFO information must be a
physical sequential data set.

v The ANONYMOUSMVSINFO data set is displayed only the first time a user
changes to a specific directory. The FTP server maintains a finite history of CD
commands entered by the FTP client. If the FTP client performs frequent CD
commands, it is possible the client sees the same ANONYMOUSMVSINFO file
more than once.

v ANONYMOUSMVSINFO applies only to anonymous users. For all other users, a
banner informational message can be displayed using the MVSINFO statement.

Related topics
v “ANONYMOUS statement” on page 460

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “MVSINFO statement” on page 526

474 z/OS V1R4.0 CS: IP Configuration Reference

ASATRANS statement
Use the ASATRANS statement to control the way the server handles ASA file
transfers. Choose either to have the control characters converted by the C run-time
during a file transfer or transferred without conversion.

The conversion process is described in the z/OS C/C++ Programming Guide in the
chapter about ASA Text Files.

Syntax

��
ASATRANS FALSE

ASATRANS TRUE
FALSE

�

Parameters
TRUE

Characters in column 1 of the file being transferred are converted to C control
character sequences.

FALSE
Characters in column 1 of the file being transferred are not converted. This is
the default.

Examples
Convert characters in column 1 of the file being transferred:
ASATRANS TRUE

Chapter 13. File Transfer Protocol (FTP) 475

AUTOMOUNT statement
Use the AUTOMOUNT statement to permit unmounted DASD volumes to be
mounted automatically.

Syntax

��
AUTOMOUNT TRUE

AUTOMOUNT TRUE
FALSE

�

Parameters
TRUE

Permits unmounted DASD volumes to be mounted automatically. This is the
default.

FALSE
Prevents unmounted DASD volumes from being mounted automatically.

Examples
Mount DASD volumes that are not already mounted automatically:
AUTOMOUNT TRUE

Usage notes
v If AUTOMOUNT is allowed, FTP attempts to mount volumes, if necessary, to

obtain temporary storage for load module transfers. Otherwise, the load module
transfers fails with an allocation failed message if sufficient temporary storage
is not already mounted and available.

v When transferring load modules, this parameter also controls whether or not the
system attempts to mount additional temporary volumes if there is insufficient
temporary DASD available and mounted to fulfill a load module transfer request.
For more information about transferring modules, refer to z/OS Communications
Server: IP User’s Guide and Commands.

476 z/OS V1R4.0 CS: IP Configuration Reference

AUTORECALL statement
Use the AUTORECALL statement to specify whether data sets that have been
migrated by a storage manager, such as HSM, are recalled automatically.

Syntax

��
AUTORECALL TRUE

AUTORECALL TRUE
FALSE

�

Parameters
TRUE

Permits data sets migrated by the storage manager, such as HSM, to be
recalled automatically. This is the default.

FALSE
Prevents migrated data sets from being recalled automatically.

Examples
Recall migrated HSM files automatically:
AUTORECALL TRUE

Usage notes
v Migrated data sets can still be deleted even though you specify FALSE.

v Partitioned data set members require the entire data set to be recalled.

Chapter 13. File Transfer Protocol (FTP) 477

AUTOTAPEMOUNT statement
Use the AUTOTAPEMOUNT statement to specify whether unmounted tapes are to
be automatically allocated and mounted.

Syntax

��
AUTOTAPEMOUNT TRUE

AUTOTAPEMOUNT TRUE
FALSE

�

Parameters
TRUE

Permits unmounted tapes to be automatically allocated and mounted. This is
the default for the server.

FALSE
Prevents unmounted tapes from being automatically allocated and mounted.
This is the default for the client.

Examples
Automatically mount tape volumes that are not already mounted:
AUTOTAPEMOUNT TRUE

Do not automatically mount tape volumes that are not already mounted:
AUTOTAPEMOUNT FALSE

478 z/OS V1R4.0 CS: IP Configuration Reference

BANNER statement
Use the BANNER statement to identify the welcome banner page to be displayed
immediately after a new connection is established.

Syntax

�� BANNER file-path �

Parameters
file-path

The file path is the HFS absolute pathname or the fully qualified MVS data set
name whose contents are displayed whenever a user connects to FTP. An HFS
pathname must begin with a slash (/) character. An MVS data set must not
begin with a slash character.

Examples
To display the contents /etc/ftp.banner each time an FTP client connects to the FTP
server, code the following in the server’s FTP.DATA:
BANNER /etc/ftp.banner ; banner to be displayed for FTP

Usage notes
v If no BANNER statement is specified, no banner is displayed immediately after a

new connection is established.

v One hundred lines of the file are displayed to the FTP client as 220 replies. If the
file exceeds 100 lines, a final 220 reply is returned to the client indicating the
banner was truncated.

Related topics
v “ADMINEMAILADDRESS statement” on page 459

v “ANONYMOUSHFSINFO statement” on page 469

v “ANONYMOUSLOGINMSG statement” on page 473

v “ANONYMOUSMVSINFO statement” on page 474

v “HFSINFO statement” on page 510

v “MVSINFO statement” on page 526

Chapter 13. File Transfer Protocol (FTP) 479

|
|

|
|
|

BLKSIZE statement
Use the BLKSIZE statement to specify the block size of newly allocated data sets.

Syntax

��
BLKSIZE 6233

BLKSIZE
size

�

Parameters
size

Specifies the block size of newly allocated data sets. The valid range is 0
through 32760. Specifying no value for block size allows the block size from a
model DCB data set or SMS dataclass to be used. The default block size is
6233.

Examples
Set block size to 6144 bytes:
BLKSIZE 6144

Specify no value for block size to allow the block size from a model DCB data set
or SMS dataclass to be used:
BLKSIZE

Usage notes
v If you specify the BLKSIZE statement without a size, FTP does not specify the

block size when allocating new data sets.

v You should use the BLKSIZE statement without a size if you have specified the
DATACLASS statement and the block size from the SMS data class is to be
used.

v You can also specify this statement as BLOCKSIZE.

Related topics
v Refer to the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “DATACLASS statement” on page 487

v “DCBDSN statement” on page 491

v “MGMTCLASS statement” on page 524

v “STORCLASS statement” on page 569

480 z/OS V1R4.0 CS: IP Configuration Reference

BUFNO statement
Use the BUFNO statement to specify the number of access method buffers used
when data is read from or written to a data set.

Syntax

��
BUFNO 5

BUFNO
number

�

Parameters
number

Specifies the number of buffers allocated. The valid range is 1 through 35. The
default is 5.

Chapter 13. File Transfer Protocol (FTP) 481

CCXLATE statement
Use the CCXLATE statement to specify a data set containing translate tables to be
used for the control connection.

Syntax

�� CCXLATE name �

Parameters
name

Specifies a 1- to 8-character name corresponding to a data set containing
translate tables.

FTP looks first for an environment variable called _FTPXLATE_name. If the
environment variable exists, its value is used as the data set name.

Note: The environment variable name must be all uppercase, although the
CCXLATE parameter can be in mixed case.

If the environment variable does not exist, FTP looks for a data set called
hlq.name.TCPXLBIN.

Examples
CCXLATE FRED

If environment variable _FTPXLATE_FRED=FREDDYS.TABLES is defined for the
FTP server, the statement above specifies that the translate tables in data set
FREDDYS.TABLES should be used for the control connection.

If there is no such environment variable defined, the above statement specifies that
the translate tables data set hlq.FRED.TCPXLBIN should be used.

Usage notes
v CCXLATE and CTRLCONN are mutually exclusive statements. If both statements

appear in your FTP.DATA file, CCXLATE is ignored.

v The CCXLATE statement (and its value) is not case-sensitive but the name of
the corresponding environment variable must be all uppercase or FTP does not
recognize it.

v CCXLATE and EXTENSIONS UTF8 are mutually exclusive statements. If both
statements appear in FTP.DATA, the CCXLATE statement is ignored.

Related topics
v Appendix B, “Using translation tables” on page 907

v “CTRLCONN statement” on page 486

v “EXTENSIONS statement” on page 505

v Refer to z/OS Communications Server: IP Configuration Guide for more
information about defining optional environment variables.

v To see the search order that determines the conversion for the control
connection, see “FTP code page conversion” on page 589.

v “XLATE statement” on page 585

482 z/OS V1R4.0 CS: IP Configuration Reference

CHKPTINT statement
Use the CHKPTINT statement to specify the checkpoint interval when the FTP
server is the sending site in a file transfer request.

Syntax

��
CHKPTINT 0

CHKPTINT number
�

Parameters
number

Used to determine when a restart marker is transmitted. The marker is
transmitted after the specified number of records are sent.

If number is set to 0, no checking occurs and no marker blocks are transmitted.
The default is 0.

Examples
To send a restart marker of every 100000 records:
CHKPTINT 100000

Usage notes
If a nonzero value is coded for CHKPTINT, checkpoint markers are sent to each
client who uses EBCDIC block mode or EBCDIC compress mode during data set
retrieval. If some of those clients do not support the restart marker, you can accept
the default value of 0 on this statement and instead, set the checkpoint interval for
an individual client with the FTP SITE command. For more information about the
SITE command, refer to z/OS Communications Server: IP User’s Guide and
Commands for more information.

Chapter 13. File Transfer Protocol (FTP) 483

CIPHERSUITE statement
Use the CIPHERSUITE statement to specify the name of a CipherSuite that is used
during the TLS handshake.

Syntax

�� CIPHERSUITE name �

Parameters
name

The name of the ciphersuite is defined by the components of the key exchange
and the hashing algorithm that are used. NULL indicates that there is no key
exchange and EX indicates that the cipher suite is exportable.

The key exchanges are:

RC2 Block cipher developed at RSA Data Security

RC4 Stream cipher developed at RSA Data Security

DES 56 bits of security

3DES Digital Encryption Standard -168 bits of security

The hashing algorithms are:

MD5 Algorithm that converts to fixed size (16 bytes)

SHA Secure Hash Algorithm that converts to a 20-byte output

Examples
CIPHERSUITE SSL_NULL_MD5

CIPHERSUITE SSL_NULL_SHA

CIPHERSUITE SSL_RC4_MD5_EX

CIPHERSUITE SSL_RC4_MD5

CIPHERSUITE SSL_RC4_SHA

CIPHERSUITE SSL_RC2_MD5_EX

CIPHERSUITE SSL_DES_SHA

CIPHERSUITE SSL_3DES_SHA

Usage notes
v Multiple CIPHERSUITE statements may be coded in the FTP.DATA file.

v The client and server specify the list of encryption types that they support. The
client and server negotiate which of the available ciphers is used for the data
encryption by specifying the desired ciphers in order of preference. The actual
cipher used is the best match between what the server supports and what the
client requests. If the server does not support any of the ciphers that the client
requests, the TLS handshake fails and the connection is closed.

v The CIPHERSUITE statements are used by FTP when the EXTENSIONS
statement is coded with the AUTH_TLS value.

484 z/OS V1R4.0 CS: IP Configuration Reference

CONDDISP statement
Use the CONDDISP statement to keep and catalog or delete a data set when an
FTP file transfer ends prematurely.

Syntax

��
CONDDISP CATLG

CONDDISP CATLG
DELETE

�

Parameters
CATLG

Specifies that a data set is kept and cataloged when an FTP file transfer ends
prematurely. This is the default.

DELETE
Specifies that a data sets is deleted when a file transfer ends prematurely.

Examples
Specify that a data set is deleted when a file transfer ends prematurely:
CONDDISP DELETE

Usage notes
v DELETE is ignored if the file transfer ended prematurely because the FTP server

was stopped.

v DELETE is ignored if the server receives a checkpoint marker.

Chapter 13. File Transfer Protocol (FTP) 485

CTRLCONN statement
This statement defines the ASCII code page to be used for the control connection.

Syntax

��

(1)
CTRLCONN 7BIT

CTRLCONN 7BIT
iconv_ascii
FTP_STANDARD_TABLE

�

Notes:

1 7BIT is the default if CTRLCONN is not used and no TCPXLBIN data set is
found.

Parameters
7BIT

Indicates 7-bit ASCII is to be used

iconv_ascii
A name recognized by iconv to indicate an ASCII code page.

FTP_STANDARD_TABLE
Indicates that the FTP internal tables, which are the same as the tables that are
shipped in TCPXLBIN(STANDARD), are to be used.

Examples
CTRLCONN IBM-850

Usage notes
v 7BIT or an iconv_ascii name can be entered in lowercase or uppercase.

v To see the search order that determines the code page conversion for the control
connection, see “FTP code page conversion” on page 589.

v EXTENSIONS UTF8 and CTRLCONN are mutually exclusive statements. If both
statements are coded in FTP.DATA, CTRLCONN is ignored.

Related topics
v “EXTENSIONS statement” on page 505

v For the code pages supported, refer to code set converters in the z/OS C/C++
Programming Guide.

486 z/OS V1R4.0 CS: IP Configuration Reference

DATACLASS statement
Use the DATACLASS statement to specify the SMS-managed data class as defined
by your organization for the FTP server.

Syntax

�� DATACLASS class �

Parameters
class

The SMS-managed data class as defined by your organization. There is no
default.

Examples
Use the SMS data class SMSDATA when allocating new data sets:
DATACLASS SMSDATA

Usage notes
v If you specify any of the following FTP.DATA statements or let them default, the

values specified or defaulted override the values specified in the SMS
DATACLASS:
– BLKSIZE
– DIRECTORY
– LRECL
– PRIMARY
– RECFM
– RETPD
– SECONDARY

v If you specify the DCBDSN statement, the LRECL, RECFM, BLKSIZE, and
RETPD (if specified) of the DCBDSN data set override the values specified in the
SMS DATACLASS. To prevent these keywords from overriding the values
specified in the SMS DATACLASS, specify them with no keyword values.

v If you specify the MGMTCLASS statement and the requested management class
specifies a retention period, the RETPD value of the management class might
override the RETPD value of DATACLASS.

Related topics
v “BLKSIZE statement” on page 480
v “DCBDSN statement” on page 491
v “DIRECTORY statement” on page 498
v “LRECL statement” on page 522
v “MGMTCLASS statement” on page 524
v “PRIMARY statement” on page 531
v “RECFM statement” on page 534
v “RETPD statement” on page 537
v “SECONDARY statement” on page 542
v “STORCLASS statement” on page 569
v Refer to the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

Chapter 13. File Transfer Protocol (FTP) 487

DATATIMEOUT statement
Use the DATATIMEOUT statement to specify the length of time to wait for the send
to complete (default 300 seconds) before the connection is aborted.

Syntax

��
DATATIMEOUT 300

DATATIMEOUT number
�

Parameters
number

Used to determine when to abort the connection if a send() or recv() is not
completed or if a passive socket was opened, but never completed by the
remote client. The maximum allowed is 86400.

Examples
To check for send completion at 30 seconds:
DATATIMEOUT 30

Usage notes
v The DATATIMEOUT timer is set when the FTP server does a send() or recv() call

to TCP/IP or when a passive data connection is detected, and the server must
wait for the client to complete the session. If the process does not complete
within the timer value (default 300 seconds), the connection is aborted.

v DATATIMEOUT 0 means FTP does not interrupt the send(), recv(), or if the data
connection is passive, the wait on the client with a timeout.

488 z/OS V1R4.0 CS: IP Configuration Reference

DB2 statement
Use the DB2 statement to specify the name of the DB2 subsystem.

Syntax

��
DB2 DB2

DB2 subsystem_name
�

Parameters
subsystem_name

The name of the DB2 subsystem. The default name is DB2.

Examples
Set the DB2 subsystem name to DB2X:
DB2 DB2X

Related topics
“DB2PLAN statement” on page 490

Chapter 13. File Transfer Protocol (FTP) 489

DB2PLAN statement
Use the DB2PLAN statement to specify the DB2 plan to be used by the FTP server.

Syntax

��
DB2PLAN EZAFTPMQ

DB2PLAN plan_name
�

Parameters
plan_name

The name of the DB2 plan bound in the DB2 subsystem.

Examples
Set the plan name to FTPPLAN:
DB2PLAN FTPPLAN

Related topics
“DB2 statement” on page 489

490 z/OS V1R4.0 CS: IP Configuration Reference

DCBDSN statement
Use the DCBDSN statement to specify an MVS data set to be used as a model for
allocation of new data sets.

Syntax

�� DCBDSN name �

Parameters
name

The name of the data set to be used as a model for allocation of new data sets
created with a STOR or MKDIR command. This data set name must be a fully
qualified MVS data set name; HFS file names are not allowed. There is no
default.

Examples
Use model.dcb as the model data set for allocation and specify RECFM, LRECL,
and BLKSIZE with no parameters to allow the attributes from the model DCB to be
used:
DCBDSN model.dcb
BLKSIZE
LRECL
RECFM

BLKSIZE and LRECL can also be specified with a value of 0 to allow the attributes
from the model DCB to be used:
DCBDSN model.dcb
BLKSIZE 0
LRECL 0
RECFM

Usage notes
v If specified or defaulted, the following FTP.DATA statements or SITE command

parameters override the DCB values from the model data set:
– BLKSIZE
– LRECL
– RECFM
– RETPD

v If you specify the MGMTCLASS statement, the retention period from the model
data set can be overridden by the retention period specified by the SMS
management class.

v When using a model DCB at the server, SENDSITE must be toggled off at the
client. Otherwise, the SITE information sent automatically by the client overrides
the value provided by the model DCB.

Related topics
v “BLKSIZE statement” on page 480

v “LRECL statement” on page 522

v “MGMTCLASS statement” on page 524

v “RECFM statement” on page 534

Chapter 13. File Transfer Protocol (FTP) 491

v “RETPD statement” on page 537

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

492 z/OS V1R4.0 CS: IP Configuration Reference

DCONNTIME statement
Use the DCONNTIME statement to define the amount of time to wait after
attempting to close a data transfer before terminating the connection and reporting
an error.

Syntax

��
DCONNTIME 120

DCONNTIME seconds
�

Parameters
seconds

The number of seconds the server waits to receive notification from the client
that it is closing the data connection. The valid range is 0 (DCONNTIME not
used) or 15-86400. The default is 120.

Examples
Set the inactivity timer to 600 seconds:
DCONNTIME 600

Usage notes
If you specify 0 seconds, the dconntime timer is disabled and the server waits to
receive the FIN from the client before closing the data connection.

Chapter 13. File Transfer Protocol (FTP) 493

DEBUG statement
Use the DEBUG statement to activate a specific trace type. Only one trace type can
be activated for a DEBUG statement.

Syntax

�� DEBUG parameter �

Parameters
FLO

The FLO trace shows the flow of control within FTP. It is used to show which
services of FTP are used for an FTP request.

CMD
The CMD trace shows each command and the parsing of the parameters for
the command.

PAR
The PAR trace shows details of the FTP command parser. It is useful when
debugging problems with the processing of command parameters.

INT
The INT trace shows the details of the initialization and termination of the FTP
session.

ACC
The ACC trace shows the details of the login process.

UTL
The UTL trace shows the processing of utility functions such as CD and SITE.

FSC(n)
The FSC trace shows details of processing the file services commands APPE,
STOR, STOU, RETR, DELE, RNFR, and RNTO. This trace allows you to
specify levels of detail for the trace points. The level one tracing specified by
entering FSC or FSC(1) is the level typically used unless more data is
requested by the TCP/IP service group.

Note: n can be an integer between 1 and 8.

SEC
The SEC trace shows the processing of security functions such as TLS and
GSSAPI negotiations.

SOC(n)
The SOC trace shows details of the processing during the setup of the interface
between the FTP application and the network as well as details of the actual
amounts of data that are processed. This trace allows you to specify levels of
detail for the trace points. The level one tracing that is specified by entering
SOC or SOC(1) is the level typically used unless more data is requested by the
TCP/IP service group.

Note: n can be an integer between 1 and 8.

JES
The JES trace shows details of the processing for JES requests (that is,
requests when SITE FILETYPE=JES is in effect).

494 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

SQL
The SQL trace shows details of the processing for SQL requests (that is,
requests when SITE FILETYPE=SQL is in effect).

ALL
This value is used to set all of the trace points.

Note: Both the FSC and the SOC trace are set to level one when the ALL
parameter is processed.

BAS
This value is used to set a select group of traces that offer the best overall
details without the more excessive tracing some of the other traces provide.
Specifying this value is the same as the following:

v DEBUG CMD

v DEBUG INT

v DEBUG FSC

v DEBUG SOC

USERID (filter_name)
This parameter is used to filter the trace for user IDs matching the filter_name
pattern. If the user ID matches the filter at the time the client logs in, tracing
options are set to the current value of the options. Otherwise, no tracing options
are set. The client can use the SITE command to set options after login if the
initial ones are not appropriate. An example for the USERID filter is:
DEBUG USERID(USER33)

which activates the trace for a user if the user ID is USER33.

IPADDR (filter)
This parameter is used to filter the trace for IP addresses matching the filter
pattern. If the IP address matches the filter at the time the client connects,
tracing options are set to the current value of the options. Otherwise, no tracing
options are set. The client may use the SITE command to set options after
connect if the initial ones are not appropriate. Examples of the IPADDR(filter)
are:
DEBUG IPADDR(9.67.113.57)
DEBUG IPADDR(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210)

The first example activates the trace for a client whose IP address is
9.67.113.57; the second activates the trace for a client whose IP address is
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210. If the filter is an IPv4 address,
submasking can be indicated by using a slash followed by a dotted decimal
submask. For example, 192.48.32.0/255.255.255.0 allows addresses from
192.48.32.00 to 192.48.32.255.

If the filter is an IPv6 address, network prefixing can be indicated by using a
slash followed by a network prefix. For example, use FEDC:BA98::0/32 to
indicate the prefix: FEDCBA98.

Chapter 13. File Transfer Protocol (FTP) 495

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

DEBUGONSITE statement
Use the DEBUGONSITE statement to specify whether the FTP server will accept a
SITE DEBUG command to change the general tracing options for the FTP session.

Syntax

��
DEBUGONSITE FALSE

DEBUGONSITE TRUE
FALSE

�

Parameters
TRUE

The server will accept a SITE DEBUG command from the client to change the
general trace options for the current session.

FALSE
The server will not accept a SITE DEBUG command from the client. This is the
default.

496 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

DEST statement
Use the DEST statement to specify the NJE destination to which the files are routed
when the server receives a STOR, STOU, or APPE command. Using the DEST
statement allows you to send data sets to other users on machines connected on a
network job entry (NJE) network rather than storing them at the server.

Syntax

�� DEST destination �

Parameters
destination

The NJE destination to which the files are routed when the server receives a
STOR, STOU, or APPE command. The format for destination should be one of
the following:
v userID@nodeID
v nodeID.userID
v nodeID
v DestID

There is no default.

Examples
Send files to user USER14 at system MVS1 instead of storing them in the server
file system:
DEST USER14@MVS1

Chapter 13. File Transfer Protocol (FTP) 497

|
|
|
|

DIRECTORY statement
Use the DIRECTORY statement to specify the number of directory blocks to be
allocated for the directory of a PDS.

Syntax

��
DIRECTORY 27

DIRECTORY
size

�

Parameters
size

The number of directory blocks to be allocated for the directory of a PDS. The
valid range is 1 to 16 777 215 blocks (the operating system maximum). The
default is 27.

Examples
Allocate a PDS with 15 directory blocks:
Directory 15

Specify DIRECTORY with no value to allow the directory information from an SMS
dataclass to be used:
DIRECTORY

Usage notes
v If you specify no value for the size, FTP does not specify the number of directory

blocks to be allocated for the directory of a PDS.

v You should specify no value for the size if the DATACLASS statement is
specified and the directory from the SMS data class is to be used.

Related topics
v “DATACLASS statement” on page 487

v “MGMTCLASS statement” on page 524

v “STORCLASS statement” on page 569

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

498 z/OS V1R4.0 CS: IP Configuration Reference

DIRECTORYMODE statement
Use the DIRECTORYMODE statement to specify whether only the data set qualifier
immediately below the current directory is treated as an entry in the directory or if
all data set qualifiers below the current directory are treated as entries in the
directory.

Syntax

��
DIRECTORYMODE FALSE

DIRECTORYMODE TRUE
FALSE

�

Parameters
TRUE

Specifies that only the data set qualifier immediately below the current directory
is treated as an entry in the directory.

FALSE
Specifies that all data set qualifiers below the current directory are treated as
entries in the directory. This is the default.

Examples
Use all qualifiers (Datasetmode):
DirectoryMode FALSE

Usage notes
In directory mode, the data set qualifier immediately below the current directory is
the only one used by the MPUT, MGET, LS, and DIR subcommands.

Chapter 13. File Transfer Protocol (FTP) 499

DUMP statement
Use the DUMP statement to activate an extended trace dump ID. Only one dump
ID can be activated for a DUMP statement.

Syntax

�� DUMP parameter �

Parameters
n Specifies the ID number of a specific extended trace point that is to be

activated in the FTP code. The number is an integer in the range 1–99.

FSC
Activates all of the extended trace points in the file services code.

JES
Activates all of the extended trace points in the JES services code.

SOC
Activates all of the extended trace points in the network services code.

SQL
Activates all of the extended trace points in the SQL services code.

ALL
This parameter is used to set all of the trace points. It sets dump ID 1 to 99.

USERID (filter_name)
This parameter is used to filter the extended trace for user IDs matching the
filter_name pattern. If the user ID matches the filter at the time the client logs in,
tracing options are set to the current value of the options. Otherwise, no
extended tracing options are set. The client may use the SITE command to set
options after login if the initial ones are not appropriate. An example for the
USERID filter is:
DUMP USERID(USER33)

which activates the dumpID trace for a user if the user ID is USER33.

IPADDR (filter/subnet mask)
This parameter is used to filter the extended trace for IP addresses matching
the filter pattern. If the IP address matches the filter at the time the client
connects, extended tracing options are set to the current value of the options.
Otherwise, no extended tracing options are set. The client may use the SITE
command to set options after connect if the initial ones are not appropriate.
Examples of the IPADDR filter are:
DUMP IPADDR(9.67.113.57)
DUMP IPADDR(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210)

The first example activates the extended traces for a client whose IP address is
9.67.113.57; the second activates the extended traces for a client whose IP
address is FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.

If the filter is an IPv4 address, submasking can be indicated by using a slash
followed by a dotted decimal submask. For example, 192.48.32/255.255.255.0
allows addresses from 192.48.32.00 to 192.48.32.255. If the filter is an IPv6

500 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

address, network prefixing can be indicated by using a slash followed by a
network prefix. For example, use FEDC:BA98::0/32 to indicate the prefix:
FEDCBA98.

Chapter 13. File Transfer Protocol (FTP) 501

|
|
|

DUMPONSITE statement
Use the DUMPONSITE statement to specify whether the FTP server will accept a
SITE DUMP command to change the extended tracing options for the FTP session.

Syntax

��
DUMPONSITE FALSE

DUMPONSITE FALSE
TRUE

�

Parameters
TRUE

The FTP server will allow an FTP client to change the extended trace options
with a SITE DUMP command.

FALSE
The FTP server will not allow an FTP client to change the extended trace
options with a SITE DUMP command. This is the default.

502 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

EMAILADDRCHECK statement
Use the EMAILADDRCHECK statement to control the extent to which the FTP
server validates e-mail addresses entered by FTP clients while logging in to the
FTP server. This statement is meaningful only when ANONYMOUSLEVEL is 3 or
greater.

Syntax

��
EMAILADDRCHECK NO

EMAILADDRCHECK NO
FAIL
WARNING

�

Parameters
NO

The FTP server does not validate the e-mail address entered by the FTP client.
Whatever the user entered is accepted and the user can log in. This is the
default.

FAIL
The FTP server verifies that the e-mail address entered by the FTP client is a
valid e-mail address before allowing the user to log in. The FTP server rejects
the login if the e-mail address is not valid.

WARNING
The FTP server inspects the e-mail address entered by the FTP client. Any
value the client enters is accepted as valid; however, the FTP server returns a
warning reply to the client if the e-mail address is not plausible. In either case,
the FTP server allows the FTP client to log in.

Examples
To ensure that only anonymous users entering valid e-mail addresses are allowed
successful login, set the following parameter in FTP.DATA:
EMAILADDRCHECK FAIL; Requires anonymous users to enter a valid email address.

Usage notes
The FTP server prompts anonymous users for an e-mail address instead of a
password when ANONYMOUSLEVEL is 3.

Related topics
v “ANONYMOUS statement” on page 460

v “ANONYMOUSLEVEL statement” on page 470

v “The FTCHKPWD user exit” on page 448

Chapter 13. File Transfer Protocol (FTP) 503

ENCODING statement
Use the ENCODING statement in the server and client FTP.DATA to indicate the
type of data encoding on the network. SITE and LOCSITE subcommands are also
available to set this keyword.

Syntax

��
ENCODING SBCS

ENCODING SBCS
MBCS

�

Parameters
SBCS

Specifies single byte encoding. Code pages are specified by way of the
SBDATACONN statement. This is the default value.

MBCS
Specifies multi-byte encoding. Code pages are specified by way of the
MBDATACONN statement.

Examples
To indicate that data encoding was specified using MBDATACONN statement, code
the following:
ENCODING MBCS

Related topics
v “SBDATACONN statement” on page 538

v “MBDATACONN statement” on page 523

504 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|

||||||||||||||||||||||

|

|

|
|
|

|
|
|

|

|
|

|

|

|

|

EXTENSIONS statement
Use the EXTENSIONS statement to enable the FTP server to recognize FTP
commands not described in RFC 959.

Syntax

��
EXTENSIONS AUTH_GSSAPI
EXTENSIONS SIZE
EXTENSIONS MDTM
EXTENSIONS UTF8
EXTENSIONS REST_STREAM
EXTENSIONS AUTH_TLS

�

Parameters
AUTH_GSSAPI

Specifies that GSSAPI authentication is supported. The server supports
receiving the AUTH command with the following values:

v GSSAPI

SIZE
Enables the FTP Server to respond to the SIZE command.

MDTM
Enables the FTP Server to respond to the MDTM command.

UTF8
Enables the FTP server to respond to the LANG command, and to use UTF–8
encoding of pathnames on the control connection. The server ignores
configuration options that direct it to use a specific code page on the control
connection, as well as SITE commands that specify a specific code page on the
control connection. The server initializes the control connection to use 7-bit
ASCII until a LANG command from the client directs it to use UTF-8 encoding
of pathnames. The only language supported by the server is United States
English.

When the client has EXTENSIONS UTF8 encoded in FTP.DATA, the client has
the language and subcommands available. Configuration options that direct the
client to use a specific code page on the control connection, as well as
LOCSITE commands that specify a specific code page on the control
connection, are ignored. Initially the client uses 7-bit ASCII on the control
connection. During client login, the client queries the server to determine
whether it supports UTF-8 encoding. If so, it uses UTF-8 encoding of
pathnames on the control connection.

REST_STREAM
Enables the FTP server to restart stream mode file transfers. The server
ignores EXTENSIONS REST_STREAM unless EXTENSIONS SIZE is also
coded, because stream restarts rely on the SIZE command.

AUTH_TLS
Specifies that the TLS authentication is supported. The server supports
receiving the AUTH command with the following values:

v TLS: When the server successfully processes the AUTH TLS command and
completes the handshake with the FTP client, the control connection is
protected by TLS.

Chapter 13. File Transfer Protocol (FTP) 505

v TLS-C: When the server successfully processes the AUTH TLS command
and completes the handshake with the FTP client, the control connection is
protected by TLS.

v TLS-P: When the server successfully processes the AUTH TLS-P command
and completes the handshake with the FTP client, the control connection is
protected by TLS. The server also implicitly protects all data connections.

v SSL: When the server successfully processes the AUTH SSL command and
completes the handshake with the FTP client, the control connection is
protected by TLS.The server also implicitly protects all data connections.

Examples
EXTENSIONS SIZE

EXTENSIONS MDTM

EXTENSIONS AUTH_TLS

Usage notes
v AUTH_GSSAPI is supported for IPv4 connections only.

v The EXTENSIONS statement has no default value.

v If you do not include an EXTENSIONS statement in FTP.DATA, no extensions to
RFC 959 are recognized.

v Unlike other FTP.DATA statements, EXTENSIONS statements are cumulative. If
you include an EXTENSIONS SIZE statement in FTP.DATA and also an
EXTENSIONS MDTM statement, the FTP server recognizes both the SIZE and
MDTM commands.

v The only way to disable an EXTENSIONS statement is to remove that statement
from FTP.DATA. You can remove a statement by changing it to a comment or by
deleting the statement.

v The SIZE and MDTM commands are not part of RFC 959. They are proposed
commands described by an Internet-Draft published by the IETF (Internet
Engineering Task Force). Because these commands are not part of an RFC, the
FTP server supports them only if FTP.DATA includes EXTENSIONS statements
to explicitly enable them.

v MDTM is supported for HFS files only.

v SIZE is supported for HFS files only when the data transfer type is image, ASCII,
or EBCDIC, the structure is file, and the data transfer mode is stream. If an FTP
client requests MDTM or SIZE information for an MVS file, or for any other
unsupported file, the server returns an FTP reply code and error message
instead of the requested information.

506 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

FILETYPE statement
Use the FILETYPE statement to specify the method of operation of the server.

Syntax

��
FILETYPE SEQ

FILETYPE JES
SEQ
SQL

�

Parameters
JES

Remote job submission.

SEQ
MVS data sets or HFS files. This is the default.

SQL
SQL query function.

Examples
Set the operational method to SQL:
Filetype SQL

Usage notes
v SEQ is the method of operation supported by all FTP platforms.

v JES and SQL pertain to z/OS platform only. For more information about the
effects on command processing at the server when the server’s FILETYPE is
SQL, refer to z/OS Communications Server: IP User’s Guide and Commands.

v SQL method affects the RETR command only.

v JES method affects the STOR and LIST commands only. For more information
about the effects on command processing at the server when the server’s
FILETYPE is JES, refer to z/OS Communications Server: IP User’s Guide and
Commands.

Related topics
v “ANONYMOUS statement” on page 460

v “ANONYMOUSLEVEL statement” on page 470

v “ANONYMOUSFILETYPEJES statement” on page 463

v “ANONYMOUSFILETYPESEQ statement” on page 464

v “ANONYMOUSFILETYPESQL statement” on page 465

v “DB2 statement” on page 489

v “DB2PLAN statement” on page 490

v “JESENTRYLIMIT statement” on page 513

v “JESLRECL statement” on page 516

v “JESPUTGETTO statement” on page 517

v z/OS Communications Server: IP Configuration Guide for information about
JESINTERFACELEVEL

Chapter 13. File Transfer Protocol (FTP) 507

FTPKEEPALIVE statement
Use the FTPKEEPALIVE statement to define the control connection keepalive timer
value in seconds. This sets a socket level keepalive timer for the control
connection. This allows the keepalive mechanism to send a packet on the idle
control connection every FTPKEEPALIVE seconds, and avoid the firewall timing out
the control connection.

Syntax

��
FTPKEEPALIVE 0

FTPKEEPALIVE seconds
�

Parameters
seconds

The number of seconds before a keepalive packet is sent out on the FTP
control connection. The valid range is 0 (FTPKEEPALIVE not used) or 60
through 86400. The default is 0.

Examples
Set the FTP keepalive timer to 60 seconds:
FTPKEEPALIVE 60

Usage notes
If you specify 0 seconds, the FTPKEEPALIVE timer is disabled and the only
keepalive packets that flow on the control connection would be controlled by
whatever interval for keepalive packets you have configured in the stack.

508 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

FTPLOGGING statement
Use the FTPLOGGING statement to indicate whether the FTP server should log
FTP server activity. The following types of activities are logged:

v Connectivity

v Authentication

v Access

v Allocation

v Deallocation

v Data transfer

v JES job submission

v SQL query

v Abnormal end

The activities are logged in the SYSLOGD file. Each logging entry has a message
number.

Syntax

��
FTPLOGGING FALSE

FTPLOGGING TRUE
FALSE

�

Parameters
TRUE

The FTP server should log FTP session activity.

FALSE
The FTP server should not log FTP session activity.

Examples
To request that the FTP server log session activity:
FTPLOGGING TRUE

Usage notes
v Each activity logging message has a message number within the range of

EZYFS50 to EZYFS95.

v FTPLOGGING controls logging for non-anonymous user.

v If FTPLOGGING is TRUE, connectivity, authentication, and access activity log
entries are made for all sessions because the server does not know whether the
login is anonymous or not.

Related topics
See “ANONYMOUSFTPLOGGING statement” on page 466 to control logging for an
anonymous user.

Chapter 13. File Transfer Protocol (FTP) 509

|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

||||||||||||||||||||||

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|
|

|

|
|

HFSINFO statement
Use the HFSINFO statement to specify a file containing welcome messages specific
to each FTP server directory visited by an FTP client.

Note: In contrast to FTP clients that are logged in as anonymous users, this
statement affects only known users.

Syntax

�� HFSInfo file-mask �

Parameters
file-mask

The file-mask is an HFS file mask used to find an HFS information file for
known users. The file mask can contain wildcards or it can be a complete file
name. When a user changes directories, a search is conducted with the
specified mask. The contents of the first file found is returned to the FTP client
and is displayed to the end user. If no file is found matching the specified mask,
no information is displayed to the end user.

Note: Wildcards work only when an asterisk (*) is placed after a string of
characters.

Examples
Use the following to direct the FTP server to search each directory to which a
named FTP client changes, for a file matching the pattern msg*. Each time a
named FTP client changes directory, the FTP server searches the target directory
for files matching the file-mask msg*. The contents of the first matching file in each
directory is returned to the FTP client.
HFSINFO msg* ; Real user HFS info file-mask
; login

Usage notes
v The default value of HFSINFO is <null>, meaning no welcome messages are

displayed.

v This statement applies to the FTP server only.

Related topics
v “ADMINEMAILADDRESS statement” on page 459

v “ANONYMOUSHFSINFO statement” on page 469

v “ANONYMOUSLOGINMSG statement” on page 473

v “ANONYMOUSMVSINFO statement” on page 474

v “BANNER statement” on page 479

v “LOGINMSG statement” on page 521

v “MVSINFO statement” on page 526

510 z/OS V1R4.0 CS: IP Configuration Reference

INACTIVE statement
Use the INACTIVE statement to set the inactivity timer to a specified number of
seconds. Any client control connection inactive for the amount of time specified on
this statement is closed by the server.

Syntax

��
INACTIVE 300

INACTIVE seconds
�

Parameters
seconds

The number of seconds to which the inactivity timer is set. The valid range is 0
through 86400. The default is 300.

Examples
Set the inactivity timer to 30 seconds:
INACTIVE 30

Usage notes
If you specify 0 seconds, the inactivity timer is disabled, and the control connections
never time out. This value has no effect on the data connections. To specify a
timeout value for the data connection, use the INTERVAL parameter of the
TCPCONFIG statement in PROFILE.TCPIP. Refer to the FTP configuration process
in z/OS Communications Server: IP Configuration Guide for details.

Related topics
“KEEPALIVEOPTIONS statement” on page 141

Chapter 13. File Transfer Protocol (FTP) 511

ISPFSTATS statement
Use the ISPFSTATS statement to allow FTP to create and maintain statistics for
partitioned data set members when issuing PUT, MPUT, and APPEND
subcommands. The SITE subcommand is also available to set this keyword. Use
this statement in the client FTP.DATA configuration file to allow FTP to create and
maintain statistics for GET and MGET subcommands.

Syntax

��
ISPFSTATS FALSE

ISPFSTATS TRUE
FALSE

�

Parameters
FALSE

FTP does not create statistics if the file does not already exist or does exist but
does not have statistics. If the file already exists and contains statistics, FTP
updates the statistics and sends the reply indicating the behavior.

TRUE
FTP creates or updates the statistics.

Examples
FTP creates the statistics:
ISPFSTATS TRUE

Usage notes
v Setting ISPFSTATS in a server FTP.DATA or using SITE subcommand does not

affect GET and MGET commands.

v ISPFStats is ignored for sequential data sets. Also, the record format must be
either variable or fixed of PDS or PDSE, and the record length must be less than
256.

v Transferring PDS member to PDS member in block mode or in compress mode
differs in behavior from transferring in stream mode. If the user wants to preserve
the statistics of the PDS member that already has the statistics and have the
same statistics copied over to targeted PDS member, transferring in block mode
or in compress mode is recommended.

512 z/OS V1R4.0 CS: IP Configuration Reference

JESENTRYLIMIT statement
Use the JESENTRYLIMIT statement to specify the number of entries that can be
displayed concurrently through a LIST or NLST command when FILETYPE=JES
and JESINTERFACELEVEL=2.

Syntax

��
JESENTRYLIMIT 200

JESENTRYLIMIT value
�

Parameters
value

A numeral in the range of 1 through 1024.

Examples
The following example illustrates a JESENTRYLIMIT of 10:
dir
EZA1701I >>> PORT 127,0,0,1,4,10
200 Port request OK.
EZA1701I >>> LIST
125 List started OK for JESJOBNAME=USER1*, JESSTATUS=ALL and JESOWNER=USER1
EZA2284I JOBNAME JOBID OWNER STATUS CLASS
EZA2284I USER1 TSU00025 USER1 OUTPUT TSU ABEND=222 3 spool files
EZA2284I USER1A JOB00209 USER1 OUTPUT A ABEND=806 3 spool files
EZA2284I USER1 JOB00201 USER1 OUTPUT A RC=000 5 spool files
EZA2284I USER1J JOB00208 USER1 OUTPUT A (JCL error) 3 spool files
EZA2284I USER1 JOB00193 USER1 OUTPUT A RC=000 5 spool files
EZA2284I USER1A JOB00200 USER1 OUTPUT A ABEND=806 3 spool files
EZA2284I USER1 JOB00179 USER1 OUTPUT A RC=000 5 spool files
EZA2284I USER1 JOB00166 USER1 OUTPUT A RC=000 5 spool files
EZA2284I USER1J JOB00199 USER1 OUTPUT A (JCL error) 3 spool files
EZA2284I USER1A JOB00187 USER1 OUTPUT A ABEND=806 3 spool files
250-JESENTRYLIMIT of 10 reached. Additional entries not displayed
250 List completed successfully.
EZA1460I Command:

Usage notes
v If JESENTRYLIMIT is not specified in FTP.DATA, the default is 200.

v JESENTRYLIMIT is valid only when JESINTERFACELEVEL is set to 2.

Related topics
v “FILETYPE statement” on page 507

v “JESINTERFACELEVEL statement” on page 514

Chapter 13. File Transfer Protocol (FTP) 513

JESINTERFACELEVEL statement
Use the JESINTERFACELEVEL statement to specify the FTP-to-JES interface to be
used by the installation. JESINTERFACELEVEL 1 uses the JES interface provided
in releases prior to CS for OS/390 V2R10. At this level, the FTP user is allowed to
submit jobs to JES, retrieve held output matching their logged-in user ID plus one
character, and delete held jobs matching their logged-in user ID plus one character.

With JESINTERFACELEVEL 2, FTP users can retrieve and delete any job in the
system for which they have the security access facility (SAF) resource class
JESSPOOL access for. Their ability to submit jobs is governed by the JESJOBS
SAF resource. JESINTERFACELEVEL 2 should only be specified if security
measures are in place to ensure process access to JES output. For more
information on SDSF security refer to z/OS SDSF Operation and Customization.

JESINTERFACELEVEL 2 uses the SAPI interface to JES, so UPDATE authority to
the JESSPOOL resource is required to list job status or retrieve job output. Refer to
for more information on JES security. Refer to z/OS MVS Using the Subsystem
Interface for more information on the SAPI interface.

The SAF controls used for JESINTERFACELEVEL 2 are essentially a subset of
those used by SDSF. Therefore, if an installation has customized SAF facilities for
SDSF, they are configured for FTP JES JESINTERFACELEVEL 2.

JESSPOOL defines resource names as [nodeid].[userid].[jobname].[Dsid].[dsname].
An FTP user can delete job output if it has ALTER access to the resource that
matches its node ID, user ID, and job name (generics can be used). If the FTP
client has UPDATE access to the resource, it can list or retrieve the job output. FTP
uses three filters to control the display of jobs. These filters employ SDSF
resources. The first filter, JESSTATUS, can be changed by an FTP client by way of
the SITE command to filter jobs in INPUT, ACTIVE, or OUTPUT state. The second
filter, JESOWNER, has the value of the logged-in user ID by default. The third filter,
JESJOBNAME, has the value of the logged-in user ID plus an asterisk (*) by
default. JESSTATUS utilizes the SDSF resources ISFCMD.DSP.INPUT.jesx,
ISFCMD.DSP.ACTIVE.jesx, and ISFCMD.DSP.OUTPUT.jesx. At login time, the
default value for JESSTATUS is set to ALL if READ access is allowed to all three
classes. Otherwise, the server attempts to set the value to OUTPUT, ACTIVE, and
then INPUT if the appropriate READ access is allowed. If no READ access is
allowed to any of the classes, JESSTATUS is set to OUTPUT but JESOWNER and
JESJOBNAME cannot be changed from their default values. In this way, SAF
controls can be put in place to limit FTP users to whatever status of jobs an
installation requires.

Authority to change JESOWNER is obtained by way of READ access to RACF
profile ISFCMD.FILTER.OWNER. Authority to change JESJOBNAME is obtained by
way of of READ access to RACF profile ISFCMD.FILTER. An FTP client with READ
access to ISFCMD.FILTER.OWNER is allowed to change the JESOWNER
parameter by way of the SITE command. An FTP client with READ access to
ISFCMD.FILTER.PREFIX is allowed to change the JESJOBNAME parameter by
way of the SITE command.

Syntax

514 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

��
JESINTERFACELevel

JESINTERFACELevel 1

JESINTERFACELevel 1
JESINTERFACELlevel 2

�

Parameters
1 Use the CS for OS/390 pre-V2R10 version of the FTP/JES interface.

2 Security measures are set in place and the CS for OS/390 V2R10 or later
FTP/JES interface is used.

Examples
The following is an example of commands used to allow all FTP users other than
USER1 the ability to change JESOWNER. USER1 is only allowed the default
JESOWNER value and not allowed to change JESOWNER by way of the SITE
command.
JESOWNER: setropts classact(SDSF) refresh
rdefine SDSF (isfcmd.filter.owner) uacc(read)
permit isfcmd.filter.owner access(none) class(SDSF) id(user1)
setropts classact(SDSF) refresh

Usage notes
v The only valid values for this statement are 1 and 2.

v If JESINTERFACELEVEL is not specified in FTP.DATA, the default is 1.

v If JESINTERFACELEVEL 2 is specified, an installation must ensure that security
measures are in place to control FTP client access to jobs.

Related topics
v “FILETYPE statement” on page 507

v “JESENTRYLIMIT statement” on page 513

Chapter 13. File Transfer Protocol (FTP) 515

JESLRECL statement
Use the JESLRECL statement to specify the record length of the jobs being
submitted.

Syntax

��
JESLRECL 80

JESLRECL length
�

Parameters
length

The record length of the job being submitted. The valid range is 1–254. The
default is 80. If you specify length as *, FTP uses the length value from the
LRECL statement.

Examples
Explicitly set the logical record length for JES jobs to 80:
JESLRECL 80

Usage notes
If JESLRECL * is specified, the LRECL value is used for jobs being submitted.

Related topics
v “FILETYPE statement” on page 507

v “LRECL statement” on page 522

516 z/OS V1R4.0 CS: IP Configuration Reference

JESPUTGETTO statement
Use the JESPUTGETTO statement to specify the number of seconds of the JES
PutGet timeout.

The JES PutGet timeout is used when the FTP client performs a GET with a source
and a target name. The source job is submitted to JES. The server waits until the
JES PutGet timeout expires or until the job completes. If the job completes, it stores
the output in the target name file. If the job does not complete, the FTP client
displays a reply to the end user.

Syntax

��
JESPUTGETTO 600

JESPUTGETTO seconds
�

Parameters
seconds

The number of seconds of the JES PutGet timeout. The valid range is 0
through 86400 (24 hours). The default is 600 (10 minutes).

Examples
Set the number of seconds of the JES PutGet timeout to 300:
JESPUTGETTO 300

Usage notes
v The JESPUTGETTO value should be high enough for most jobs to complete

within the specified time but not be so high (for example, 86400) that end users
wait excessive amounts of time for job completion.

v Use 86400 if the JES PutGet is done only from batch jobs that must wait for the
job to complete and end user wait time is not an issue.

Related topics
v “ANONYMOUSFILETYPEJES statement” on page 463

v “FILETYPE statement” on page 507

v “JESENTRYLIMIT statement” on page 513

v “JESINTERFACELEVEL statement” on page 514

v “JESLRECL statement” on page 516

v “JESRECFM statement” on page 518

Chapter 13. File Transfer Protocol (FTP) 517

JESRECFM statement
Use the JESRECFM statement to specify the record format of jobs being submitted.
This is the record format used during dynamic allocation of the internal reader when
submitting jobs to JES.

Syntax

��
JESRECFM F

JESRECFM F
V
*

�

Parameters
F Fixed record length. This is the default.

V Variable record format.

* Uses the record format specified on the RECFM statement.

Examples
Use fixed record format:
JESRECFM F

Usage notes
v Only use the value V when running on JES3 systems.

v If FTP cannot allocate the internal reader, the FTP client recognizes a 550 JES
internal reader allocation failed reply when submitting jobs to JES.

Related topics
“RECFM statement” on page 534

518 z/OS V1R4.0 CS: IP Configuration Reference

KEYRING statement
Use the KEYRING statement to define the keyring that contains the certificate to be
used during the TLS handshake.

Syntax

�� KEYRING keyring �

Parameters
keyring

The name of the keyring. If the name begins with a slash (/), then it is the name
of an HFS file. Otherwise, it is the name of a RACF resource that defines the
keyring.

Examples
KEYRING /u/user33/keyring/key.kdb

Usage notes
KEYRING is required if TLS is used as a security mechanism.

The EXTENSIONS AUTH_TLS statement must be coded for this statement to be
used by FTP.

Related topics
Refer to z/OS Communications Server: IP Configuration Guide for more information
about SSL/TLS security, keyrings, and certificates.

Chapter 13. File Transfer Protocol (FTP) 519

LISTSUBDIR statement
Use the LISTSUBDIR statement to specify whether subdirectories of the parent
directory are listed when processing the NLST command.

Syntax

��
LISTSUBDIR TRUE

LISTSUBDIR TRUE
FALSE

�

Parameters
TRUE

This is the default. Indicates the files in the subdirectories of the parent
directory are listed when processing the NLST command.

FALSE
Indicates that the files in the subdirectories of the parent directory are not listed
when processing the NLST command.

Usage notes
v If TRUE is specified, the files in the subdirectories of the parent directory are

listed when processing the NLST command.

v If FALSE is specified, the files in the subdirectories of the parent directory are
NOT listed when processing the NLST command.

520 z/OS V1R4.0 CS: IP Configuration Reference

LOGINMSG statement
Use the LOGINMSG statement to specify the file containing messages to be
displayed to FTP clients when they have successfully logged in. This statement
affects only named FTP clients as opposed to FTP clients logged in as anonymous.

Syntax

�� LOGINMSG file-path �

Parameters
file-path

The fully qualified HFS pathname or the fully qualified MVS data set name of
the file whose contents are displayed whenever a user logs in to FTP. An HFS
pathname must start with a slash (/). An MVS data set must not start with a
slash character.

Examples
Use the following statement if the FTP login message is kept in the file /etc/ftp.login:
LOGINMSG /etc/ftp.login
; Welcome message for FTP users

Usage notes
v LOGINMSG does not apply to anonymous user logins. To provide this function to

anonymous users, use the ANONYMOUSLOGINMSG statement.

v When a known FTP client successfully logs in, the FTP server searches for the
file specified by file-path. The contents of the file are returned to the FTP client
as 230-prefixed replies. If the file specified by file-path does not exist, no
messages are returned to the FTP client and no login messages are displayed to
the end user.

Related topics
v “ANONYMOUSLOGINMSG statement” on page 473

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “MVSINFO statement” on page 526

Chapter 13. File Transfer Protocol (FTP) 521

LRECL statement
Use the LRECL statement to specify the size of the logical records in a data set.

Syntax

�� LRECL
256

length
�

Parameters
length

The size of the records in a data set. The valid range is 0 through 32760. The
default is 256.

Examples
Set the logical record length to 128 bytes:
LRECL 128

Specify no value for LRECL to allow the LRECL of a model DCB data set or SMS
dataclass to be used:
LRECL

Usage notes
v If you specify no value for length, FTP does not specify the size of the records in

a data set.

v You should specify no value for length if the DATACLASS statement is specified
and the LRECL from the SMS data class is to be used or if the DCBDSN
statement is specified and the LRECL from the model data set is to be used.

Related topics
v “DATACLASS statement” on page 487

v “DCBDSN statement” on page 491

v “JESLRECL statement” on page 516

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

522 z/OS V1R4.0 CS: IP Configuration Reference

MBDATACONN statement
Use the MBDATACONN statement to define the conversions between file system
code page and the network transfer code page during data transfer. The SITE and
LOCSITE subcommands are also available to set this keyword.

Syntax

�� MBDATACONN (file_system_codepage,network_transfer_codepage) �

Parameters
file_system_codepage

Specifies the name of the file system codepage. The supported file system
codepages are IBM-1388 and UTF-8.

network_transfer_codepage
Specifies the network transfer code page. The supported network transfer
codepage is IBM-5488.

Examples
To code MBDATACONN:
MBDATACONN (IBM-1388,IBM-5488)

Usage notes
MBDATACONN is in effect only when ENCODING has a value of MBCS.

Related topics
v “ENCODING statement” on page 504

v “SBDATACONN statement” on page 538

Chapter 13. File Transfer Protocol (FTP) 523

|
|

|
|
|

|

|||||||||
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

MGMTCLASS statement
Use the MGMTCLASS statement to specify the SMS management class to be
assigned to newly allocated data sets.

Syntax

�� MGMTCLASS class �

Parameters
class

The SMS management class.

Examples
Set the SMS management class for new data sets to TCPMGMT:
MGMTCLASS TCPMGMT

Related topics
v “DATACLASS statement” on page 487

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS statement” on page 569

524 z/OS V1R4.0 CS: IP Configuration Reference

MIGRATEVOL statement
Use the MIGRATEVOL statement to specify the volume ID for migrated data sets
under the control of a storage management system other than HSM.

Syntax

��
MIGRATEVOL MIGRAT

MIGRATEVOL volume_id
�

Parameters
volume_id

The volume ID for migrated data sets. The default volume ID is MIGRAT.

Examples
Set the volume ID for migrated data sets to MIGRIX:
MIGRATEVOL MIGRIX

Related topics
“RETPD statement” on page 537

Chapter 13. File Transfer Protocol (FTP) 525

MVSINFO statement
Use the MVSINFO statement to specify MVS data sets whose contents are
returned to the FTP client and displayed to the end user when a user changes
directories. The statement identifies a low-level qualifier (LLQ) that is appended to
the current path whenever an FTP client changes directories to an MVS data set.

Syntax

�� MVSINFO MVS-LLQ �

Parameters
MVS-LLQ

The MVS-LLQ is the MVS low-level qualifier (LLQ) appended to the current
MVS path whenever an FTP client changes directories to an MVS data set. If a
data set matches the current path appended LLQ, the contents of the data set
are returned to the FTP client and displayed to the end user.

Examples
To display a readme file the first time a user changes directory to high-level
qualifiers, use the statement below. In this example, an MVS high-level qualifier of
productname might have a readme file for each product, and any time a user
changed directory to the product, the readme file would be displayed.
MVSINFO README

Usage notes
MVSINFO does not apply to anonymous users. Use the ANONYMOUSMVSINFO
statement to define the informational banner used for anonymous users.

Related topics
v “ANONYMOUSMVSINFO statement” on page 474

v “BANNER statement” on page 479

v “HFSINFO statement” on page 510

v “LOGINMSG statement” on page 521

526 z/OS V1R4.0 CS: IP Configuration Reference

MVSURLKEY statement
Use the MVSURLKEY statement to specify a token that users can enter as part of
an FTP URL to encode an MVS data set name.

Syntax

�� MVSURLKEY key �

Parameters
key

An arbitrary token users can enter in an FTP URL to signify that an MVS data
set follows. Although the FTP server accepts any value, avoid symbols FTP
clients might interpret as special characters or meta characters. For example,
the # character is acceptable to the FTP server, but some Web browsers use
the # character as a special character.

Examples
Use the following example to permit users to enter MVSDS in an FTP URL in order
to tell the FTP server an MVS data set name follows:
MVSURLKEY MVSDS
; code this in FTP.DATA

Code the following as an FTP URL to indicate that ’USER1.PROCLIB(FTPD)’ is an
MVS data set, not an HFS data set:
ftp://user1@mvs098.tcp.raleigh.ibm/MVSDS/’user1.proclib(ftpd)’;type=a

Usage notes
v The key specified for MVSURLKEY can be set to be the same key used for the

Websphere server to designate FTP URL encodings.

v The FTP server accepts an arbitrary string. Avoid characters the FTP client might
interpret as metacharacters or special characters.

Chapter 13. File Transfer Protocol (FTP) 527

PORTCOMMAND statement
Use the PORTCOMMAND statement to specify whether the PORT and EPRT
commands are accepted or rejected. This prevents an FTP client in session with
this server from successfully executing any subcommand that requires the PORT or
EPRT command.

Syntax

��
PORTCOMMAND ACCEPT

PORTCOMMAND REJECT
�

Parameters
ACCEPT

The PORT and EPRT commands are accepted by the server.

REJECT
The PORT and EPRT commands are rejected by the server.

Examples
Setting the server to reject all PORT and EPRT commands is shown in the
following example:
PORTCOMMAND REJECT

Usage notes
When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Related topics
v “PORTCOMMANDIPADDR statement” on page 529

v “PORTCOMMANDPORT statement” on page 530

528 z/OS V1R4.0 CS: IP Configuration Reference

|

|

|

|
|

|

|
|
|

PORTCOMMANDIPADDR statement
Use the PORTCOMMANDIPADDR statement to direct the server to accept only
PORT or EPRT commands whose IP address matches that of the client.

Syntax

��
PORTCOMMANDIPADDR UNRESTRICTED

PORTCOMMANDIPADDR NOREDIRECT
�

Parameters
UNRESTRICTED

If PORTCOMMAND is set to ACCEPT or unspecified, the server accepts any IP
address as a parameter for the PORT and EPRT commands.

NOREDIRECT
If PORTCOMMAND is set to ACCEPT or unspecified, the server rejects any
PORT or EPRT command whose IP address does not match that of the client.

Examples
Setting the server to reject all PORT or EPRT commands with an IP address
different from the IP address of the control connection is shown in the following
example:
PORTCOMMAND ACCEPT
PORTCOMMANDIPADDR NOREDIRECT

Usage notes
When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Related topics
v “PORTCOMMAND statement” on page 528

v “PORTCOMMANDPORT statement” on page 530

Chapter 13. File Transfer Protocol (FTP) 529

|
|

|
|

|
|

|
|
|

|
|

|
|
|

PORTCOMMANDPORT statement
Use the PORTCOMMANDPORT statement to specify what range of port values the
server accepts as a parameter for the PORT or EPRT command.

Syntax

��
PORTCOMMANDPORT UNRESTRICTED

PORTCOMMANDPORT NOLOWPORTS
�

Parameters
UNRESTRICTED

If PORTCOMMAND is set to ACCEPT or unspecified, the server accepts any
port number as a parameter for the PORT or EPRT command.

NOLOWPORTS
If PORTCOMMAND is set to ACCEPT or unspecified, the server rejects any
PORT or EPRT command specifying a port number lower than 1024.

Examples
Setting the server to reject all PORT or EPRT commands with a port number less
than 1024 is shown in the following example:
PORTCOMMAND ACCEPT
PORTCOMMANDPORT NOLOWPORTS

Usage notes
When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Related topics
v “PORTCOMMAND statement” on page 528

v “PORTCOMMANDIPADDR statement” on page 529

530 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

|
|

|
|

|
|
|

PRIMARY statement
Use the PRIMARY statement to specify the number of tracks, blocks, or cylinders
(according to SPACETYPE) for primary allocation.

Syntax

��
PRIMARY 1

PRIMARY
amount

�

Parameters
amount

The number of tracks, blocks, or cylinders. The valid range is 1 to 16 777 215
blocks (the operating system maximum). The default is 1.

Examples
Set the primary allocation to 5 tracks:
PRIMARY 5

Usage notes
v If you specify no value for amount, FTP does not specify the number of tracks,

blocks, or cylinders for primary allocation.

v You should specify no value for amount if the DATACLASS statement is specified
and the space allocation from the SMS data class is to be used. If the SMS data
class is to be used for space allocation, both the PRIMARY and SECONDARY
values must be omitted and the value on the SPACETYPE statement is ignored.

v For allocating partitioned data sets, amount is the quantity that is allocated for
the primary extent.

v For allocating sequential data sets, amount is the maximum quantity that is
allocated for the primary extent. If a lesser amount is needed to hold the data
being transferred, the unused amount is released after the transfer is complete.

Related topics
v “DATACLASS statement” on page 487

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “SECONDARY statement” on page 542

v “SPACETYPE statement” on page 565

Chapter 13. File Transfer Protocol (FTP) 531

QUOTESOVERRIDE statement
Use the QUOTESOVERRIDE statement to indicate the usage of single quotation
marks appearing at the beginning of or surrounding a file name.

Syntax

��
QUOTESOVERRIDE TRUE

QUOTESOVERRIDE TRUE
FALSE

�

Parameters
TRUE

When single quotation marks appear at the beginning and end of a file name,
they are interpreted to mean the file name contained inside the quotation marks
should override the current working directory.

FALSE
When single quotation marks appear at the beginning and end of a file name,
they are appended to the current working directory.

Examples
To treat quotation marks as part of file names, enter the following:
QUOTESOVERRIDE FALSE

Usage notes
v If TRUE is specified, single quotation marks appearing at the beginning and end

of a file name are interpreted as meaning the file name contained inside the
single quotation marks should override the current working directory instead of
being appended to the current working directory. This is the way single quotation
marks are currently used in all previous MVS FTP servers and is the default. Any
single quotation marks inside the beginning and ending quotion mark are treated
as part of the file name.

v If FALSE is specified, a single quote at the beginning of the file name, as well as
all other single quotation marks contained in the file name, is treated as part of
the actual file name. The entire file name, including the leading single quote, is
appended to the current working directory.

532 z/OS V1R4.0 CS: IP Configuration Reference

RDW statement
Record Descriptor Words (RDWs) are the first half words at the start of a variable
record length file that tell the reading program the actual length of the current
record being read. Use the RDW statement to specify whether the RDW from
variable format data sets should be retained as data and transmitted or not
transmitted.

Syntax

��
RDW FALSE

RDW TRUE
FALSE

�

Parameters
TRUE

Record descriptor words are transferred as data.

FALSE
Record descriptor words are not transferred with the data.

Usage notes
v If TRUE is specified, RDWs are transferred as part of the data.

v If FALSE is specified, RDWs are discarded when transferring variable format
data sets.

v RDW TRUE specifies the FTP server returns the RDWs as part of the data for
variable record format data sets. Depending upon the FTP client implementation,
RDWs might not be handled as the user expects. For example, the z/OS CS FTP
client treats RDWs received as data that might be interpreted as carriage
control/line feeds.

Examples
To specify that a variable record format file’s data is transmitted without the
descriptors showing the way it was stored on z/OS, use the following:
RDW FALSE

Related topics
“RECFM statement” on page 534

Chapter 13. File Transfer Protocol (FTP) 533

RECFM statement
Use the RECFM statement to specify the record format of new, dynamically
allocated data sets.

Syntax

��
RECFM VB

RECFM
format

�

Parameters
format

The record format of a data set. Valid record formats are:

v F

v FM

v FA

v FS

v FSA

v FSM

v FB

v FBM

v FBA

v FBS

v FBSM

v FBSA

v V

v VM

v VA

v VS

v VSM

v VSA

v VB

v VBM

v VBA

v VBS

v VBSA

v VBSM

v U

v UA

v UM

The default record format is VB. The meanings of the record formats are:

Format Description
A Records contain ISO/ANSI control.
B Blocked records.

534 z/OS V1R4.0 CS: IP Configuration Reference

F Fixed record length.
M Records contain machine code control

characters.
S Spanned records (if variable) or Standard (if

fixed).
U Undefined record length.
V Variable record length characters.

Examples
Use fixed blocked record format:
RECFM FB

Specify RECFM with no value to allow the RECFM value of a DCB data set or an
SMS dataclass to be used:
RECFM

Usage notes
v If you specify no value for format, no record format is specified when allocating

new data sets.

v You should specify no value for format if you specify the DATACLASS statement
and the record format from the SMS data class is to be used.

Related topics
v “DATACLASS statement” on page 487

v “DCBDSN statement” on page 491

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

Chapter 13. File Transfer Protocol (FTP) 535

REPLYSECURITYLEVEL statement
Use the REPLYSECURITYLEVEL statement to specify level of secure information
returned in FTP replies.

Determines whether or not secure information, such as IP addresses, port numbers,
and so no, are included in replies.

Syntax

��
REPLYSECURITYLEVEL 0

REPLYSECURITYLEVEL 0
REPLYSECURITYLEVEL 1

�

Parameters
REPLYSECURITYLEVEL 0

No restrictions are placed on information included in server FTP replies. This is
the default.

REPLYSECURITYLEVEL 1
No IP addresses, hostnames, port numbers, or server operating system level
information is included in FTP replies.

Examples
Direct the server not to divulge secure information such as IP addresses and port
numbers in replies to the client:
REPLYSECURITYLEVEL 1

Usage notes
Suppressing sensitive information such as IP addresses from client replies will
increase the security of your site; however, such information can be useful for
debugging. An alternative to getting this information from server replies is to activate
the server trace to capture this information. Refer to z/OS Communications Server:
IP Diagnosis for information about diagnosing problems with server traces.

Related topics
“DEBUG statement” on page 494

536 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|
|

|

||||||||||||||||||||

|

|

|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|

|

|

RETPD statement
Use the RETPD statement to specify the number of days a newly allocated data set
should be retained. The SITE and LOCSITE subcommands are also available to set
this keyword.

Syntax

��
RETPD

RETPD
days

�

Parameters
days

The number of days a newly allocated data set should be retained. The valid
range is 0 through 9999. The default is no retention period assigned to the data
set.

Examples
v Make the new data set expiration date equal to 30 days:

RETPD 30

v Use a retention period of 0 days:
RETPD 0

Usage notes
v If you do not specify the RETPD statement or if you specify the RETPD

statement with no value, no retention period is assigned to newly allocated data
sets.

v You should specify no value for days if the DATACLASS statement is specified
and the retention period from the SMS data class is to be used.

v If you specify 0 for days, newly allocated data sets are assigned a retention
period of 0 days. This means that the retention period of the data set expires on
the same day that the data set is created.

v If the SMS data class or DCBDSN model data set have a retention period, this
retention period can be overridden to a new retention period. The retention
period cannot be overridden to have no assigned retention period.

Related topics
v “DATACLASS statement” on page 487

v “DCBDSN statement” on page 491

v “MGMTCLASS statement” on page 524

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

Chapter 13. File Transfer Protocol (FTP) 537

|
|
|

SBDATACONN statement
This statement defines the conversions between file system code pages and
network transfer code pages to be used for data transfer. You can also use the
SITE and LOCSITE subcommands to set this keyword.

Syntax

�� SBDATACONN dsname
(file_system_codepage,network_transfer_codepage)
FTP_STANDARD_TABLE

�

Parameters
dsname

The fully qualified name of an MVS data set or HFS file containing the file
system to network transfer translate table and the network transfer to file
system translate table generated by the CONVXLAT utility. For more information
on translation tables, see Appendix B, “Using translation tables” on page 907.

file_system_codepage
The name of a codepage that is recognized by iconv. The codepage is used for
data that is written in the file system.

network_transfer_codepage
The name of a codepage that is recognized by iconv. The codepage is used for
data that is transferred on the network.

FTP_STANDARD_TABLE
Indicates that the FTP internal tables, which are the same as the tables that are
shipped in TCPXLBIN(STANDARD), are to be used.

Examples
SBDATACONN (IBM-037,IBM-850)

Usage notes
v If you specify SBDATACONN

(file_system_codepage,network_transfer_codepage), FTP uses the iconv()
application programming interface to translate between the two code pages. The
values that you enter on the SBDATACONN statement are used by FTP as
parameters to the C++ run-time function iconv(). You can find a valid list of code
sets in the z/OS C/C++ Programming Guide. See “SBSUB statement” on
page 540 and “SBSUBCHAR statement” on page 541 for more information about
using substitution characters to replace unmapped code points during the data
transfer.

v The SYSFTSX DD statement, if present, overrides the SBDATACONN statement.

v If neither the SYSFTSX DD statement nor the SBDATACONN statement is
present, the search order for a TCPXLBIN data set is followed. See “FTP code
page conversion” on page 589 for this search order. If no TCPXLBIN data set is
found, the same conversion established for the control connection is used for
single-byte data transfer.

538 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|

Related topics
v For the code pages supported by iconv(), refer to z/OS C/C++ Programming

Guide.

v “SBSUBCHAR statement” on page 541

v “SBSUB statement” on page 540

Chapter 13. File Transfer Protocol (FTP) 539

|

|

SBSUB statement
Use the SBSUB statement in the server and client FTP.DATA to specify whether a
substitution is allowed for data bytes that cannot be translated. The SITE and
LOCSITE subcommand is also available to set this keyword.

Syntax

��
SBSUB FALSE

SBSUB FALSE
TRUE

�

Parameters
FALSE

Substitution is not allowed for single-byte character translation. This causes a
data transfer failure if a character cannot be mapped during the transfer. This is
the default value.

TRUE
Substitution is allowed for single-byte character translation. The SBSUBCHAR
statement defines the substitution value for untranslatable characters.

Examples
To disable substitution for single-byte character translation, code the following:
SBSUB FALSE

Related topics
v “SBDATACONN statement” on page 538

v “SBSUBCHAR statement” on page 541

540 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|

||||||||||||||||||||||

|

|

|
|
|
|

|
|
|

|

|

|

|

|

|

SBSUBCHAR statement
Use the SBSUBCHAR statement in the server and client FTP.DATA to specify the
substitution character for data transfers using SBCS encodings when SBSUB has a
value of TRUE. The SITE and LOCSITE subcommand is also available to set this
keyword.

Syntax

��
SBSUBCHAR SPACE

SBSUBCHAR SPACE
nn

�

Parameters
SPACE

Specifies x’40’ when target code set is an EBCDIC code set and x’20’ if target
code set is an ASCII code set. This is the default value.

nn Hexadecimal value that represents a single-byte character. The value of nn can
be from 00 to FF.

Examples
To indicate the substitution character to be x’40’, code the following:
SBSUBCHAR 40

Related topics
v “SBDATACONN statement” on page 538

v “SBSUB statement” on page 540

Chapter 13. File Transfer Protocol (FTP) 541

|
|

|
|
|
|

|

||||||||||||||||||||||

|

|

|
|
|

||
|

|

|

|

|

|

|

SECONDARY statement
Use the SECONDARY statement to specify the number of tracks, blocks, or
cylinders (according to SPACETYPE) for secondary allocation.

Syntax

��
SECONDARY 1

SECONDARY
amount

�

Parameters
amount

The number of tracks, blocks, or cylinders. The valid range is 0 to 16 777 215
blocks (the operating system maximum). The default is 1.

Examples
Set the secondary allocation to two tracks:
SECONDARY 2

Usage notes
v If you specify no value for amount, FTP does not specify the number of tracks,

blocks, or cylinders for secondary allocation.

v You should specify no value for amount if the DATACLASS statement is specified
and the space allocation from the SMS data class is to be used. If the SMS data
class is to be used for space allocation, both the PRIMARY and SECONDARY
values must be omitted, and the value on the SPACETYPE statement is ignored.

Related topics
v “DATACLASS statement” on page 487

v “PRIMARY statement” on page 531

v “SPACETYPE statement” on page 565

542 z/OS V1R4.0 CS: IP Configuration Reference

SECURE_CTRLCONN statement
Use the SECURE_CTRLCONN statement to specify the minimum level of security
allowed for the control connection.

Syntax

��
SECURE_CTRLCONN CLEAR

SECURE_CTRLCONN CLEAR
PRIVATE
SAFE

�

Parameters
CLEAR

Specifies that the control connection is not required to be integrity protected or
encrypted.

PRIVATE
Specifies that the control connection is required to be integrity protected and
encrypted. The client must issue a valid AUTH command before attempting to
log in to the FTP server.

SAFE
Specifies that the control connection is required to be integrity protected. The
client must issue a valid AUTH command before attempting to log in to the FTP
server.

Examples
SECURE_CTRLCONN PRIVATE

Usage notes
This statement is ignored when the security mechanism is TLS since the control
connection has a minimum security level of private for TLS protection.

Related topics
See “EXTENSIONS statement” on page 505.

Chapter 13. File Transfer Protocol (FTP) 543

SECURE_DATACONN statement
Use the SECURE_DATACONN statement to specify the minimum level of security
required on the data connection.

Syntax

��
SECURE_DATACONN CLEAR

SECURE_DATACONN CLEAR
NEVER
PRIVATE
SAFE

�

Parameters
NEVER

The data connection cannot be integrity protected or encrypted. The server
accepts the PROT C command.

CLEAR
The data connection is not required to be integrity protected or encrypted. The
server accepts the PROT C and the PROT P commands. The server also
accepts the PROT S command if GSSAPI authentication is being used.

PRIVATE
The data connection is required to be integrity protected and is required to be
encrypted. The client must issue a valid AUTH command before attempting to
log in to the FTP server. The server accepts the PROT P command.

SAFE
The data connection is required to be integrity protected. The client must issue
a valid AUTH command before attempting to log in to the FTP server. The
server accepts the PROT P command. The server also accepts the PROT S
command if GSSAPI authentication is being used.

Examples
SECURE_DATACONN NEVER

Usage notes
If the FTP server uses the protected port 990, the server behaves as if the value on
this statement is PRIVATE.

544 z/OS V1R4.0 CS: IP Configuration Reference

SECURE_FTP statement
Use the SECURE_FTP statement to specify whether authentication is required.

Syntax

��
SECURE_FTP ALLOWED

SECURE_FTP ALLOWED
REQUIRED

�

Parameters
REQUIRED

Specifies that authentication is required. The FTP server must receive a valid
AUTH command before the client can log in.

ALLOWED
Specifies that authentication is allowed but not required.

Examples
SECURE_FTP ALLOWED

Usage notes
v If the FTP server used the protected port 990, the server behaves as if the value

on this statement is REQUIRED.

v This statement is valid if either EXTENSIONS AUTH_TLS or EXTENSIONS
AUTH_GSSAPI is specified.

Related topics
See “EXTENSIONS statement” on page 505.

Chapter 13. File Transfer Protocol (FTP) 545

SECURE_LOGIN statement
Use the SECURE_LOGIN statement to set the authorization level required for
users.

Syntax

��
SECURE_LOGIN NO_CLIENT_AUTH

SECURE_LOGIN VERIFY_USER
NO_CLIENT_AUTH
REQUIRED

�

Parameters
VERIFY_USER

Specifies that the TLS handshake process authenticates the client certificate
and also provides additional access control through the installation’s SAF
compliant security product (for example, RACF) as follows:

v Verifies that the client certificate has an associated user ID defined to the
security product. The certificate must first be defined to the security product
to obtain this validation.

v For security products that support the SERVAUTH class, installations can
also obtain a more granular level of access control. If the installation has
activated the SERVAUTH class and provided a profile for the port in the
SERVAUTH class, only users specified in the profile are allowed to connect
into the port.

The resource name would be:
EZB.FTP.<systemname>.<ftpdaemonname>.PORTxxxx

where xxxx is replaced by the port number for the FTP daemon. For
example, if the procedure FTPD is used to start the daemon on system
MVS164 and the daemon uses the default FTP port 21, then the resource
name is:
EZB.FTP.MVS164.FTPD1.PORT21

The FTP server matches the value returned by SAF compliant security product
to the username provided on the USER command. If the two values do not
match, the user login is rejected.

This parameter is also valid for GSSAPI. Connections are only allowed for a
user who can authenticate by way of the FTP AUTH and whose ID matches the
user name in the Kerberos credentials supplied by the client on the ADAT
command. Anonymous FTP is also allowed if it is configured.

REQUIRED
Specifies that the FTP server must receive the client certificate. If the certificate
is not received during the TLS handshake, the login is rejected. The server
attempts the same user name match as used in VERIFY_USER, but the login is
not rejected if there is a mismatch.

This parameter is also valid for GSSAPI. Connections are only allowed for
users who can authenticate by way of the FTP AUTH. Anonymous FTP is also
allowed if it is configured. FTPD prompts the user for a password if the user ID

546 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

supplied by the client does not match the user name in the Kerberos credentials
supplied by the client on the ADAT command.

NO_CLIENT_AUTH
Specifies that the server should not request the client certificate.

This parameter is also valid for GSSAPI.

Examples
SECURE_LOGIN REQUIRED

Usage notes
This statement is only valid if either EXTENSIONS AUTH_TLS or EXTENSIONS
AUTH_GSSAPI is specified.

Related topics
See “EXTENSIONS statement” on page 505.

Chapter 13. File Transfer Protocol (FTP) 547

|
|

SECURE_PBSZ statement
Specifies the maximum size of the encoded data blocks sent during file transfer.

Syntax

�� SECURE_PBSZ
buffer buffer-size

�

Parameters
buffer_size

The valid range is between 512 and 32 768. The default value is 16 384.

Usage notes
v If the server receives a PBSZ command specifying a larger value, the command

is rejected.

v The client initially issues the PBSZ command specifying buffer_size. If the PBSZ
command is rejected, the client reissues the PBSZ command with a smaller
value until it is accepted by the server.

548 z/OS V1R4.0 CS: IP Configuration Reference

SMF statement
Use the SMF statement to specify SMF recording options.

Syntax

�� SMF STD
number
TYPE119

�

Parameters
STD

Indicates that all FTP server SMF records of type 118 are issued with the
following subtypes:
v APPEND - 70
v DELETE - 71
v LOGIN FAILURE - 72
v RENAME - 73
v RETRIEVE - 74
v STORE - 75
v STORE UNIQUE - 75

number
The SMF record subtype to be used for all FTP server records unless otherwise
specified for a particular record subtype. The valid range is 1 through 255.
There is no default value.

Note: This field applies to type 118 records only.

TYPE119
Indicates that all FTP server SMF records of type 119 are issued. Type 119
records have the following subtypes:
v APPEND - 70
v DELETE - 70
v LOGIN FAILURE - 72
v RENAME - 70
v RETRIEVE - 70
v STORE - 70
v STORE UNIQUE - 70

Examples
To have all 118 FTP server records created with standard subtypes:
SMF STD

To have all type 119 FTP server records created:
SMF TYPE119

To have all type FTP server records of both types created with standard subtypes
for type 118 records:
SMF STD
SMF TYPE119

To log all FTP records of type 119, as well as type 118 APPEND records:

Chapter 13. File Transfer Protocol (FTP) 549

SMF TYPE119
SMFAPPE 99

To log all FTP records of type 118 with standard subtypes, as well as type 119
DELETE and RENAME records:
SMF STD
SMFDEL TYPE119
SMFREN TYPE119

Usage notes
v SMF statements for each record type (118 and 119) function independently of

each other.

v If the SMF statement is omitted, SMF recording occurs for only the events with a
statement coded. For example, if SMF is omitted but an SMFAPPE statement is
coded, only the APPEND command has SMF recording.

v If the SMF statement is coded with a value of STD, all other SMF-related
statements with a value coded (even if it is STD) are flagged with warning
message EZYFT58 and their specifications are ignored. SMF STD means
standard values and no other values are allowed.

v If none of the SMF subtype statements are coded in the hlq.FTP.DATA data set,
then no SMF records are written by the FTP server.

v Records of type 118 and type 119 can both be requested; however, this is not
recommended due to performance implications of writing both record types. It is
recommended that type 119 records be used in preference to type 118 records,
as type 119 records generally use more standard formatting and provide more
information.

Related topics
v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

v “SMFSTOR statement” on page 562

550 z/OS V1R4.0 CS: IP Configuration Reference

SMFAPPE statement
Use the SMFAPPE statement to specify the SMF record subtype to be used for the
APPE (APPEND) command.

Syntax

�� SMFAPPE STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF APPEND records are issued with the standard
subtype of 70.

number
Indicates that type 118 SMF APPEND records are issued with the given record
subtype. The valid range is 1 through 255.

TYPE119
Indicates that type 119 SMF APPEND records are issued (subtype 70).

Examples
Set the type 118 SMF record subtype for APPEND to 70:
SMFAPPE 70

To issue type 119 SMF APPEND records:
SMFAPPE TYPE119

Usage notes
v SMFAPPE statements for each record type (118 and 119) function independently

of each other.

v If you do not specify the SMFAPPE statement for a particular record type (118 or
119), SMF Append records of that type are still issued if the corresponding SMF
statement for that record type is present.

Related topics
v “SMF statement” on page 549

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

v “SMFSTOR statement” on page 562

Chapter 13. File Transfer Protocol (FTP) 551

SMFDEL statement
Use the SMFDEL statement to specify SMF recording options for the DELE
(DELETE) command.

Syntax

�� SMFDEL STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF DELETE records are issued with the standard
subtype of 71.

number
Indicates that type 118 SMF DELETE records are issued with the given record
subtype. The valid range is 1 through 255.

TYPE119
Indicates that type 119 SMF DELETE records are issued (subtype 70).

Examples
Set the type 118 SMF record subtype for DELETE to 71:
SMFDEL 71

To issue type 119 SMF DELETE records:
SMFDEL TYPE119

Usage notes
v SMFDEL statements for each record type (118 and 119) function independently

of each other. To collect both types, you must specify both SMFDEL STD and
SMFDEL TYPE119.

v If you do not specify the SMFDEL statement, SMF records for the DELETE
command are still issued if the SMF statement is present. (Type 118 DELETE
records have the subtype specified with the SMF statement; type 119 records are
always subtype 70.) If neither the SMF or SMFDEL statement is specified, no
SMF records are collected for the DELETE command.

Related topics
v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

v “SMFSTOR statement” on page 562

552 z/OS V1R4.0 CS: IP Configuration Reference

SMFEXIT statement
Use the SMFEXIT statement to specify that the user exit routine FTPSMFEX is
called before writing the Type 118 SMF record to SMF data sets.

Syntax

�� SMFEXIT �

Parameters
This statement has no parameters.

Examples
To specify that the user exit FTPSMFEX is called before writing the Type 118 SMF
record to SMF data sets, use the following:
SMFEXIT

Usage notes
The FTP SMF user exit has been discontinued for type 119 FTP SMF records. The
user exit routine FTPSMFEX is only to be called for any type 118 records that are
written; no FTP-specific exit is called for type 119 records. In order to obtain the
same functionality with type 119 records, the system-wide SMF user exits should
now be used (IEFU83, IEFU84, and IEFU85). Refer to z/OS MVS System
Management Facilities (SMF) for more information.

Related topics
v “FTP server SMF user exit” on page 450

v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFSQL statement” on page 561

v “SMFSTOR statement” on page 562

Chapter 13. File Transfer Protocol (FTP) 553

|
|
|
|
|
|

SMFJES statement
Use the SMFJES statement to specify that SMF records are collected when
FILETYPE is JES (remote job submission).

Syntax

�� SMFJES
TYPE119

�

Parameters
TYPE119

Issue records for filetype JES for all type 119 SMF records. If no parameters
are given, records for filetype JES are issued for all type 118 SMF records.

Examples
For all type 118 FTP server transfer completion records and record information for
all file transfers of type JES, use the following:
SMFJES

For all type 119 FTP server transfer completion records and record information for
all file transfers of type JES, use the following:
SMFJES TYPE119

Usage notes
v SMFJES statements for each record type (118 and 119) function independently of

each other.

v If SMFJES is not specified, no SMF records are issued when FILETYPE is JES.

Related topics
v “FILETYPE statement” on page 507

v “JESINTERFACELEVEL statement” on page 514

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

v “SMFSTOR statement” on page 562

554 z/OS V1R4.0 CS: IP Configuration Reference

SMFLOGN statement
Use the SMFLOGN statement to specify the SMF recording options when recording
logon failures.

Syntax

�� SMFLOGN STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF logon failure records are issued with the standard
subtype of 72.

number
Indicates that type 118 SMF logon failure records are issued with the given
record subtype. The valid range is 1 through 255.

TYPE119
Indicates that type 119 SMF logon failure records are issued (subtype 72).

Examples
Set the type 118 SMF record subtype for logon failures to 72:
SMFLOGN 72

To issue type 119 SMF LOGON records:
SMFLOGN TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.

v SMFLOGN statements for each record type (118 and 119) function independently
of each other.

v If you do not specify the SMFLOGN statement, SMF records for logon failures
are still issued if the SMF statement is present (type 118 logon failure records
have the subtype specified with the SMF statement; type 119 records are always
subtype 72). If neither the SMF or SMFLOGN statement is specified, no SMF
records are collected for logon failures.

Related topics
v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

Chapter 13. File Transfer Protocol (FTP) 555

v “SMFSTOR statement” on page 562

556 z/OS V1R4.0 CS: IP Configuration Reference

SMFREN statement
Use the SMFREN statement to specify SMF recording options for the RNFR/RNTO
(RENAME) command.

Syntax

�� SMFREN STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF RENAME records are issued with the standard
subtype of 73.

number
Indicates that type 118 SMF RENAME records are issued with the given record
subtype. The valid range is 1 through 255..

TYPE119
Indicates that type 119 SMF RENAME records are issued (subtype 70).

Examples
Set the type 118 SMF record subtype for RENAME to 73:
SMFREN 73

To issue type 119 SMF RENAME records:
SMFREN TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.

v SMFREN statements for each record type (118 and 119) function independently
of each other.

v If you do not specify the SMFREN statement, SMF records for the RENAME
command is still issued if the SMF statement is present (type 118 RENAME
records have the subtype specified with the SMF statement; type 119 records are
always subtype 70). If neither the SMF or SMFREN statement is specified, no
SMF records are collected for the RENAME command.

Related topics
v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

Chapter 13. File Transfer Protocol (FTP) 557

v “SMFSTOR statement” on page 562

558 z/OS V1R4.0 CS: IP Configuration Reference

SMFRETR statement
Use the SMFRETR statement to specify SMF recording options for the RETR
(RETRIEVE) command.

Syntax

�� SMFRETR STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF RETRIEVE records are issued with the standard
subtype of 74.

number
Indicates that type 118 SMF RETRIEVE records are issued with the given
record subtype. The valid range is 1 through 255.

TYPE119
Indicates that type 119 SMF RETRIEVE records are issued (subtype 70).

Examples
Set the type 118 SMF record subtype for RETRIEVE to 74:
SMFRETR 74

To issue type 119 SMF RETRIEVE records:
SMFRETR TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.

v SMFRETR statements for each record type (118 and 119) function independently
of each other.

v If you do not specify the SMFRETR statement, SMF records for the RETRIEVE
command are still issued if the SMF statement is present. (Type 118 RETRIEVE
records have the subtype specified with the SMF statement; type 119 records are
always subtype 70.) If neither the SMF or SMFRETR statement is specified, no
SMF records are collected for the RETRIEVE command.

Related topics
v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFSQL statement” on page 561

Chapter 13. File Transfer Protocol (FTP) 559

v “SMFSTOR statement” on page 562

560 z/OS V1R4.0 CS: IP Configuration Reference

SMFSQL statement
Use the SMFSQL statement to specify that SMF records are collected when
FILETYPE is SQL (SQL query function).

Syntax

�� SMFSQL
TYPE119

�

Parameters
TYPE119

Issue records for filetype SQL for all type 119 SMF records. If no parameters
are given, records for filetype SQL are issued for all type 118 SMF records.

Examples
For all type 118 FTP server transfer completion records and record information for
all file transfers of type SQL, use the following:
SMFSQL

For all type 119 FTP server transfer completion records, record information for all
file transfers of type SQL, use the following:
SMFSQL TYPE119

Usage notes
v SMFSQL statements for each record type (118 and 119) function independently

of each other.

v If SMFSQL is not specified, no SMF records are issued when FILETYPE is SQL.

Related topics
v “DB2 statement” on page 489

v “DB2PLAN statement” on page 490

v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSTOR statement” on page 562

Chapter 13. File Transfer Protocol (FTP) 561

SMFSTOR statement
Use the SMFSTOR statement to specify SMF recording options for the STOR
(STORE) and STOU (STORE UNIQUE) commands

Syntax

�� SMFSTOR STD
number
TYPE119

�

Parameters
STD

Indicates that type 118 SMF STORE and STORE UNIQUE records are issued
with the standard subtype of 75.

number
Indicates that type 118 SMF STORE and STORE UNIQUE records are issued
with the given record subtype. The valid range is 1 through 255.

TYPE119
Indicates that type 119 SMF STORE and STORE UNIQUE records are issued
(subtype 70).

Examples
Set the type 118 SMF record subtype for STORE and STORE UNIQUE records to
75:
SMFSTOR 75

To issue type 119 SMF STORE and STORE UNIQUE records:
SMFSTOR TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.

v SMFSTOR statements for each record type (118 and 119) function independently
of each other.

v If you do not specify the SMFSTOR statement, SMF records for the STORE and
STORE UNIQUE commands are still issued if the SMF statement is present.
(Type 118 STORE and STORE UNIQUE records have the subtype specified with
the SMF statement; type 119 records are always subtype 70.) If neither the SMF
or SMFSTOR statement is specified, no SMF records are collected for the
STORE and STORE UNIQUE commands.

Related topics
v “FTP server user exits” on page 443

v “SMF statement” on page 549

v “SMFAPPE statement” on page 551

v “SMFDEL statement” on page 552

v “SMFEXIT statement” on page 553

v “SMFJES statement” on page 554

562 z/OS V1R4.0 CS: IP Configuration Reference

v “SMFLOGN statement” on page 555

v “SMFREN statement” on page 557

v “SMFRETR statement” on page 559

v “SMFSQL statement” on page 561

Chapter 13. File Transfer Protocol (FTP) 563

SOCKSCONFIGFILE statement
Use the SOCKSCONFIGFILE statement to identify the SOCKS server configuration
file the FTP client uses to determine which FTP servers require SOCKS protocols.

Syntax

�� SOCKSCONFIGFILE file-path �

Parameters
file-path

The HFS absolute pathname or the fully qualified MVS data set name of the
SOCKS configuration file. In accordance with the convention for absolute
pathnames, an HFS pathname must begin with a slash (/) character. Any file
path not beginning with a slash character is considered a fully qualified MVS
data set name.

Examples
To direct the client to use the file /etc/ftp/socks.conf for the SOCKS server
configuration, specify the following:
SOCKSCONFIGFILE /etc/ftp/socks.conf

To direct the client to use the data set ’socks.config’ for the SOCKS server
configuration, specify one of the following:
SOCKSCONFIGFILE socks.config

SOCKSCONFIGFILE ’socks.config’

Usage notes
v If no SOCKSCONFIGFILE statement is specified, the client does not use SOCKS

protocols during connection establishment.

v If the client is connecting to an IPv6 node, the client does not use SOCKS
protocols during connection establishment.

v The server ignores the SOCKSCONFIGFILE statement.

Related topics
“SOCKS configuration statements in SOCKSCONFIGFILE” on page 586.

564 z/OS V1R4.0 CS: IP Configuration Reference

|
|

SPACETYPE statement
Use the SPACETYPE statement to specify whether newly allocated data sets are
allocated in blocks, cylinders, or tracks.

Syntax

��
SPACETYPE TRACK

SPACETYPE BLOCK
CYLINDER
TRACK

�

Parameters
BLOCK

Use blocks when allocating new data sets.

CYLINDER
Use cylinders when allocating new data sets.

TRACK
Use tracks when allocating new data sets. This is the default.

Examples
Allocate data sets in tracks:
SPACETYPE TRACK

Usage notes
If you do not supply values on the PRIMARY and SECONDARY statements in order
to use the SMS data class, the value on the SPACETYPE statement is ignored and
SMS determines the spacetype.

Related topics
v “DATACLASS statement” on page 487

v “PRIMARY statement” on page 531

v Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “SECONDARY statement” on page 542

Chapter 13. File Transfer Protocol (FTP) 565

SPREAD statement
Use the SPREAD statement to specify whether or not the output is in spreadsheet
format when the file type is SQL.

Syntax

��
SPREAD FALSE

SPREAD TRUE
FALSE

�

Parameters
TRUE

Specifies the output is in spreadsheet format.

FALSE
Specifies the output is not in spreadsheet format. This is the default.

Examples
Format the output to spreadsheet format:
SPREAD TRUE

Related topics
v “DB2 statement” on page 489

v “DB2PLAN statement” on page 490

v “SQLCOL statement” on page 567

566 z/OS V1R4.0 CS: IP Configuration Reference

SQLCOL statement
Use the SQLCOL statement to specify the column headings of the output file.

Syntax

��
SQLCOL NAMES

SQLCOL ANY
LABELS
NAMES

�

Parameters
ANY

Use the label, but if there is no label, the name becomes the column heading.

LABELS
Use the label of the column headings. If any of the columns do not have labels,
the server uses COLnumber, where number is the column number reading left
to right.

NAMES
Use the name of the column headings and ignore the labels. This is the default.

Examples
Use the label of the column headings:
SQLCOL LABELS

Related topics
v “DB2 statement” on page 489

v “DB2PLAN statement” on page 490

v “SPREAD statement” on page 566

Chapter 13. File Transfer Protocol (FTP) 567

STARTDIRECTORY statement
Use the STARTDIRECTORY statement to specify which file system is initially used
when a new user logs in.

Syntax

��
STARTDIRECTORY MVS

STARTDIRECTORY HFS
MVS

�

Parameters
HFS

Use the z/OS UNIX hierarchical file system (HFS). The initial directory is the
user’s root directory in the HFS.

MVS
Use MVS partitioned data sets. The initial data set name has a prefix of the
user ID.

Examples
Set the initial user directory to the user’s root directory in the HFS:
STARTDIRECTORY HFS

Usage notes
The value of STARTDIRECTORY must be compatible with the
ANONYMOUSFILEACCESS value when anonymous logins are enabled and
ANONYMOUSLEVEL is 3 or greater.

For example, if ANONYMOUSLEVEL is 3, ANONYMOUSFILEACCESS is MVS, and
STARTDIRECTORY is HFS, anonymous users receive a filetype error when they
attempt to log in to FTP. The anonymous login is rejected by the FTP server.

Related topics
v “ANONYMOUSFILEACCESS statement” on page 462

v “ANONYMOUSLEVEL statement” on page 470

568 z/OS V1R4.0 CS: IP Configuration Reference

STORCLASS statement
Use the STORCLASS statement to specify the SMS storage class as defined by
your organization for the FTP server.

Syntax

�� STORCLASS class �

Parameters
class

The SMS class.

Examples
Use the SMS storage class SMSSTOR when allocating new data sets:
STORCLASS SMSSTOR

Related topics
Refer to the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

Chapter 13. File Transfer Protocol (FTP) 569

TLSTIMEOUT statement
Use the TLSTIMEOUT statement to set a timeout for TLS handshake processing.
This timeout is the maximum time between full TLS handshakes. If this time period
has not been reached since the last full handshake, a partial handshake occurs
when a data connection is protected by TLS.

Syntax

�� TLSTIMEOUT seconds �

Parameters
seconds

The number of seconds in the range 0-86400. Any value outside of this range
reverts to the default of 100.

Examples
TLSTIMEOUT 60

570 z/OS V1R4.0 CS: IP Configuration Reference

TRACE statement
Use the TRACE statement to start tracing for the FTP server. The trace output is
written to syslog.

Syntax

�� TRACE �

Parameters
This statement has no parameters.

Examples
To specify that trace output should be directed to syslog, use the following:
TRACE

Usage notes
v TRACE is equivalent to entering DEBUG BAS or to entering the following four

DEBUG statements:

– DEBUG CMD

– DEBUG INT

– DEBUG FSC

– DEBUG SOC

To obtain the same debugging data as traced in releases prior to V1R2, use
DEBUG ALL. Note that tracing can have a major performance impact on FTP.
Consider using the DEBUG statements to request only the kinds of general
traces that are needed.

Chapter 13. File Transfer Protocol (FTP) 571

TRAILINGBLANKS statement
Use the TRAILINGBLANKS statement to specify whether trailing blanks in a fixed
format data set are transferred when the data set is transferred.

Syntax

��
TRAILINGBLANKS FALSE

TRAILINGBLANKS TRUE
FALSE

�

Parameters
TRUE

Specifies that the trailing blanks in a fixed format data set are included when
the data set is retrieved.

FALSE
Specifies that the trailing blanks in a fixed format data set are not retrieved.
This is the default.

Examples
Retrieve the fixed format data set and include trailing blanks:
TRAILINGBLANKS TRUE

572 z/OS V1R4.0 CS: IP Configuration Reference

TRUNCATE statement
Use the TRUNCATE statement to specify what action should be taken if the
NOWRAPRECORD option is set and it is determined that an input record is longer
than the LRECL of the new file.

Syntax

��
TRUNCATE TRUE

TRUNCATE TRUE
FALSE

�

Parameters
TRUE

Specifies that TRUNCATING records is allowed. Even if it is determined that
records were truncated, file transfer continues and a warning message is issued
when the transfer is complete.

FALSE
Specifies that TRUNCATING records is not allowed. If it is determined that
records are truncated, then set an error, and fail the file transfer.

Note: If the option WRAPRECORD is set, then the long records are wrapped,
not truncated, and no error is set.

Examples
FTP detects a record longer than LRECL, sets an error of 1003 and fails the
transfer of the file.
TRUNCATE FALSE

Chapter 13. File Transfer Protocol (FTP) 573

UCOUNT statement
Use the UCOUNT statement to set the unit count for new data set allocations.

Syntax

�� UCOUNT
unit-count

�

Parameters
unit-count

The unit count to be specified for new data set allocations. Valid values are 1
through 59 (inclusive), or the letter P for parallel mount requests.

Note: UCOUNT has no default value. If you do not specify a UCOUNT value,
the FTP server does not specify a unit count for new allocations. The
unit count used is the system default.

Examples
To specify a unit count of two, use the following:
UCOUNT 2

To specify parallel mounts, use the following:
UCOUNT P

Usage notes
v Do not use the UCOUNT statement if you are using an SMS storage class. In

SMS managed environments, an SMS storage class can override any value you
specify for UCOUNT.

v UCOUNT can be dynamically modified using the SITE and LOCSITE commands.
Refer to z/OS Communications Server: IP User’s Guide and Commands for more
information about these commands.

Related topics
v Refer to the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS statement” on page 569

574 z/OS V1R4.0 CS: IP Configuration Reference

UCSHOSTCS statement
Use the UCSHOSTCS statement to specify the EBCDIC code set to be used for
data conversion to or from Unicode. If the UCSHOSTCS statement is not used, the
current code set for the FTP server host is used.

Syntax

�� UCSHOSTCS code_set �

Parameters
code_set

The EBCDIC code set that is to be used when converting to or from Unicode.
Refer to the z/OS C/C++ Programming Guide for the valid EBCDIC code set
names.

Examples
To set up for conversion between Unicode and IBM 932 use the following:
UCSHOSTCS IBM-932

Related topics
v “UCSSUB statement” on page 576

v “UCSTRUNC statement” on page 577

Chapter 13. File Transfer Protocol (FTP) 575

UCSSUB statement
Use the UCSSUB statement to specify whether Unicode-to-EBCDIC conversion
should use the EBCDIC substitution character or cause the data transfer to be
terminated if a Unicode character cannot be converted to a character in the target
EBCDIC code set.

Syntax

��
UCSSUB FALSE

UCSSUB TRUE
FALSE

�

Parameters
TRUE

Specifies that the EBCDIC substitution character is used to replace any
Unicode character that cannot successfully be converted. Data transfer
continues.

FALSE
Specifies that the data transfer is terminated if any Unicode character cannot be
successfully converted.

Examples
To specify that data transfer should be terminated if unicode translation is
unsuccessful, use the following:
UCSSUB FALSE

Related topics
v “UCSHOSTCS statement” on page 575

v “UCSTRUNC statement” on page 577

576 z/OS V1R4.0 CS: IP Configuration Reference

UCSTRUNC statement
Use the UCSTRUNC statement to specify whether the transfer of Unicode data
should be aborted if truncation occurs at the MVS host. (Truncation can occur if the
LRECL of the receiving data set is not large enough to contain a line of Unicode
data after it has been converted to EBCDIC.)

UCSTRUNC applies to inbound data transfers only.

Syntax

��
UCSTRUNC FALSE

UCSTRUNC TRUE
FALSE

�

Parameters
TRUE

Specifies that truncation is allowed. The data transfer continues even if EBCDIC
data is truncated.

FALSE
Specifies that truncation is not allowed. The transfer is to be aborted if the
LRECL of the receiving data set is too small to contain the data after
conversion to EBCDIC.

Note: The setting of CONDDISP determines what happens to the target data
set if the transfer is aborted.

Examples
To specify that truncation is not allowed, use the following:
UCSTRUNC FALSE

Related topics
v “UCSHOSTCS statement” on page 575

v “UCSSUB statement” on page 576

Chapter 13. File Transfer Protocol (FTP) 577

UMASK statement
Use the UMASK statement to define the file mode creation mask.

The file mode creation mask defines which permission bits are NOT to be set on
when a file is created. When a file is created, the permission bits requested by the
file creation are compared to the file mode creation mask, and any bits requested
by the file creation that are not allowed by the file mode creation mask are turned
off.

Syntax

��
UMASK 027

UMASK octal_umask
�

Parameters
octal_umask

The octal umask.

Examples
When a file is created, the permission bits for file creation are 666 (-rw-rw-rw-). If
the file mode creation mask is 027, the requested permissions and the file mode
creation mask are compared:

110110110 - 666
000010111 - 027

110100000 - 640

When the UMASK is set to 027, the actual permission bits set for a file when it is
created is 640 (-rw-r-----).

Usage notes
You cannot use FTP to create HFS files having execute permissions. If you require
execute permissions, use the site chmod command after the file is created. For
more information on site chmod, see the z/OS Communications Server: IP User’s
Guide and Commands.

578 z/OS V1R4.0 CS: IP Configuration Reference

UNITNAME statement
Use the UNITNAME statement to specify the unit type for allocation of new data
sets.

Syntax

��
SYSDA

UNITNAME

type

�

Parameters
type

The type of either direct access or tape devices.

SYSDA
If type is not specified, SYSDA is the default.

Examples
v Set the unit type for new data sets to 3380:

UNITNAME 3380

v Set the unit type for new data sets to TAPE:
UNITNAME TAPE

Usage notes
v If you do not use the UNITNAME statement to specify the type, then the unit type

used for allocation is the system default unit.

v If the STORCLASS statement is also specified, the SMS storage class might
contain settings that override the UNITNAME type.

v It is preferable that you do not use the UNITNAME statement if you are using an
SMS storage class.

v The UNITNAME can name a dynamic device.

Related topics
v Refer to the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS statement” on page 569

Chapter 13. File Transfer Protocol (FTP) 579

VCOUNT statement
Use the VCOUNT statement to set the volume count for new data set allocations.

Syntax

�� VCOUNT
volume-count

�

Parameters
volume-count

Valid values are integers from 1 through 255 (inclusive). The default value is 50.

Examples
To allow multiple volumes for data set allocation, use the following:
VCOUNT 2
VOLUME (WRKLB1,WRKLB2)

Usage notes
v Do not use the VCOUNT statement if you are using an SMS storage class.

v VCOUNT can be dynamically modified using the SITE and LOCSITE commands.
Refer to z/OS Communications Server: IP User’s Guide and Commands for more
information about these commands.

Related topics
v Refer to the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS statement” on page 569

v “VOLUME statement” on page 581

580 z/OS V1R4.0 CS: IP Configuration Reference

VOLUME statement
Use the VOLUME statement to specify the volume serial number or a list of volume
serial numbers for allocation of new data sets.

Syntax

�� VOLUME name
(serial-list)

�

Parameters
name

The volume serial number.

(serial-list)
A list of volume serial numbers for new data set allocations.

Examples
Use two volumes for new data set allocations:
VOLUME (WRKLB2,WRKLB4)

Usage notes
v If you do not use the VOLUME statement to specify the name, the volume serial

number used for allocation is the system default volume list.

v If the STORCLASS statement is also specified, the SMS storage class might
contain settings that override the VOLUME name.

v It is preferable that you do not use the VOLUME statement if you are using an
SMS storage class.

v When transferring a variable-length file to multiple volumes on MVS, only the last
file contains the correct DCB characteristics.

Related topics
v Refer to information about the storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS statement” on page 569

v “VCOUNT statement” on page 580

Chapter 13. File Transfer Protocol (FTP) 581

WLMCLUSTERNAME statement
Use the WLMCLUSTERNAME statement to instruct the FTP daemon to register in
a DNS/WLM sysplex connection balancing group. This would be necessary if FTP is
to participate in a group of FTP servers in the same sysplex that allows clients to
attach to them in a connection balanced manner. See Chapter 15, “BIND
4.9.3-based domain name system (DNS)” on page 593 for further discussion of this
topic. This statement may be repeated up to 16 times, causing the FTP daemon to
register in up to 16 different groups.

Syntax

�� WLMCLUSTERNAME ftp_group_name �

Parameters
ftp_group_name

Any legal DNS name up to 18 characters. All servers in a group must register
with this name.

Examples
Allow an FTP client to connect to any of a number of equivalent FTP servers in an
MVS sysplex by using the name ftpgroup instead of the name or IP address of a
particular host in that sysplex:
WLMCLUSTERNAME ftpgroup

582 z/OS V1R4.0 CS: IP Configuration Reference

WRAPRECORD statement
Use the WRAPRECORD statement to specify how the FTP server or client treats
an incoming data record longer than the logical record in which it is to be stored.

Syntax

��
WRAPRECORD FALSE

WRAPRECORD TRUE
FALSE

�

Parameters
TRUE

Indicates that data is wrapped to the next record if no new-line character is
encountered before the logical record length is reached.

FALSE
Indicates that data is truncated if no new-line character is encountered before
the logical record length is reached. This is the default.

Note: If TRUNCATE is also set to FALSE, then an error is set and the file
transfer fails.

Examples
Truncate data if no new-line character is encountered before the logical record
length is reached:
WRAPRECORD FALSE

Chapter 13. File Transfer Protocol (FTP) 583

WRTAPEFASTIO statement
Use the WRTAPEFASTIO statement to specify whether a write to tape of ASCII
data in Stream mode can use the BSAM I/O routine instead of the LE Run-Time
Library function fwrite().

Syntax

��
WRTAPEFASTIO FALSE

WRTAPEFASTIO TRUE
FALSE

�

Parameters
TRUE

Indicates that a write to tape of ASCII data in Stream mode is allowed to use
the BSAM I/O routine instead of the LE Run-Time Library fwrite() function. This
allows the data set to be processed without embedded hexadecimal values
being interpreted as print control characters.

FALSE
Indicates that a write to tape of ASCII data in Stream mode must use the LE
Run-Time Library fwrite() function. This is the default and is used to take
advantage of the features of the LE Run-Time Library.

Examples
Allow ASCII Stream data to be written to tape using the BSAM I/O routine:
WRTAPEFASTIO TRUE

Require ASCII Stream data be written to tape using the LE Run-Time Library:
WRTAPEFASTIO FALSE

584 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|

||||||||||||||||||||||

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

XLATE statement
Use the XLATE statement to specify a data set containing translate tables to be
used for the data connection.

Syntax

�� XLATE name �

Parameters
name

Specifies a 1- to 8-character name corresponding to a data set that contains
translate tables.

FTP looks first for an environment variable called _FTPXLATE_name. If the
environment variable exists, its value is used as the data set name.

Note: The environment variable name must be all uppercase, although the
XLATE parameter can be in mixed case.

If the environment variable does not exist, FTP looks for a data set called
hlq.name.TCPXLBIN.

Examples
XLATE FRED

If environment variable _FTPXLATE_FRED=FREDDYS.TABLES is defined for the
FTP server, the statement above specifies that the translate tables in data set
FREDDYS.TABLES should be used for the data connection.

If there is no such environment variable defined, the above statement specifies that
the translate tables data set hlq.FRED.TCPXLBIN should be used.

Usage notes
v CCXLATE and CTRLCONN are mutually exclusive statements. If both statements

appear in your FTP.DATA file, XLATE is ignored.

v The XLATE statement (and its value) is not case-sensitive, but the name of the
corresponding environment variable must be all uppercase or FTP does not
recognize it.

Related topics
v Appendix B, “Using translation tables” on page 907

v “CCXLATE statement” on page 482

v “CTRLCONN statement” on page 486

v To see the search order that determines the conversion for the control
connection, see “FTP code page conversion” on page 589.

Chapter 13. File Transfer Protocol (FTP) 585

SOCKS configuration statements in SOCKSCONFIGFILE
The FTP client uses configuration information in a SOCKS configuration data set or
file to determine whether to access a given IPv4 FTP server directly or through a
SOCKS server. The name of the SOCKS configuration data set or file is specified
by coding the SOCKSCONFIGFILE statement in the client’s FTP.DATA file. For
more information about the SOCKSCONFIGFILE statement, see
“SOCKSCONFIGFILE statement” on page 564.

You can code DIRECT or SOCKD statements in the SOCKSCONFIGFILE. A
DIRECT statement instructs the FTP client to access the FTP server without using
SOCKS. A SOCKD statement directs the client to use SOCKS protocols and the
specified SOCKS server to access the FTP server.

You can include comments in the configuration file or data set. Comment lines
should start with a semicolon (;) character. Any data on any line that follows a
free-standing semicolon (a semicolon surrounded by at least one space on either
side) is considered to be a comment.

The order of statements in the SOCKS configuration is important. The client
searches the statements in the order they are coded in the SOCKSCONFIGFILE.
The first statement that specifies the target FTP server is applied. Code statements
that apply to specific FTP servers first, and a general statement for all other servers
last.

The configuration information in the SOCKS configuration file consists of the
statements in the following sections.

586 z/OS V1R4.0 CS: IP Configuration Reference

DIRECT statement
Use the DIRECT statement to instruct the FTP client not to use SOCKS for the
destinations that are included in the DIRECT statement.

Syntax

�� DIRECT IPv4_address address_mask
/num_mask_bits

�

Parameters
direct

Access the FTP server indicated by this statement without using SOCKS
protocols.

IPv4_address
Dotted decimal IPv4 address of the FTP server host, or the dotted decimal IPv4
Network ID of the FTP server network or subnet. The network ID can include
subnet bits.

address_mask
Dotted decimal IPv4 subnet mask.

num_mask_bits
An integer in the range 1 through 32 that represents the number of bits,
counting from left to right, of the network and subnet portion of the IPv4
address mask.

Examples
The following statements instruct the FTP client not to use SOCKS for connections
to any FTP servers in the class A 9.0.0.0 network, nor to connections to the host’s
loopback address.
;
; This is my socks configuration
;
direct 9.0.0.0 255.0.0.0 ; Internal net
direct 127.0.0.1 255.255.255.255 ; Loopback

The following statement directs the FTP server not to use SOCKS for connections
to the host’s loopback address (num_mask_bits is coded instead of address_mask).
;
; This is my socks configuration
;
direct 127.0.0.1/32 ; Loopback

Usage notes
v You can code as many DIRECT statements as needed to cover your

configuration.

v The FTP client always acts as if the statement direct 0.0.0.0 0.0.0.0 were coded
last in the SOCKSCONFIGFILE. This statement applies to every possible FTP
server and directs the client not to use SOCKS to access any server not covered
by a previous statement. Therefore, the client connects to any FTP server for
which no statement has been coded in SOCKSCONFIGFILE without using
SOCKS. Also, note that if you code this statement in the SOCKSCONFIGFILE
explicitly, any statements you coded after that would be ignored because the
client always uses the first statement that applies to the FTP server.

Chapter 13. File Transfer Protocol (FTP) 587

SOCKD statement
Use the SOCKD statement to instruct the FTP client to use a SOCKS server for the
destinations that are included in the sockd statement.

Syntax

�� sockd
sockd4
sockd5

@=SOCKS_srv_IPv4_Addr
@=SOCKS_srv_host_name

IPv4_address IPv4_address_mask
/num_mask_bits

�

Parameters
sockd

The SOCKS server requires the use of SOCKSv5 protocols.

sockd4
The SOCKS server requires the use of SOCKSv4 protocols.

sockd5
The SOCKS server requires the use of SOCKSv5 protocols.

SOCKS_srv_host_name
The DNS name of the SOCKS server host.

SOCKS_srv_IPv4_addr
The dotted decimal IPv4 IP address of the SOCKS server host.

IPv4_address
Dotted decimal IPv4 address of the FTP server host, or the dotted decimal IPv4
Network ID of the FTP server network or subnet. The network ID can include
subnet bits.

IPv4_address_mask
Dotted decimal IPv4 subnet mask.

num_mask_bits
An integer between 1 and 32 that represents the number of bits, counting from
left to right, of the network and subnet portion of the IPv4 address mask.

Examples
In the following example, the first statement instructs the client to use SOCKS V4
protocols and the SOCKSv4 server at IP address 9.1.2.3 for connections to FTP
severs within the class C 192.168.1.0 network. The second statement instructs the
client to use SOCKSv5 protocols and the SOCKSv5 server at IP address 9.1.2.4 to
access any FTP server not covered by a previous statement.
sockd4 @=9.1.2.3 192.168.1.0 255.255.255.0 ; Test net
sockd5 @=9.1.2.4 0.0.0.0 0.0.0.0 ; Anything else

Usage notes
v You can code as many SOCKD statements as needed to cover your

configuration.

v DIRECT and SOCKD statements can be mixed in any order.

588 z/OS V1R4.0 CS: IP Configuration Reference

FTP code page conversion
Code page conversion must be performed for:

v FTP commands and replies sent over the control connection

v Data transferred over the data connection

FTP uses the iconv function to establish ASCII-to-EBCDIC and EBCDIC-to-ASCII
translate tables for the control connection. The default network transfer codepage
for the control connection is 7-bit ASCII. In addition, FTP maintains support for the
use of translate tables by the CONVXLAT utility. After an end user has logged in, a
SITE subcommand can be used to change the code page being used on the control
connection.

FTP uses the iconv function to establish network transfer to file system and file
system to network transfer translate tables for the data connection. In addition, FTP
maintains support for the use of translate tables by the CONVXLAT utility.

Note: Using iconv conversion to retrieve EBCDIC data that was created with
CONVXLAT-generated conversion tables could result in data corruption due
to possible conversion table differences.

After an end user has logged in, a SITE subcommand can be used to change the
translation tables being used for single byte translation.

Code page conversions for the control connection
For the control connection, FTP generally uses ASCII for the network code page, as
specified in the FTP RFCs. For the host/ASCII conversion for the control
connection, FTP uses either iconv() or the support for single byte translation tables.
However, when EXTENSIONS UTF8 is coded in FTP.DATA, FTP starts the
connection in 7-bit ASCII and negotiates a switch to UTF-8 encoding of the control
connection, as described in RFC 2640. FTP uses iconv() for the host/UTF-8
conversion.

Priority
The priority for establishing the conversion tables used for the control connection is:

1. FTP start parameter (FTP client only)

2. EXTENSIONS UTF8 coded in FTP.DATA

3. CTRLCONN or CCXLATE keyword in FTP.DATA

4. Search order used to locate a TCPXLBIN data set:

a. Original jobname.SRVRFTP.TCPXLBIN

b. hlq.SRVRFTP.TCPXLBIN

c. Original jobname.STANDARD.TCPXLBIN

d. hlq.SRVRFTP.TCPXLBIN

5. 7–bit ASCII

6. Internal (hard-coded) 7–bit tables

Code page conversions for the data connection
For the transfer of data on the data connection, FTP supports:

v All single-byte conversions available through iconv. For example,
Country_Extended_code-Pages (CECPs) <-> SIO8859–1 and IBM-1047 <->
IBM-850 conversions are available for data transfers.

Chapter 13. File Transfer Protocol (FTP) 589

|
|
|
|
|
|

v Multi-byte conversions for code page IBM-5488 to either codepage IBM-1388 or
UTF-8.

v Both single-byte and double-byte data conversions are supported with the
translate tables provided with TCP/IP or generated by the CONVXLAT utility.

Priority
The priority for establishing network transfer/file system conversion for the data
connection is:

v SYSFTSX DD statement in the startup procedure, where the named data
connection is: CONVXLAT-generated translate tables. The data set can be an
MVS data set or an HFS file.

v SBDATACONN or XLATE keyword in FTP.DATA.

v Search order to locate a TCPXLBIN data set, where the MVS data set contains
CONVXLAT-generated translate tables:

1. Original jobname.SRVRFTP.TCPXLBIN

2. hlq.SRVRFTP.TCPXLBIN

3. Original jobname.STANDARD.TCPXLBIN

4. hlq.SRVRFTP.TCPXLBIN

v The same conversions established for the control connection.

Note: The single-byte translate tables are built using this priority. If DBCS or MBCS
encoding has been specified, these tables can be overriden at data transfer
time.

590 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

Chapter 14. Trivial file transfer protocol (TFTP)

TFTP is installed in the /usr/lpp/tcpip/sbin/ directory.

Note: The TFTP server uses well-known port 69. The TFTP server has no user
authentication. Any client that can connect to port 69 on the server has
access to TFTP. If the TFTP server is started without a directory, it allows
access to the entire HFS. To restrict access to the HFS, start the TFTP
server with a list of directories.

To start the TFTP server from the z/OS command line, type the tftpd command.
tftpd [-l] [-p port] [-t timeout] [-r maxretries] [-c concurrency_limit]

[-s maxsegsize] [-f file] [-a archive directory [-a ...]]
[directory ...]

Following are the parameters used for the tftpd command:

-l Logs all the incoming read and write requests and associated information to
the system log. Logged information includes the IP address of the
requestor, the file requested, and whether the request was successful.

-p port
Uses the specified port. The TFTP server usually receives requests on
well-known port 69. You can specify the port on which requests are to be
received.

-t timeout
Sets the packet timeout. The TFTP server usually waits 5 seconds before
presuming that a transmitted packet has been lost. You can specify a
different timeout period in seconds.

-r maxretries
Sets the retry limit. The TFTP server usually limits the number of
retransmissions it performs because of lost packets to 5. You can specify a
different retry limit.

-c concurrency_limit
Sets the concurrency limit. The TFTP server spawns both threads and
processes to handle incoming requests. You can specify the limit for the
number of threads that may be concurrently processing requests under a
single process. When the limit is exceeded, a new process is spawned to
handle requests. The default is 200 threads.

-s maxsegsize
Sets the maximum block size that can be negotiated by the TFTP block
size option. The default is 8192.

-f file Specifies a cache file. You can specify a file containing information on files
to be preloaded and cached for transmission. A cache file consists of one or
more entries. For clarity, place each entry on a separate line. An entry has
the form:

a | b <pathname>

where:

v a indicates that the specified file is cached in ASCII form. The file is
preconverted to NETASCII format.

v b indicates that the specified file is cached in binary form, with no
conversion.

© Copyright IBM Corp. 2000, 2002 591

Following are examples of cache file entries,

a /usr/local/textfile
b local/binaryfile

If a relative pathname to the file is specified, the TFTP server searches the
specified directories for the file.

The cached version of a file is only used for requests requiring the specified
format. For example, the binary cached version of a file is not used in
satisfying a request for the file in netascii format. If a file is to be retrieved
in both binary and ASCII formats, the user must specify that two copies of
the file be cached with one in binary format, and the other in NETASCII
format.

Caching is not dynamic. The cache files are read in when the TFTP server
is started and are not updated, even if the file on disk is updated. To update
or refresh the cache, the TFTP server must be recycled.

-a archive directory
Specifies an archive directory. The files in this directory and its
subdirectories are treated as binary files for downloading. This option is
useful on EBCDIC machines that act as file servers for ASCII clients.
Multiple -a options can be specified; one directory per -a option. Directories
must be specified as absolute pathnames. You can specify no more than 20
directories.

directory
Specifies an absolute pathname for a directory. You may specify no more
than 20 directories on the tftpd command line.

If the TFTP server is started without a list of directories, all mounted
directories are considered active.

If a list of directories is specified, only those specified directories are active.
That list is used as a search path for incoming requests that specify a
relative pathname for a file.

Activating a directory activates all of its subdirectories.

For a file to be readable by the TFTP server, the file must be in an active
directory and have world (other) read access enabled. For a file to be
writable by the TFTP server, the file must already exist in an active directory
and have world (other) write access.

The TFTP server preforks a child process to handle incoming requests when the
concurrency limit is exceeded. Consequently, immediately after starting the TFTP
server, two TFTP processes exist.

In case of a flood of concurrent TFTP requests, the TFTP server may fork additional
processes. When the number of concurrent requests being processed drops below
the concurrency limit, the number of TFTP processes is decreased back to two.

To terminate the TFTP server, send a SIGTERM signal to the oldest existing TFTP
process. This is the process that has a parent process ID of 1. Termination of this
process will cause all of its children to terminate.

592 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 15. BIND 4.9.3-based domain name system (DNS)

Starting in z/OS CS V1R2, the name server can be started in one of two modes:

v BIND 4.9.3-based DNS

v BIND 9-based DNS

Note: Name server mode selection depends on a combination of values, among
the following:

v -V start option

v Unique v4 or v9 start options

v DNS_VERSION environment variable

© Copyright IBM Corp. 2000, 2002 593

The named daemon
Use the named daemon to start the v4 name server. The named daemon runs on
name server hosts and controls the name resolution function.

To start with an MVS cataloged procedure, refer to the z/OS Communications
Server: IP Configuration Guide.

Syntax

�� named 1 −Option �

Usage notes
The configuration options of the named daemon specify the tasks you can perform
with the daemon. If you do not specify the -b option or bootfile, the named
daemon reads the default boot file /etc/named.boot.

Option:

-ddl
-premote #

/local #
-bfilename
-q
-r
-tnn
-lnn

-V v4
v9

-d dl
Specifies a debugging option and causes the named daemon to write
debugging information to the file /tmp/named.run. Debug information generated
during zone transfers is written to /tmp/xfer.ddt.XXXXXX, where XXXXXX is a
unique identifier. Note that one of these files will be generated for each zone for
which the named daemon is a secondary server.

If the debug level (dl) variable is six or greater, then a trace of the resources
exchanged during the last initiated zone transfer is written to /tmp/xfer.trace.
Valid debug levels are 1 to 11, where 11 supplies the most information.

If named is started from the z/OS shell with the -d option, use the & shell
operator at the end of the command line to run named asynchronously. If you
do not, the named tracing process occupies the z/OS shell.

-p remote # {/local #}
Reassigns the port that is used in queries to other v4 name servers. (The
default is 53.) The remote option specifies the port the v4 name server uses to
query other v4 name servers. The local option specifies the port that named
binds to. The local port number is the same as the remote port number if the
local port number is not specified.

594 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

-b filename
Specifies an alternate boot file to /etc/named.boot.

-q Enables the logging of queries received by the v4 name server. The queries are
written to the syslog file by the syslog daemon.

-r Disables recursive query processing.

The following two options apply only to connection optimization in a sysplex
domain. For a complete discussion of connection optimization, refer to z/OS
Communications Server: IP Configuration Guide.

-t nn
Specifies the time (nn, in seconds) between refreshes of sysplex names and
addresses and of the weights associated with those names and addresses. The
default is 60 seconds.

-l nn
Specifies the time to live (nn, in seconds) for sysplex names and addresses
after they are sent into the network. The default is 0 seconds.

-V Use to specify which version of the program to run. Valid values are v4 and v9.
Use v4 to start the server in BIND 4.9.3 mode. The following can be used to
determine which version of the program to run (V4 or V9):

v -V option

– If the -V option is specified, this determines the version.

– If the -V option is not present and if a start option is present that is unique
to a given version, this determines the version.

– If -V is not present and no command options are present that are unique
to a given version, then the value of the DNS_VERSION environment
variable is used (V4 or V9).

– If none of the above, then the default is v4.

Note: Conflicts between versions can arise in certain situations. In the
following cases, the error is noted, and the program fails to run.

– If -V specifies V4 and V9 unique options are present, or vice versa.

– If a combination of V4 and V9 options are present.

The setting of the DNS_VERSION environment variable will not cause
a conflict, as this is only used if the version cannot be determined
otherwise.

Modifying
Six v4 name server signals are available for working with the named daemon:

SIGABRT
Dumps the current statistics of the v4 name server in the /tmp/named.stats
file.

SIGHUP
Reloads the boot file, named.boot, from the disk.

SIGINT
Dumps the v4 name server’s database and hints file into the
/tmp/named_dump.db file.

SIGUSR1
Starts debug tracing for the v4 name server and causes the named daemon
to write debugging information to the file /tmp/named.run. If debug tracing is

Chapter 15. BIND 4.9.3-based domain name system (DNS) 595

already on, this signal increments the debug by one. Each time this signal
is issued, the debug level will continue to be incremented until the debug
level reaches 11. Debug information generated during zone transfers is
written to /tmp/xfer.ddt.XXXXXX, where XXXXXX is a unique identifier. Note
that one of these files will be generated for each zone for which the named
daemon is a secondary server.

If the debug level (dl) variable is 6 or greater, then a trace of the resources
exchanged during the last initiated zone transfer is written to
/tmp/xfer.trace. Valid debug levels are 1 to 11, where 11 supplies the
most information.

SIGUSR2
Stops debug tracing.

SIGWINCH
Toggles query logging on and off.

A sample MVS start procedure is included in the samples directory that lets you
issue these signals to the v4 name server from the MVS operator’s console. The
name of the sample is nssig. It has one parameter, sig. Values for the sig
parameter are the same values that are valid for the -s parameter of the z/OS UNIX
kill command applicable to the v4 name server (HUP, INT, ABRT, USR1, USR2, and
WINCH). A typical invocation from the MVS operators console would look like the
following if the sample procedure were unaltered:
s nssig,sig=hup

Examples

To start the named daemon from the z/OS shell, enter the following command:
named

To start the named daemon from the MVS operators console, enter the following
command:
s named

where named is the name of your v4 name server start procedure.

To stop the named daemon from the z/OS shell, enter the following command:
kill -TERM $(cat /etc/named.pid)

The process ID of the named daemon is stored in the /etc/named.pid file upon
startup. To stop the named daemon from the MVS operators console, display a list
of tasks and stop the running named job. The job is typically called named3.

To get short status from the named daemon, enter the following command from the
z/OS UNIX shell:
kill -ABRT $(cat /etc/named.pid)

This creates or appends to the file /tmp/named.stats.

The process ID of the named daemon is stored in the /etc/named.pid file upon
startup.

596 z/OS V1R4.0 CS: IP Configuration Reference

|

|

Boot file directives
A boot file is organized in lines, using the following directives:

bogusns IP_address(es)
Directs the v4 name server not to query other v4 name servers that give
incorrect information. The IP address or addresses of the bogus v4 name
servers are listed in the second field.

cache . {file_path} file_name
Identifies the location of the hints (root server) file. The hints file contains the
names of the root servers. The dot (.) in the second field indicates the root
domain. You do not need to specify the file path if you specify the working
directory first, using the directory directive.

directory file_path
Specifies the working directory for the boot file. Specifying a working directory
lets you use relative file paths for the other files in the boot file. Use only one
directory directive in a boot file and list it before any other directives that specify
file names. If you do not use the directory directive, the v4 name server defaults
to the /etc directory.

forwarders IP_address(es)
Specifies the IP addresses of servers that can accept unresolved queries. The
forwarders are queried in the order presented in the list until one is successfully
contacted.

include file_name
Specifies that the file named in the second field is to be included in the boot
file.

limit transfers-in number of transfers
Limits the number of zone transfer processes allowed at any one time.

limit transfers-per-ns number of transfers
Limits the number of zone transfers a secondary name server can request of a
given v4 name server at any one time. The default is two.

options fake-iquery
Directs the v4 name server to respond to inverse queries with false information
rather than with an error message. Use this directive only if you cannot prevent
clients from sending inverse queries. An inverse query provides resource record
data and requests the names and IP addresses of all hosts containing that
data.

options forward-only
Directs the v4 name server to send queries only to the forwarders specified by
the forwarders directive. The options forward-only directive is equivalent to the
slave directive, and must be accompanied by the forwarders entry in a boot file.

options no-recursion
Prevents the v4 name server from responding to recursive queries.

options query-log
Directs the v4 name server to log all queries with the syslog daemon. You can
use the SIGWINCH signal to toggle query logging on and off.

When query logging is enabled, named writes a log message to syslogd for
every query. The log message includes the IP address of the host that made
the query and the query itself. The priority of the message is info. syslogd must
be configured to trace messages with facility daemon and priority info for this
message to be traced.

Chapter 15. BIND 4.9.3-based domain name system (DNS) 597

|
|

primary domain_name file_name {cluster} | {dynamic | dynamic secured |
dynamic presecured} {nokeytosec}

Identifies a zone for which this server is the primary and the file from which to
load its data. cluster is not allowed with dynamic, dynamic secured, or dynamic
presecured. nokeytosec is valid only for dynamic zones.

cluster Sysplex connection-balanced zone. cluster is not allowed with dynamic,
dynamic secured, dynamic presecured, or nokeytosec.

dynamic
See dynamic secured.

dynamic secured
Automatic registration by the user.

dynamic presecured
Must be administered.

nokeytosec
Indicates that this server will not send KEY or SIG to a secondary
server on a zone transfer request. Nokeytosec is only valid for dynamic
zones.

secondary domain_name IP_address(es) {backup_file_name} {cluster}
Identifies the domain for which this server is a secondary v4 name server, the
IP address or addresses of the v4 name server (typically the primary) from
which it gets its data, and, optionally, the file from which it copies its data.
Multiple addresses can be specified, in which case the secondary v4 name
server tries each address in the order listed, until the zone transfer is complete.

slave
Performs the same function as the options forward-only directive.

sortlist network(s) or IP_address(es)&{network mask}
Specifies closeness for referring to other v4 name servers and for sorting
addresses sent in response. Closeness refers to the similarity of addresses in
the network list. Requests for name resolution from a client on the same subnet
as the server receive local network addresses first, addresses in the same
network second, addresses in the sortlist third, and all remaining addresses
last. You can list multiple sortlist entries.

Use subnet masks to identify subnetworks or specific hosts. There are no
spaces between the ampersand character (&) and the IP address or between
the & and the network mask.

stub domain_name IP_address(es) file_name
Used in boot files of primary v4 name servers to identify the subdomains and
their v4 name servers. The domain name is the zone for which the server is a
stub server. The IP address or addresses are the IP address or addresses of
the subdomain’s primary v4 name server, and the file name is the name of the
file where the forward data is stored.

Note: The stub directive indicates that the v4 name server is not authoritative
for the data in the given zone.

xfrnets IP_address(es)&{network mask}
Places limits on the secondary name servers that can receive data from a
primary v4 name server. The IP addresses are the IP addresses of the
secondary name servers that can receive data.

598 z/OS V1R4.0 CS: IP Configuration Reference

Use subnet masks to identify subnetworks or specific hosts. Note that there are
no spaces between the ampersand character (&) and the IP address or
between the & and the network mask.

Domain data files

Control entries, resource records, and special characters
You use control entries, resource records and special characters to create the
domain data files (forward and reverse) and the loopback file.

Control entries
The Standard Resource Record Format defines two control entries:

$ORIGIN
Specifies a domain name to be appended to each host name that does not
end with a dot. In the following example, the origin, raleigh.ibm.com, is
appended to the host name, host1:
$ORIGIN raleigh.ibm.com.
host1 A 1.2.3.4

Note: The domain specified applies to the host names that follow the
$ORIGIN entry until another $ORIGIN entry resets the origin to
another domain name. The origin for host names that precede an
$ORIGIN statement is the domain specified by the primary directive
in the boot file.

$INCLUDE
Specifies a file to be included in the current file, for example:
$INCLUDE /etc/named.inc

The origin for any host names in the included file that do not end with a dot
is the same as the origin specified in the current file.

Resource records
The resource record format is the basis for all entries in the hints, loopback, and
domain data files. This section describes each type of record.

Note: This section is not intended to be a comprehensive description of resource
records. For complete information, read the appropriate RFCs that are
available from the InterNIC.

The general format of a resource record is:

{name} {ttl} {address_class} record_type record_data

name
Specifies the name of the zone or host system associated with a record. This
field is optional. If the field is blank, the name server uses the name of the zone
or host system from the preceding resource record. You can use the special
character @ in place of a zone name if the zone name is the same as the zone
defined in the boot file.

ttl Specifies the time-to-live value, in number of seconds, which is the amount of
time that this record is valid in a cache. This field is optional. The default is the
time-to-live value contained in the minimum field in the file’s SOA record for v4.
For v9, the default time-to-live is specified with the $TTL statement. If a $TTL is
not specified, then the TTL for a resource record not specifying one of its own

Chapter 15. BIND 4.9.3-based domain name system (DNS) 599

becomes the most recent TTL specified in resource records appearing above
this one. For more information about setting TTLs, see “Setting TTLs” on
page 654.

address_class
Specifies the address class for this entry. The allowable values are described
below. This field is optional; the default is IN.

HS Specifies HESIOD class.

IN Specifies the TCP/IP-based Internet. You can also use the full name of
the address class, INTERNET.

record_type record_data
Specifies the type of record and associated data. The following record types
and record data are valid.

A IP_address
Indicates an address record which contains the dotted-decimal IP address
for the name identifying the record. This record provides forward mapping
(host name to IP address). For host systems with multiple addresses, use
one A record per address. The octets should not be coded with leading
zeros. For example, specify, 9.67.113.75 rather than 009.067.113.075.

AFSDB subtype server_host_name
Indicates an Andrew File System Data Base location. The AFSDB record
allows mapping from a domain name to the name of an AFS® cell database
server. This record contains the domain name of a host that has a server
for the cell name indicated in the name field of the resource record. The
subtype value indicates the Type of Service.

CNAME canonical_name
Indicates a canonical name record, which provides the alias or alternative
name for a host system. Enter the alias in the name field (for example,
elmer CNAME abc.xyz, where elmer is the alias and abc.xyz is the name of
the host system). When the name server searches for the alias, it finds the
CNAME record, substitutes the canonical name for the alias, and then
searches for the A record identified by the canonical name.

HINFO processor operating_system
Indicates a host information record, which specifies the names of the
processor type and operating system of a host system. Enclose names in
quotation marks (for example, mvs004 IN HINFO "3090" "z/OS"). The
HINFO record is typically used only for administrative purposes and is
accessed by tools that query the database, such as onslookup.

ISDN ISDN_address subaddress
Indicates the ISDN address of the owner, whose name is specified in the
name field, as well as any direct-dial-in number.

KEY flags protocol algorithm public_key
This record represents a public encryption key for a name in the DNS
database. This can be a key for a zone, a host, or a user. A KEY RR is
authenticated by a SIG RR. The flags field indicates the type of resource
record for which this KEY RR is provided. The protocol field indicates the
protocols (in addition to DDNS) that are to be secured for authentication by
this KEY RR. The algorithm field indicates what encryption algorithm should
be used with this key; in case of v4 IBM Dynamic IP, this field has a value
of 1, which means that the RSA/MD5 algorithm is being used. The
public_key field is the actual public key to be used for authentication. This

600 z/OS V1R4.0 CS: IP Configuration Reference

|

field is structured in a public exponent length field, the public key exponent
portion, and the public key modulus portion. See RFC 2065 for more details
on KEY RR formats.

MX preference exchanger
Indicates a mail exchanger record, which identifies a host capable of acting
as a mail exchanger for the domain specified in the name field. The MX
record type is followed by the mail preference, which is the priority number
used to rank the mail exchangers. Mailers attempt delivery first to the mail
exchangers with the lowest preference value. If delivery fails, the host with
the next highest value is tried. The highest possible preference value is 0,
the next highest preference value is 1, and so on. Hosts with identical
preference values are selected randomly. Create an MX record for every
host that receives mail.

NS name_server
Indicates a name server record, which contains the name of an authoritative
name server (primary or secondary) for the domain specified in the name
field. The NS record type is followed by the name of the name server.

NSAP record_length record_data
Indicates name-to-network service access points (NSAP) mapping. The
value in the record_length field is an unsigned 16-bit integer specifying the
number of octets in the record_data field. The data value is the encoded
binary value of the NSAP as it is formatted in the CLNP (Connectionless
Network Protocol) source or destination address field.

PTR host_name
Indicates a pointer record, which is used in reverse domain data files (the
in-addr.arpa domain). This record contains the host name referenced by an
IP address. The IP address is listed in reverse octet order, concatenated
with the in-addr.arpa string. For example, if a host named Host1 has an IP
address of 9.67.43.100, the address in the reverse domain data file is
100.43.67.9.in-addr.arpa. The representation of the address should not
contain leading zeros. In the previous example, you should not specify
100.043.067.009.in-addr.arpa.

PX preference RFC822_address X.400_address
Indicates a PX pointer to X.400/RFC822 mapping information.

RT preference intermediate_host_name target_host_name
Provides route-through binding for hosts that do not have their own direct
wide-area-network addresses. This record contains a route preference and
the names of the intermediate and target hosts.

RP mbox host_name
Indicates a responsible person record, which specifies the person or group
responsible for a particular zone or host system. Each host_name
parameter must have an associated TXT resource record.

SIG type_covered algorithm labels original_TTL signature_expiration
time_signed key_footprint signer’s_name signature

This record represents a digital signature that authenticates a set of
resource records in the database. The type_covered field indicates the type
of RR covered by this signature. The algorithm field indicates what
encryption algorithm should be used with this key; in case of IBM Dynamic
IP, this field has a value of 1, which means that the RSA/MD5 algorithm is
being used. The labels field indicates the number of labels (host and
domain name strings separated by dots) in the SIG owner name. The
original_TTL field is the original time to live for the signed resource record.

Chapter 15. BIND 4.9.3-based domain name system (DNS) 601

|
|
|

It is included to prevent caching name servers from decrementing this
value. It is protected by the signature, and it is different from the TTL of the
SIG record itself. The signature_expiration is the time at which the signature
becomes not valid. This value is represented in a number of seconds
starting from January 1, 1970, GMT (ignoring leap seconds). The
time_signed is the time when this signature has actually been signed,
represented in the same format as the signature_expiration. The
key_footprint field determines, depending on the applicable encryption
algorithm, how to decode the signature. The signer’s_name is the fully
qualified domain name of the signer generating this SIG RR. The signature
is the actual digital signature that authenticates a set of RRs of the type
indicated in the type_covered field. See RFC 2065 for more details on SIG
RR formats.

SOA authoritative_name_server resp_person (serial refresh retry expire
minimum)

Indicates the start of authority record, which specifies that the current name
server is authoritative for the zone. The SOA record also specifies values
that are used primarily by secondary name servers.

v authoritative_name_server is the name of the name server authoritative
for the zone.

v resp_person is the mail address of the individual or group responsible for
maintaining the zone data. This is the mail address to contact for
registering name servers for child zones of this zone in the Domain
Name System.

You can add or use parentheses to group the following parameters. See
“Special characters” on page 604.

v serial is the serial number of the domain database, which identifies the
current version of the data and which is referenced by secondary name
servers. Increment the number every time you change the file. One
possible notation is YYYYMMDD.

v refresh is the refresh interval, which indicates the length of time (in
seconds) a secondary server for this domain allows between transfers
from the primary name server.

v retry is the retry interval, which indicates the length of time (in seconds) a
secondary server for this domain should allow before retrying a failed
transfer.

v expire is the expiration time, which indicates the length of time a
secondary server should consider its data valid in the event it is not able
to contact the primary name server. If there is no contact with the primary
name server prior to the expiration time, the secondary server considers
its data stale, and no longer responds to queries for its domain.

v minimum is the default minimum time-to-live (ttl) value, which is attached
to all data given in response to a query or a secondary transfer and
which determines the length of time the data can be cached. This value
is only used to supply a default value if a resource record does not
provide a ttl.

Note: This field has a different meaning for the v9 name server. See
“Setting TTLs” on page 654 for information about the BIND 9
semantics.

SRV priority weight port target
Specifies the location of services (for example, ftp, http, telnet). This record

602 z/OS V1R4.0 CS: IP Configuration Reference

identifies one or more hosts capable of satisfying the service and protocol
represented in the name field of the resource record. The name field for
these resource records must follow a unique naming convention. The name
field is specified as Service.Protocol.Name. Service is the symbolic name
of the desired service, as defined in Assigned Numbers1 or locally. It is not
cas sensitive. Protocol is typically TCP or UDP, but can be any name
defined by Assigned Numbers or locally and is also not case sensitive.
Name is the domain this RR refers to. Priority is a number in the range of
0–65535 and represents the priority of this target host. A client must attempt
to contact the target host with the lowest-numbered priority. Target hosts
with the same priority should be tried in pseudo-random order. Weight is
used for a crude connection balancing mechanism. When selecting a target
host among those that have the same priority, the chance of trying this one
first should be proportional to its weight. The valid range is 0–65535. Port is
the port on this target host of this service. The valid range is 0–65535.
Target is the domain name of the target host. This name must be a
canonical name and not an alias. There must be one or more A records for
this name. A target of consisting of a dot (.) means that the service is not
available at this domain.

TXT text_data
Indicates a text string record, which contains descriptive text. The TXT
keyword is followed by any descriptive text enclosed in quotation marks.
The TXT record is typically used only by tools that query the database,
such as onslookup.

The TXT record is also used to specify a secure zone. A secure zone is
accessible only by certain networks or hosts. To implement secure zones,
you must configure the named daemon with a secure zone defined in at
least one TXT resource record.

The format for a secure zone TXT record is:

secure_zone {addr_class} TXT string

The syntax for the string is either host IP address:H, which allows queries
from the specified host or network address:netmask, which allows queries
from the specified network. (To use the default netmask for the network,
omit the netmask from the string.) Include the loopback address in the
secure zone record to enable name resolution by local clients.

Note: secure_zone, as stated here only applies to the name server and
does not refer to a DNSSEC secure zone of v9. In v9, the equivalent
function can be achieved with the allow-query{} option.

WKS address protocol (service_list)
Indicates a well-known services record, which describes the services
provided by a host on a protocol basis. Each defined TCP/IP service has a
unique protocol number; see RFC 1060 for more information. The WKS
keyword is followed by the IP address, a protocol number, and a list of the
services provided.

You can use parentheses with the WKS resource record. See “Special
characters” on page 604.

X25 PSDN_address
Indicates a public switched-data-network address for the name.

1. Assigned Numbers refers to RFC 1700, which contains names of the services and protocols.

Chapter 15. BIND 4.9.3-based domain name system (DNS) 603

Special characters
The following characters have special meanings:

@ Indicates the current domain (origin).

. Indicates the null (root) domain.

Note: You can also use a trailing dot (.) after any name in a file to prevent
the current origin from being appended. For example, if you enter
the host name elmer.raleigh.ibm.com, add a dot after com to
prevent the name server from reappending the origin.

\ When followed by any character other than a digit, denotes that the
character, rather than the character’s special meaning, is to be used. For
example, in a mail box specification, you can use a backslash followed by a
dot (\.) to place a dot in the local part of the name. The name server treats
the dot as a normal character and not as the end of the name.

() Specifies the grouping of data that spans lines. The ends of lines are not
recognized within parentheses.

Note: SOA and WKS resource records are the only resource records that
support parentheses.

; Specifies a comment, which can appear anywhere on a line. The remainder
of the line is ignored by the name server.

604 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 16. BIND 9-based domain name system (DNS)

As of V1R2 of z/OS CS, the name server and some name server utilities have two
modes of operation (BIND 4.9.3 and BIND 9, hereafter referred to as v4 and v9,
respectively). To use standards-based, DNS security extensions (RFC 2535), you
must start a name server instance in v9 mode. Then, make dynamic updates using
a v9 instance of nsupdate. This chapter addresses BIND 9-based DNS; see
Chapter 15, “BIND 4.9.3-based domain name system (DNS)” on page 593 for
information about BIND 4.9.3-based DNS. Other differences exist between v4 and
v9. For additional information, refer to z/OS Communications Server: IP Migration
and z/OS Communications Server: IP User’s Guide and Commands.

Note: Generally, v4 utilities should be used with v4 name server, and v9 utilities
should be used with v9 name server. However, v9 dig (recommended) and
v9 nslookup are able to query both v4 and v9 servers for any resource
record type.

Refer to z/OS Communications Server: IP Configuration Guide for configuration
information about each type of DNS.

v9 Name server cataloged procedure (NAMED9)
To start with an MVS cataloged procedure, refer to the z/OS Communications
Server: IP Configuration Guide.

© Copyright IBM Corp. 2000, 2002 605

|
|

Starting BIND 9-based DNS server from the UNIX shell
The v9 name server runs on name server hosts and controls the name resolution
function. The v9 name server daemon listens for name server requests generated
by resolver routines and other name servers.

The resolver configuration file tells the local kernel and resolver routines to use the
DOMAIN protocol. The resolver configuration file must exist and contain either the
local host’s address or the loopback address to use the v9 name server on the
domain name server host.

Starting in z/OS CS V1R2, the name server can be started in one of two modes:

v BIND 4.9.3-based DNS

v BIND 9-based DNS

Note: Name server mode selection depends on a combination of values, among
the following:

v -v start option

v Unique v4 or v9 start options

v DNS_VERSION environment variable

Use the following syntax to start BIND 9-based DNS server from the UNIX shell.

Syntax

�� named 1 −Option �

Usage notes

Option:

-d dl
-c
-f
-g
-n integer
-p port
-t
-uuserid

-V v4
v9

-v

-d dl
Specifies a debugging option and causes the v9 name server to write
debugging information to the file named.run in the named working directory or
to any logging channels with severity dynamic.

The debug level can be a value from 1-99, where 99 supplies the most
information.

606 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|

The location of debug information is controlled by the LOGGING statement in
named configuration file, where default or defined logging channels (HFS files)
can be specified. The default location is named.run in the server’s working
directory, previously defined as the directory specified on the DIRECTORY
statement in named.conf. If this statement is absent, the working directory is the
directory from which named was started.

-c If you do not specify the -c option, the v9 name server reads the default
configuration file /etc/named.conf.

Note: When starting named v9 with the -c option, provide an absolute path to
the configuration file. The reload process from SIGHUP signal or the
rndc tool generally does not find named v9 configuration file if a relative
path was used with -c at startup time. Reload fails because the relative
path is likely to be non-valid when applied to the current named working
directory at the time of the reload request.

The following shows a valid option (command issued from any path):
named -c /u/user2/named/named.config

The following shows a non-valid option (assuming command is issued
from /u/user2/named):
named -c ./named.config

-f Specifies to run named in the foreground. The default is named running in the
background.

-g Specifies to run named in the foreground and log to stderr.

-n integer
Specifies the number of CPUs available on this platform. If this parameter is not
specified, named attempts to determine the number of CPUs present and
creates one worker thread per CPU. If named cannot determine the number of
CPUs, two worker threads are created. The specified value overrides the
number determined dynamically.

The range is 1–35.

-p port
Specifies the port name the servers listens on. The range is 1–65535.

-t Specifies to issue chroot to the specified directory while running the v9 name
server. The directory specified should contain all the directories and files
necessary to run the v9 name server. The directories and files include the v9
name server configuration file, any zone files, the message catalog, the
directory specified in the name server configuration file options statement, the
pid file and /dev/null. The message catalog, ns9.cat, should be copied from
/usr/lib/nls/msg/C/ns9.cat to the -t directory specification as
/usr/lib/nls/msg/C/ns9.cat. Issue the z/OS UNIX mkdir command to make the
necessary directory structure under the -t directory specification. After reading
the configuration file, named will chroot() immediately to the directory. This
should be used in conjunction with the -u parameter, as chrooting a process
running as root does not enhance security on most systems. The method of
defining chroot() allows a process with root privileges to escape the chroot jail.

The default is to not issue chroot.

The exact implications of this option depend on the mode the name server is
running in.

Chapter 16. BIND 9-based domain name system (DNS) 607

|
|
|
|
|
|

When running in BIND 4.9.3 mode, -t option specifies the DNS/WLM refresh
interval. Refer to UNIX System Services Command Reference for more
information about the chroot command.

-u userid
Specifies the username or user ID the v9 name server changes to after it starts.

The default is to not change the username or user ID.

-V Different methods can be used to determine which version of the name server
is run. The following list describes how these different methods interact.

This option can be used to specify which version of the program to run. Valid
values are v4 and v9. Use v9 to start the server in BIND 9 mode.The following
can be used to determine which version of the program is run (V4 or V9):

v -V option

v DNS_VERSION environment variable

v Presence of valid start options for BIND 9 mode

v If the -V option is specified, this determines the version.

v If the -V option is not present and if a start option is present that is unique to
a given version, this determines the version.

v If -V is not present and no command options are present that are unique to a
given version, then the value of the DNS_VERSION environment variable is
used (V4 or V9).

v If none of the above, then the default is v4.

Note: Conflicts between versions can arise in certain situations. In the following
cases, the error is noted and the program fails to run.

v If -V specifies V4 and V9 unique options are present, or visa versa.

v If a combination of V4 and V9 options are present.

The setting of the DNS_VERSION environment variable does not cause
a conflict, as this is only used if the version cannot be determined
otherwise.

-v Displays the BIND version the name server is based upon and exits.

Modifying
Three v9 name server signals are available:

SIGHUP
Causes the server to read named configuration file and reload the
database.

SIGTERM
Cleans up and shuts down the v9 name server.

SIGINT
Cleans up and shuts down the v9 name server.

Issuing a signal also involves specifying the process ID. You can specify the file
pathname to contain the BIND 9 process ID through the pid-file option in named
configuration file. Default pathname is /var/run/named.pid.

In routine operation, signals should not be used to control the v9 name server. You
should use the rndc tool. If you send any signal other than SIGHUP, SIGINT, and
SIGTERM to the v9 name server, the outcome is undefined. See “RNDC
configuration file” on page 657 for more information about rndc.

608 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|

|

|

|

|

|
|

|
|
|

|

|
|

|

|

|
|
|

Examples
The following are named start and stop examples.

To start the v9 name server normally, enter the following from the z/OS UNIX shell:
named -V v9

To start the v9 name server from the MVS operators console, enter the following
command:
s named

where named is the name of your v9 name server start procedure.

Note: This assumes that -V v9 is set in MVS procedure or environment variable, or
a BIND 9-specific start option is specified in the start procedure.

To stop the v9 name server normally, enter the following command, or issue the
stop or cancel MVS command.:
kill -TERM process-id

process-id can be displayed through UNIX System Services ps -ef command or
can be automatically extracted from the named pid-file as follows:
kill -TERM $(cat pid-file-path)

Also, you can use the following for the two other signals:
kill -INT process-id

kill -HUP process-id

Chapter 16. BIND 9-based domain name system (DNS) 609

Configuration file concepts
Following is a list of elements used throughout the BIND 9 configuration file
documentation:

acl_name
The name of an address_match_list as defined by the acl statement.

address_match_list
A list of one or more ip_addr, ip_prefix, key_id, or acl_name elements. See
“Address match lists” on page 611.

domain_name
A quoted string which is used as a DNS name, for example my.test.domain.

dotted_decimal
One or more integers valued 0 through 255, separated only by periods (.), such
as 123.45.67 or 89.123.45.67.

ip4_addr
An IPv4 address with exactly four elements in dotted_decimal notation.

ip6_addr
An IPv6 address, such as fe80::200:f8ff:fe01:9742.

ip_addr
An ip4_addr or ip6_addr.

ip_port
An IP port number. number is limited to 0 through 65535, with values below
1024 typically restricted to root-owned processes. In some cases an asterisk (*)
character can be used as a placeholder to select a random high-numbered port.

ip_prefix
An IP network specified as an ip_addr, followed by a slash (/) and then the
number of bits in the netmask. Trailing zeros in an ip_addr can be omitted. For
example, 127/8 is the network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28
is network 1.2.3.0 with netmask 255.255.255.240.

key_id
A domain_name representing the name of a shared key, to be used for
transaction security.

key_list
A list of one or more key_ids, separated by semicolons and ending with a
semicolon.

number
A non-negative integer with an entire range limited by the range of a C
language signed integer (2 147 83 647 on a machine with 32 bit integers). Its
acceptable value might further be limited by the context in which it is used.

path_name
A quoted string that is used as a pathname, such as
zones/master/my.test.domain

size_spec
A number, the word unlimited, or the word default.

The maximum value of size_spec is that of unsigned long integers on the
machine. An unlimited size_spec requests unlimited use, or the maximum
available amount. A default size_spec uses the limit that was in force when the
server was started.

610 z/OS V1R4.0 CS: IP Configuration Reference

A number can optionally be followed by a scaling factor: K or k for kilobytes, M
or m for megabytes, and G or g for gigabytes, which scale by 1024, 1024*1024,
and 1024*1024*1024 respectively.

Integer storage overflow is currently silently ignored during conversion of scaled
values, resulting in values less than intended, possibly even negative. Using
unlimited is the best way to safely set a really large number.

yes_or_no
Either yes or no. The words true and false are also accepted, as are the
numbers 1 and 0.

dialup_option
One of yes, no, notify, notify-passive, refresh or passive. When used in a zone,
notify-passive, refresh, and passive are restricted to slave and stub zones.

Address match lists
Address match lists are primarily used to determine access control (thus, the
reference to acl) for various server operations. They are also used to define
priorities for querying other name servers and to set the addresses on which name
server listens for queries. The elements which constitute an address match list can
be any of the following:

v An IP address

v An IP prefix (in the ’/’-notation)

v A key ID, as defined by the key statement

v The name of an address match list previously defined with the acl statement

v A nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (!) and the match list
names any, none, localhost and localnets are predefined. More information on those
names can be found in the description of the acl statement.

The addition of the key clause made the name of this syntactic element something
of a misnomer, since security keys can be used to validate access without regard to
a host or network address. Nonetheless, the term address match list is still used
throughout the documentation.

When a given IP address or prefix is compared to an address match list, the list is
traversed in order until an element matches. The interpretation of a match depends
on whether the list is being used for access control, defining listen-on ports, or as a
topology, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a
negated match denies access. If there is no match, access is denied. The clauses
allow-notify, allow-query, allow-transfer, allow-update and blackhole all use address
match lists. Similarly, the listen-on option causes the server to not accept queries
on any of the machine’s addresses that do not match the list.

Because of the first-match aspect of the algorithm, an element that defines a subset
of another element in the list should come before the broader element, regardless
of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13; the 1.2.3.13
element is completely useless because the algorithm matches any lookup for
1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by
having 1.2.3.13 blocked by the negation, but all other 1.2.3.* hosts fall through.

Address match list syntax

Chapter 16. BIND 9-based domain name system (DNS) 611

address_match_list = address_match_list_element ;
[address_match_list_element; ...]

address_match_list_element = [!] (ip_address [/length] |
key key_id | acl_name | { address_match_list })

Comment syntax
The BIND 9 comment syntax allows for comments to appear anywhere that white
space might appear in a BIND configuration file. For example, C, C++, or shell/perl
constructs.

C-style comments start with the two characters /* (slash, asterisk) and end with */
(asterisk, slash). Because they are completely delimited with these characters, they
can be used to comment only a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid
because the entire comment ends with the first */:
/* This is the start of a comment.

This is still part of the comment.
/* This is an incorrect attempt at nesting a comment. */

This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to
the end of the physical line. They cannot be continued across multiple physical
lines; to have one logical comment span multiple lines, each line must use the //
pair.

For example:
// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style comments start with the character # and continue to the end of the
physical line, as in C++ comments.

For example:
This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

Note: Do not use the semicolon (;) character to start a comment as you would in a
zone file. The semicolon indicates the end of a configuration statement.

Configuration file statements
A BIND 9 configuration consists of statements and comments. Statements end with
a semicolon (;) . Statements and comments are the only elements that can appear
without enclosing braces ([]). Many statements contain a block of substatements,
which are also terminated with a semicolon.

The following statements are supported:

acl
Defines a named IP address matching list for access control, and other uses.

controls
Declares control channels to be used by the rndc utility.

612 z/OS V1R4.0 CS: IP Configuration Reference

include
Includes a file.

key
Specifies key information for use in authentication and authorization using
TSIG.

logging
Specifies what the server logs, and where the log messages are sent.

options
Controls global server configuration options and sets defaults for other
statements.

server
Sets certain configuration options on a per-server basis.

trusted-keys
Defines trusted DNSSEC keys.

view
Defines a view.

zone
Defines a zone.

Note: The logging and options statements can only occur once per configuration.

Chapter 16. BIND 9-based domain name system (DNS) 613

acl statement
Use the acl statement to define a named IP address matching list for access
control, and other uses.

The acl statement assigns a symbolic name to an address match list. It gets its
name from a primary use of address match lists: Access Control Lists (ACLs).

Syntax
acl acl-name {

address_match_list
};

Any
Matches all hosts.

None
Matches no hosts.

Localhost
Matches the IP addresses of all interfaces on the system.

Localnets
Matches any host on a network for which the system has an interface.

Examples
acl "mynets" { 9.37/16; 9.34.65.205; };

acl "mynets" {
9.37/16; 9.34.65.205;
};

Usage notes
v An address match list’s name must be defined with acl before it can be used

elsewhere; no forward references are allowed.

v localhost and localnets are only meaningful for IPv4 addresses.

614 z/OS V1R4.0 CS: IP Configuration Reference

|

controls statement
The controls statement declares control channels to be used by system
administrators to affect the operation of the local name server. These control
channels are used by the rndc utility to send commands to and retrieve non-DNS
results from a name server.

Syntax
controls {

inet (ip_addr | *| ::) [port ip_port] allow address_match_list
keys key_list ;

[inet ...;]
};

Parameters
inet

An inet control channel is a TCP/IP socket accessible to the Internet, created at
the specified ip_port on the specified ip_addr.

ip_addr
Specifies the IP address. This can be an IPv4 or IPv6 address.

* Indicates the wildcard IPv4 address. A control channel will be opened on all
available IPv4 interfaces.

Note: If the match-mapped-addresses option is specified as yes, this will also
effectively open a control channel on all available IPv4 interfaces as well.

:: Indicates the IPv6 unspecified address. A control channel is opened on all
available IPv6 interfaces.

port
Specifies the port.

allow
Determines the ability to issue commands over the control channel.
Connections to the control channel are permitted based on the address
permissions in address_match_list.

address_match_list
Determines address permissions. key_id members of the address_match_list
are ignored, and instead are interpreted independently based on the key_list.
Each key_id in the key_list is allowed to be used to authenticate commands
and responses given over the control channel by digitally signing each message
between the server and a command client. All commands to the control channel
must be signed by one of its specified keys to be honored.

keys
Determines the ability to issue commands over the control channel.

Usage notes
v Any keys referenced in the controls{} statement must be defined prior to their

usage.

v The keys clause is not strictly required. If it is not present, then the file rndc.key
will be used to supply the key to the name server for the control channel
configured on the controls statement. The rndc client may also use this same
/etc/rndc.key file if the client exists on the same host as the name server.

Chapter 16. BIND 9-based domain name system (DNS) 615

|
|
|
|
|

|

|

|
|

|
|

||
|

|
|
|
|

v The controls statement is not strictly required. If it is not present, a default control
channel will be created to listen on the loopback address 127.0.0.1 and its IPv6
counterpart ::1. In this case the /etc/rndc.key file will be used to supply the key
that is required to use rndc with the name server. The rndc client may also use
this same /etc/rndc.key file if the client exists on the same host as the name
server. The /etc/rndc.key file may be created by using the rndc-confgen -a
command.

v This feature does not have a high degree of configurability. You cannot easily
change the key name or the size of the secret, so you should make an rndc.conf
with your own key if you want to change those things. The rndc.key file also has
its permissions set such that only the owner of the file (the user that named is
running as) can access it. If you want greater flexibility in allowing other users to
access rndc commands, you need to create an rndc.conf, and make it group
readable by a group that contains the users who should have access.

616 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|

|
|
|
|
|
|
|

include statement
The include statement inserts the specified file at the point that the include
statement is encountered.

Syntax
include pathname;

Parameters

include
The include statement facilitates the administration of configuration files by
permitting the reading or writing of some things but not others. For example, the
statement could include private keys that are readable only by a name server.

pathname
Specifies the path name.

Chapter 16. BIND 9-based domain name system (DNS) 617

key statement
The key statement defines a shared secret key for use with TSIG.

Syntax
key key_id {

algorithm string;
secret string;

};

Parameters

key
Defines a key.

key_id
The key_id, also known as the key name, is a name uniquely identifying the
key. It can be used in a server statement to cause requests sent to that server
to be signed with this key, or in address match lists to verify that incoming
requests have been signed with a key matching this name, algorithm, and
secret.

algorithm string
A string that specifies a security/authentication algorithm. The only algorithm
currently supported with TSIG authentication is hmac-md5.

secret string
The secret to be used by the algorithm and is treated as a base-64 encoded
string.

Examples
key rndckey {
algorithm hmac-md5;
secret "9+I+HEOVHyzRl98dnBFsIg==";
};

Usage notes
Keys for TSIG support can be generated with dnssec-keygen. dnssec-keygen may
also create keys for DNSSEC. Note that keys used for TSIG and keys used for
DNSSEC are not related, as the functions themselves can be used independently.

618 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

logging statement
The logging statement configures a wide variety of logging options for the name
server.

Syntax
logging {

[channel channel_name {
(file path name

[versions (number | unlimited)]
[size size spec]

| syslog syslog_facility
| stderr
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]
[print-threadid yes or no;]

};]
[category category_name {

channel_name ; [channel_name ; ...]
};]
...

};

Parameters

logging
Configures logging options.

channel channel_name
Associates output methods, format options and severity levels with a name that
can then be used with the category phrase to select how various classes of
messages are logged.

All log output goes to one or more channels; you can make as many of them as
you want.

Every channel definition must include a destination clause that says whether
messages selected for the channel go to a file, to a particular syslog facility, to
the standard error stream, or are discarded. It can optionally also limit the
message severity level that is accepted by the channel (the default is info), and
whether to include a named-generated time stamp, the category name, severity
level, or the process thread ID (the default is to include all).

file path name
Directs the channel to a disk file. It can include limitations both on how large the
file is allowed to become, and how many versions of the file will be saved each
time the file is opened.

versions
Causes named to retain the specified number of backup versions of the file by
renaming them when opening. For example, if you choose to keep 3 old
versions of the file lamers.log then just before it is opened lamers.log.1 is
renamed to lamers.log.2, lamers.log.0 is renamed to lamers.log.1, and
lamers.log is renamed to lamers.log.0. No rolled versions are kept by default;
any existing log file is simply appended. The unlimited keyword is synonymous
with 99.

Chapter 16. BIND 9-based domain name system (DNS) 619

|
|
|

size
The size option for files is used to limit log growth. If the file ever exceeds the
size, then named stops writing to the file unless it has a versions option
associated with it. If backup versions are kept, the files are rolled as described
above and a new one begun. If there is no versions option, no more data is
written to the log until some out-of-band mechanism removes or truncates the
log to less than the maximum size. The default behavior is not to limit the size
of the file. If the HFS becomes full, logging is halted and a message is issued
to the MVS console.

syslog
Directs the channel to the system log. Its argument is a syslog facility as
described in “Facility names” on page 672. How syslog handles messages sent
to this facility is described in “Configuration statements” on page 672. If you
have a system that uses an older version of syslog that only uses two
arguments to the openlog() function, then this clause is silently ignored.

stderr
Directs the channel to the server’s standard error stream. This is intended for
use when the server is running as a foreground process, for example when
debugging a configuration.

The server can supply extensive debugging information when it is in debugging
mode. If the server’s global debug level is greater than 0, then debugging mode
is active. The global debug level is set either by starting the named server with
the -d flag followed by a positive integer, or by running rndc trace.

The global debug level can be set to 0, and debugging mode turned off, by
running rndc notrace. All debugging messages in the server have a debug level,
and higher debug levels give more detailed output. The following example
shows a channel that specifies a specific debug severity:
channel "specific_debug_level" {

file "foo";
severity debug 3;

};

This causes debugging output of level 3 or less any time the server is in
debugging mode, regardless of the global debugging level. Channels with
dynamic severity use the server’s global level to determine what messages to
print.

null
Causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaningless.

severity
Works like syslog’s priorities, except that they can also be used if you are
writing directly to a file rather than using syslog. Messages which are not at
least of the severity level given are not selected for the channel; messages of
higher severity levels are accepted. If the severity is debug and the debug level
is omitted, the default is 1.

The default_debug channel has the special property that it only produces output
when the server’s debug level is nonzero. It normally writes to a file named.run
in the server’s working directory. For security reasons, when the -u command
line option is used, the named.run file is created only after named has changed
to the new UID, and any debug output generated while named is starting up
and still running as root is discarded. If you need to capture this output, you
must run the server with the -g option and redirect standard error to a file.

620 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

print-category
Logs the category of the message. The default is yes.

print-severity
Logs the severity level of the message. The default is yes.

print-time
Logs the date and time. This can be specified for a syslog channel, but is
usually unnecessary because syslog also prints the date and time. The default
is yes.

print-threadid
Logs the thread identifier (pthread handle) of the thread the message was
issued from. The default is yes.

category
Selects how various classes of messages are logged. Use with channel name.

Because many categories exist, you can send the logs you want to see
wherever you want and avoid seeing logs you do not want. If you do not specify
a list of channels for a category, then log messages in that category are sent to
the default category instead. If you do not specify a default category, the
following default default is used:
category "default" { "default_syslog"; "default_debug"; };

Table 24 lists the available categories and gives brief descriptions of the type of
log information they contain.

Table 24. Logging statement categories

Category Description

default The default category defines the logging options for those
categories where no specific configuration has been defined.

dnssec Specifies DNSSEC (Secure DNS) validation.

general Many items are not classified into categories, and they are
placed in this category.

database Messages relating to the databases used internally by the v9
name server to store zone and cache data.

security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups performed on
behalf of clients by a caching v9 name server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

notify The NOTIFY protocol.

client Processing of client requests.

unmatched Messages that named was unable to determine the class of or
for which there was no matching view. A one line summary is
also logged to the client category. This category is best sent
to a file or stderr; by default it is sent to the null channel.

network Network operations.

update Dynamic updates.

queries Queries.

Chapter 16. BIND 9-based domain name system (DNS) 621

|

|

|
|
|

|
|
|

||
|
|
|

Table 24. Logging statement categories (continued)

Category Description

dispatch Dispatching of incoming packets to the server modules where
they are to be processed.

lame-servers Lame servers. These are misconfigurations in remote servers,
discovered by BIND 9 when trying to query those servers
during resolution.

Examples
Example usage of the size and versions options:
channel "an_example_channel" {

file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

};

Here is an example of a message where all four print parameters are specified:
Nov 19 17:58:14.422 config: error: 0a92d7a0:

EZZ9719I /u/user1/named.conf:34: missing ’;’ before ’}’

If there is no logging statement, the logging configuration is as follows:
logging {

category "default" { "default_syslog"; "default_debug"; };
};

There are four predefined channels that are used for named’s default logging as
follows.
channel "default_syslog" {

syslog daemon;
// only send to syslog’s daemon

// facility
severity info;

// only send priority info
// and higher

};
channel "default_debug" {

file "named.run";
// write to named.run in
// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.
severity dynamic;

// log at the server’s
// current debug level

};
channel "default_stderr" {

// writes to stderr
stderr;
severity info;

// only send priority info
// and higher

};
channel "null" {

null;
// toss anything sent to

// this channel
};

622 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

To log security events to a file, and keep the default logging behavior, specify the
following:
channel "my_security_channel" {

file "my_security_file";
severity info;

};
category "security" {

"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:
category "xfer-out" { "null"; };
category "notify" { "null"; };

Usage notes
v Only one logging statement is used to define as many channels and categories

as are wanted.

v In BIND 9, the logging configuration is only established when the entire
configuration file has been parsed. When the server is starting up, all logging
messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the -g option was specified.

v If you are using syslog, then the syslog.conf priorities also determine what
eventually passes through. For example, defining a channel facility and severity
as daemon and debug, but only logging daemon.warning by way of syslog.conf
causes messages of severity info and notice to be dropped. If the situation were
reversed, with named writing messages of only warning or higher, then syslogd
would print all messages it received from the channel.

v The print parameters can be used in any combination and are always be printed
in the following order:

– Time

– Category

– Severity

– Threadid

v After a channel is defined, it cannot be redefined. Thus, you cannot alter the
built-in channels directly, but you can modify the default logging by pointing
categories at channels you have defined.

Chapter 16. BIND 9-based domain name system (DNS) 623

|

|

options statement
Use the options statement to set up global options to be used by BIND. This
statement can appear only once in a configuration file. If more than one occurrence
is found, the first occurrence determines the actual options used, and a warning is
generated. If there is no options statement, an options block with each option set to
its default is used.

Syntax
options {

[version version_string;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]
[dump-file path_name;]
[pid-file path_name;]
[statistics-file path_name;]
[zone-statistics yes_or_no;]
[auth-nxdomain yes_or_no;]
[dialup dialup_option;]
[notify yes_or_no | explicit;]
[recursion yes_or_no;]
[forward (only | first);]
[forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[allow-notify { address_match_list };]
[allow-query { address_match_list };]
[allow-transfer { address_match_list };]
[allow-recursion { address_match_list };]
[allow-v6-synthesis { address_match_list };]
[blackhole { address_match_list };]
[listen-on [port ip_port] { address_match_list };]
[listen-on-v6 [port ip_port] { any; | none; };]
[query-source [address (ip_addr | *)] [port (ip_port | *)];]
[query-source-v6 [address (ip_addr | *)] [port (ip_port | *)];]
[max-transfer-time-in number;]
[max-transfer-time-out number;]
[max-transfer-idle-in number;]
[max-transfer-idle-out number;]
[tcp-clients number;]
[recursive-clients number;]
[serial-query-rate number;]
[transfer-format (one-answer | many-answers);]
[transfers-in number;]
[transfers-out number;]
[transfers-per-ns number;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[provide-ixfr yes_or_no;]
[request-ixfr yes_or_no;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[coresize size_spec ;]
[datasize size_spec ;]
[files size_spec ;]
[stacksize size_spec ;]
[cleaning-interval number;]
[heartbeat-interval number;]
[interface-interval number;]
[sortlist [{ address_match_list }];]
[lame-ttl number;]
[max-ncache-ttl number;]
[max-cache-ttl number;]
[sig-validity-interval number ;]
[min-refresh-time number ;]
[max-refresh-time number ;]

624 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[min-retry-time number ;]
[max-retry-time number ;]
[port ip_port;]
[additional-from-auth yes_or_no ;]
[additional-from-cache yes_or_no ;]
[random-device path_name ;]
[max-cache-size size_spec ;]
[max-buffered-messages number;]
[minimal-responses yes_or_no;]
[match-mapped-addresses yes_or_no;]

};

Parameters
version

The version the server should report by way of a query of name version.bind in
class chaos. The default is the real version number of this server.

directory
The working directory of the server. Any non-absolute pathnames in the
configuration file are taken as relative to this directory. The default location for
most server output files (for example, named.run) is this directory. If a directory
is not specified, the working directory defaults to ., the directory from which the
server was started. The directory specified should be an absolute path.

tkey-domain
The domain appended to the names of all shared keys generated with TKEY.
When a client requests a TKEY exchange, it might or might not specify the
desired name for the key. If present, the name of the shared key is
client-specified paort + tkey-domain. Otherwise, the name of the shared key is
random hexdigits + tkey-domain. In most cases, the domainname should be the
server’s domain name.

tkey-dhkey
The Diffie-Hellman key used by the server to generate shared keys with clients
using the Diffie-Hellman mode of TKEY. The server must be able to load the
public and private keys from files in the working directory. In most cases, the
keyname should be the server’s host name.

dump-file
The pathname of the file the server dumps the database to when instructed to
do so with rndc dumpdb. If not specified, the default is named_dump.db.

pid-file
The pathname of the file the server writes its process ID in. If not specified, the
default is /var/run/named.pid . The pid-file is used by programs that want to
send signals to the running name server.

statistics-file
The pathname of the file the server appends statistics to when instructed to do
so using rndc stats. If not specified, the default is named.stats in the server’s
current directory.

port
The UDP/TCP port number the server uses for receiving and sending DNS
protocol traffic. The default is 53. This option is mainly intended for server
testing; a server using a port other than 53 will not be able to communicate with
the global DNS. The port option should be placed at the beginning of the
options block, before any other options that take port numbers or IP addresses,
to ensure that the port value takes effect for all addresses used by the server.

Chapter 16. BIND 9-based domain name system (DNS) 625

|
|
|
|
|
|
|
|
|
|
|
|

|

random-device
The source of entropy (true random data) to be used by the server. Entropy is
primarily needed for DNSSEC operations, such as TKEY transactions and
dynamic update of signed zones. This options specifies the device (or file) from
which to read entropy. If this is a file, operations requiring entropy fail when the
file has been exhausted. If not specified, the default value is /dev/random (or
equivalent) when present, and none otherwise. The random-device option takes
effect during the initial configuration load at server startup time and is ignored
on subsequent reloads.

Boolean Options

auth-nxdomain
If yes, then the AA bit is always set on NXDOMAIN responses, even if the
server is not actually authoritative. The default is no.

Note: If your installation is using old DNS software, you might need to set it to
yes.

dialup
The dialup option can also be specified in the view and zone statements, in
which case it overrides the global dialup option. If the zone is a master zone
then the server will send out a NOTIFY request to all the slaves. This will
trigger the zone serial number check in the slave (providing it supports NOTIFY)
allowing the slave to verify the zone while the connection is active. If the zone
is a slave or stub zone, then the server will suppress the regular zone up to
date (refresh) queries and only perform them when the heartbeat-interval
expires in addition to sending NOTIFY requests. Finer control can be achieved
by using one of the following:

v Notify, which only sends NOTIFY messages

v Notify-passive, which sends NOTIFY messages and suppresses the normal
refresh queries

v Refresh, which suppresses normal refresh processing and sends refresh
queries when the heartbeat-interval expires

v Passive, which just disables normal refresh processing

minimal-responses
If yes, then when generating responses the server only adds records to the
authority and additional data sections when they are required (for example,
delegations or negative responses). This might improve the performance of the
server. The default is no.

notify

If yes (the default), DNS NOTIFY messages are sent when a zone the server is
authoritative for changes. The messages are sent to the servers listed in the
zone’s NS records (except the master server identified in the SOA MNAME
field), and to any servers listed in the also-notify option.

If explicit, notifies are sent only to servers explicitly listed using also-notify. If
specified as no, notifies are not sent.The notify option can also be specified in
the zone statement, in which case it overrides the options notify statement. It
would only be necessary to turn off this option if it caused slaves to crash.

recursion
If yes, and a DNS query requests recursion, then the server will attempt to do

626 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|

all the work required to answer the query. If recursion is off and the server does
not already know the answer, it will return a referral response. The default is
yes.

Note: Setting recursion no does not prevent clients from getting data from the
server’s cache; it only prevents new data from being cached as an effect
of client queries. Caching might still occur as an effect of the server’s
internal operation, such as NOTIFY address lookups.

zone-statistics
If yes, the server will, by default, collect statistical data on all zones in the
server. These statistics can be accessed using rndc stats, which will dump them
to the file listed in the statistics-file.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time
These options control the server’s behavior on refreshing a zone (querying for
SOA changes) or retrying failed transfers. Usually the SOA values for the zone
are used, but these values are set by the master, giving slave server
administrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh
and retry time either per-zone, per-view, or per-server. These options are valid
for master, slave and stub zones, and clamp the SOA refresh and retry times to
the specified values.

additional-from-auth, additional-from-cache
These options control the server’s behavior when answering queries which have
additional data, or when following CNAME and DNAME chains to provide
additional data.

When both of these options are set to yes (the default) and a query is being
answered from authoritative data (a zone configured into the server), the
additional data section of the reply will be filled in using data from other
authoritative zones and from the cache. In some situations this is undesirable,
such as when there is concern over the correctness of the cache, or in servers
where slave zones can be added and modified by untrusted third parties. Also,
avoiding the search for this additional data will speed up server operations at
the possible expense of additional queries to resolve what would otherwise be
provided in the additional section.

For example, if a query asks for an MX record for host foo.example.com, and
the record found is MX 10 mail.example.net, normally the address records (A,
A6, and AAAA) for mail.example.net will be provided as well, if known. These
options disable this behavior.

match-mapped-addresses
If yes, then an IPv4-mapped IPv6 address matches any address match list
entries that match the corresponding IPv4 address for TCP connections. UDP is
not affected by this option. Enabling this option is especially useful if the
wildcard IPv6 address (::) is specified on the inet clause of the controls
statement in named.conf. Specifying yes is the only way to have a wildcard
address match all IPv4 and IPv6 addresses. This option can also apply to any
function that uses TCP connections, including zone transfers. The default is no.

Forwarding

The forwarding facility can be used to create a large site-wide cache on a few
servers, reducing traffic over links to external name servers. It can also be used to
allow queries by servers that do not have direct access to the Internet, but wish to

Chapter 16. BIND 9-based domain name system (DNS) 627

|
|
|
|
|
|
|
|

look up exterior names anyway. Forwarding occurs only on those queries for which
the server is not authoritative and does not have the answer in its cache.

Forwarding can also be configured on a per-domain basis, allowing for the global
forwarding options to be overridden in a variety of ways. You can set particular
domains to use different forwarders, or have a different forward only/first behavior,
or not forward at all.

forward
This option is only meaningful if the forwarders list is not empty. A value of first,
the default, causes the server to query the forwarders first, and if that does not
answer the question the server will then look for the answer itself. If only is
specified, the server will only query the forwarders.

forwarders
Specifies the IP addresses to be used for forwarding. The default is the empty
list (no forwarding). Either IPv4 or IPv6 addresses can be specified.

Tuning options

lame-ttl
Sets the number of seconds to cache a lame server indication. A value of 0
disables caching. (This is not recommended.) The default is 600 (10 minutes),
and the maximum value is 1800 (30 minutes).

max-ncache-ttl
To reduce network traffic and increase performance the server stores negative
answers. max-ncache-ttl is used to set a maximum retention time for these
answers in the server in seconds. The default max-ncache-ttl is 10800 seconds
(3 hours). max-ncache-ttl cannot exceed 7 days and will be silently truncated to
7 days if set to a greater value.

max-cache-ttl
max-cache-ttl sets the maximum time for which the server will cache ordinary
(positive) answers. The default is one week (7 days).

sig-validity-interval
Specifies the number of days into the future when DNSSEC signatures
automatically generated as a result of dynamic updates will expire. The default
is 30 days. The signature inception time is unconditionally set to one hour
before the current time to allow for a limited amount of clock skew.

Access control

Access to the server can be restricted based on the IP address of the requesting
system.

allow-notify
Specifies which hosts are allowed to notify slaves of a zone change in addition
to the zone masters. This parameter can also be specified in the zone
statement, in which case it overrides the options allow-notify statement. It is
only meaningful for a slave zone. If not specified, the default is to process notify
messages only from a zone’s master. This can include IPv4 and IPv6
addresses.

allow-query
Specifies which hosts are allowed to ask ordinary questions. This parameter
can also be specified in the zone statement. In that case, it overrides the
options allow-query statement. If it is not specified, the default is to allow
queries from all hosts. This can include IPv4 and IPv6 addresses.

628 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|

allow-recursion
Specifies which hosts are allowed to make recursive queries through this
server. If not specified, the default is to allow recursive queries from all hosts.
Note that disallowing recursive queries for a host does not prevent the host
from retrieving data that is already in the server’s cache. This can include IPv4
and IPv6 addresses.

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server.
This parameter can also be specified in the zone statement, in which case it
overrides the options allow-transfer statement. If not specified, the default is to
allow transfers from all hosts. This can include IPv4 and IPv6 addresses.

allow-v6-synthesis
Specifies which hosts are to receive synthetic responses to IPv6 queries.
Because this option takes an address match list, you can specify

v IP addresses individually

v Use one or more IP prefixes

v Use a key ID

v Use one or more previously defined address match lists

v Use the built-in address match lists

The built-in address match lists include the names, any, none, localhost, and
localnets. For unrestricted use of this option, use the any built-in address match
list. For more information about synthetic responses, refer to z/OS
Communications Server: IP Configuration Guide.

blackhole
Specifies a list of addresses that the server will not accept queries from or use
to resolve a query. Queries from these addresses will not be responded to. The
default is none.

Interfaces

Listen-on

The interfaces and ports that the server will answer queries from can be specified
using the listen-on option. The listen-on parameter takes an optional port and an
address_match_list. The server will listen on all interfaces allowed by the address
match list. If a port is not specified, port 53 is used.

Multiple listen-on statements are allowed. For example:
listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

This enables the name server on port 53 for the IP address 5.6.7.8, and on port
1234 of an address on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all interfaces.

Listen-on-v6

The listen-on-v6 option is used to specify the ports on which the server listens for
incoming queries sent using IPv6.

Chapter 16. BIND 9-based domain name system (DNS) 629

|
|

|

|
|
|

|

|

|

|

|

|
|
|
|

|
|

The server does not bind a separate socket to each IPv6 interface address as it
does for IPv4. Instead, it always listens on the IPv6 wildcard address. Therefore,
the only values allowed for the address_match_list argument to the listen-on-v6
statement are:
{ any; }

and
{ none;}

Multiple listen-on-v6 options can be used to listen on multiple ports:
listen-on-v6 port 53 { any; };
listen-on-v6 port 1234 { any; };

To make the server not listen on any IPv6 address, use:
listen-on-v6 { none; };

If no listen-on-v6 statement is specified, the server does not listen on any IPv6
address.

Query address

query-source query-source-v6

If the server does not know the answer to a question, it will query other name
servers. Use this parameter to specify the address and port used for such queries.
For queries sent over IPv6, there is a separate query-source-v6 option. If address is
* or is omitted, a wildcard IP address (INADDR_ANY) will be used. If port is * or is
omitted, a random unprivileged port will be used. The defaults are:
query-source address * port *;
query-source-v6 address * port *

Note: Currently, query-source applies only to UDP queries; TCP queries always
use a wildcard IP address and a random unprivileged port.

Zone transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the
amount of load that transfers place on the system. The following options apply to
zone transfers.

provide-ixfr
Determines whether the local server, acting as master, will respond with an
incremental zone transfer when the given remote server, a slave, requests it. If
set to yes, incremental transfer will be provided whenever possible. If set to no,
all transfers to the remote server will be nonincremental. If not set, the value of
the provide-ixfr option in the global options block is used as a default.

request-ixfr
Determines whether the local server, acting as a slave, will request incremental
zone transfers from the given remote server, a master. If not set, the value of
the request-ixfr option in the global options block is used as a default.

also-notify
Defines a global list of IP addresses of v9 name servers that are also sent
NOTIFY messages whenever a fresh copy of the zone is loaded, in addition to
the servers listed in the zone’s NS records. This helps to ensure that copies of
the zones will quickly converge on stealth servers. If an also-notify list is given

630 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|

|

|

|
|

|

|

|
|

|

|

|
|

|

in a zone statement, it will override the options also-notify statement. When a
zone notify statement is set to no, the IP addresses in the global also-notify list
will not be sent NOTIFY messages for that zone. The default is the empty list
(no global notification list). This can include IPv4 and IPv6 addresses.

max-transfer-time-in
Inbound zone transfers running longer than this many minutes will be
terminated. The default is 120 minutes (2 hours).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes will be
terminated. The default is 60 minutes (1 hour).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes will be
terminated. The default is 120 minutes (2 hours).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes will be
terminated. The default is 60 minutes (1 hour).

serial-query-rate
Slave servers periodically query master servers to determine whether zone
serial numbers have changed. Each such query uses a small amount of the
slave server’s network bandwidth. To limit the amount of bandwith used, BIND 9
limits the rate at which queries are sent. The value of the serial-query-rate
option, an integer, is the maximum number of queries sent per second. The
default is 20.

transfer-format
The server supports two zone transfer methods. The one-answer parameter
uses one DNS message per resource record transferred. To pack as many
resource records as possible into a message, specify many-answers. Although
many-answers is more efficient, it is only known to be understood by BIND 9
and patched versions of BIND 4.9.5. The default is many-answers.
transfer-format can be overridden on a per-server basis by using the server
statement.

transfers-in
The maximum number of inbound zone transfers that can be running
concurrently. The default value is 10. Increasing transfers-in might speed the
convergence of slave zones, but it also can increase the load on the local
system.

transfers-out
The maximum number of outbound zone transfers that can be running
concurrently. Zone transfer requests in excess of the limit will be refused. The
default value is 10.

transfers-per-ns
The maximum number of inbound zone transfers that can be concurrently
transferring from a given remote name server. The default value is 2. Increasing
transfers-per-ns might speed the convergence of slave zones, but it also can
increase the load on the remote name server. This parameter can be
overridden on a per-server basis by using the transfers phrase of the server
statement.

transfer-source
Determines which local address will be bound to TCP connections used to fetch
zones transferred inbound by the server. It also determines the source IP
address, and optionally the UDP port, used for the refresh queries and

Chapter 16. BIND 9-based domain name system (DNS) 631

|

|
|
|
|
|
|
|

forwarded dynamic updates. If not set, it defaults to a system controlled value
which will usually be the address of the interface closest to the remote end.
This address must appear in the remote end’s allow-transfer option for the zone
being transferred, if one is specified. This statement sets the transfer-source for
all zones, but can be overridden on a per-view or per-zone basis by including a
transfer-source statement within the view or zone block in the configuration file.

transfer-source-v6
The same as transfer-source, except zone transfers are performed using IPv6.

notify-source
This parameter determines which local source address, and optionally UDP
port, will be used to send NOTIFY messages. This address must appear in the
slave server’s masters zone clause or in an allow-notify clause. This statement
sets the notify-source for all zones, but can be overridden on a per-zone or
per-view basis by including a notify-source statement within the zone or view
block in the configuration file.

notify-source-v6
Like notify-source, but applies to notify messages sent to IPv6 addresses.

recursive-clients
The maximum number of simultaneous recursive lookups the server will perform
on behalf of clients. The default is 1000.

tcp-clients
The maximum number of simultaneous client TCP connections that the server
will accept. The default is 100.

Periodic task intervals

cleaning-interval
The server will remove expired resource records from the cache every
cleaning-interval minutes. The default is 60 minutes. If set to 0, no periodic
cleaning will occur.

heartbeat-interval
The server will perform zone maintenance tasks for all zones marked as dialup
whenever this interval expires. The default is 60 minutes. Reasonable values
are up to 1 day (1440 minutes). If set to 0, no zone maintenance for these
zones will occur.

interface-interval
The server will scan the network interface list every interface-interval minutes.
The default is 1 minute. If set to 0, interface scanning will only occur when the
configuration file is loaded. After the scan, listeners will be started on any new
interfaces (provided they are allowed by the listen-on configuration). Listeners
on interfaces that have gone away will be cleaned up.

Operating system resource limits

The server usage of many system resources can be limited. Scaled values are
allowed when specifying resource limits. For example, 1G can be used instead of
1 073 741 824 to specify a limit of 1 GB. Unlimited requests unlimited use or the
maximum available amount. Default uses the limit that was in force when the
server was started.

The following options set operating system resource limits for the name server
process. A warning is issued if the specified value is not allowed.

632 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|

|

|
|
|
|
|

|
|

coresize
The maximum size of a dump of memory (in bytes) allowed for the process. A
value of 0 prevents file creation. Dump file creation stops at this limit. The
default is default. This option can be used to lower the value of
MAXCORESIZE set in BPXPRMxx.

datasize
The maximum amount of data memory the server can use. The default is
default. This option is not useful in limiting the amount of memory that the
name server can use. The only valid values are default and unlimited, and
they both result in the same value. If unlimited is specified, the name server
will not request the operating system to limit its amount of resources and the
issuing of message EZZ9573I can be avoided. The operating system does not
currently allow this resource to be limited by the application. If you want to limit
the amount of memory used by the server, use the max-cache-size and
recursive-clients options instead.

files
The maximum number of files the server can have open concurrently. The
default is the minimum of MAXFILEPROC in BPXPRMxx and FD_SETSIZE,
which is a constant value of 2048. If you specify unlimited, the value becomes
2048.

stacksize
The maximum amount of stack memory the server can use. The default is
default. This option is not useful in limiting the amount of memory that the
name server can use. The only valid values are default and unlimited, and they
both result in the same value. If unlimited is specified, the name server will not
attempt to limit its amount of resources and the issuing of message EZZ9573I
can be avoided. The operating system does not currently allow this resource to
be limited by the application.

Chapter 16. BIND 9-based domain name system (DNS) 633

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

sortlist statement
Resource Records (RRs) are the data associated with the names in a domain name
space. The data is maintained in the form of sets of RRs. The order of RRs in a set
is, by default, not significant. Therefore, to control the sorting of records in a set of
resource records, or RRset, you must use the sortlist statement. For more
information about resource records, see “Resource records” on page 599.

Specifications for RRs are documented in RFC 1035.

When returning multiple RRs the name server will normally return them in Round
Robin order, that is, after each request the first RR is put at the end of the list. The
client resolver code should rearrange the RRs as appropriate, that is, using any
addresses on the local net in preference to other addresses. However, not all
resolvers can do this or are correctly configured. When a client is using a local
server the sorting can be performed in the server, based on the client’s address.
This only requires configuring the name servers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it
very specifically. Each top level statement in the sortlist must itself be an explicit
address_match_list with one or two elements. The first element (which can be an IP
address, an IP prefix, an ACL name or a nested address_match_list) of each top
level list is checked against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement
contains only one element, the actual primitive element that matched the source
address is used to select the address in the response to move to the beginning of
the response. If the statement is a list of two elements, then the second element is
treated the same as the address_match_list in a topology statement. Each top level
element is assigned a distance and the address in the response with the minimum
distance is moved to the beginning of the response.

Examples
In the following example, any queries received from any of the addresses of the
host itself will get responses preferring addresses on any of the locally connected
networks. Next most preferred are addresses on the 192.168.1/24 network, and
after that either the 192.168.2/24 or 192.168.3/24 network with no preference
shown between these two networks. Queries received from a host on the
192.168.1/24 network will prefer other addresses on that network to the
192.168.2/24 and 192.168.3/24 networks. Queries received from a host on the
192.168.4/24 or the 192.168.5/24 network will only prefer other addresses on their
directly connected networks.
sortlist {

{ localhost; // IF the local host
{ localnets; // THEN first fit on the

192.168.1/24; // following nets
{ 192.168.2/24; 192.168.3/24; }; }; };

{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3

{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2

{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };

{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1 or .2

634 z/OS V1R4.0 CS: IP Configuration Reference

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
};

};

The following example will give reasonable behavior for the local host and hosts on
directly connected networks. It is similar to the behavior of the address sort in BIND
4.9.x. Responses sent to queries from the local host will favor any of the directly
connected networks. Responses sent to queries from any other hosts on a directly
connected network will prefer addresses on that same network. Responses to other
queries will not be sorted.
sortlist {

{ localhost; localnets; };
{ localnets; };

};

Note: localhost and localnets do not apply to IPv6 addresses. Also, addresses
returned from A6 records cannot be sorted.

Chapter 16. BIND 9-based domain name system (DNS) 635

|
|

server statement
The server statement defines the characteristics to be associated with a remote
name server.

Syntax
server ip_addr {

[bogus yes_or_no ;]
[provide-ixfr yes_or_no ;]
[request-ixfr yes_or_no ;]
[edns yes_or_no ;]
[transfers number ;]
[transfer-format (one-answer | many-answers) ;]]
[keys { string ; [string ; [...]] } ;]

};

Parameters
bogus

If you discover that a remote server is giving out bad data, marking it as bogus
will prevent further queries to it. The default value of bogus is no.

provide-ixfr
Determines whether the local server, acting as master, will respond with an
incremental zone transfer when the given remote server, a slave, requests it. If
set to yes, incremental transfer will be provided whenever possible. If set to no,
all transfers to the remote server will be nonincremental. If not set, the value of
the provide-ixfr option in the global options block is used as a default.

request-ixfr
Determines whether the local server, acting as a slave, will request incremental
zone transfers from the given remote server, a master. If not set, the value of
the request-ixfr option in the global options block is used as a default.

edns
The edns clause determines whether the local server will attempt to use EDNS
when communicating with the remote server. The default is yes.

transfer
Limits the number of concurrent inbound zone transfers from the specified
server. If no transfers clause is specified, the limit is set according to the
transfers-per-ns option.

transfer-format
The server supports two zone transfer methods. The first, one-answer, uses
one DNS message per resource record transferred. To pack as many resource
records as possible into a message, use many-answers. Although
many-answers is more efficient, it is only known to be understood by BIND 9
and patched versions of BIND 4.9.5. You can specify which method to use for a
server with the transfer-format option. If transfer-format is not specified, the
transfer-format specified by the options statement will be used.

keys
Identifies a key_id defined by the key statement, to be used for transaction
security when talking to the remote server. The key statement must come
before the server statement that references it. When a request is sent to the
remote server, a request signature will be generated using the key specified
here and appended to the message. A request originating from the remote
server is not required to be signed by this key.

636 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

Although the syntax of the keys clause allows for multiple keys, only a single
key per server is currently supported.

Examples
server 9.37.20.208 {
tranfer-format one-answer;
request-ixfr no;
provide-ixfr no;
keys { example-key; };
};

Usage notes
IXFR requests that servers that do not support IXFR will automatically fall back to
AXFR. Therefore, there is no need to manually list which servers support IXFR and
which ones do not; the global default of yes should always work. The purpose of
the provide-ixfr and request-ixfr clauses is to make it possible to disable the use of
IXFR even when both master and slave claim to support it, for example if one of the
servers is buggy and crashes or corrupts data when IXFR is used.

Chapter 16. BIND 9-based domain name system (DNS) 637

trusted-keys statement
The trusted-keys statement defines DNSSEC security roots. A security root is
defined when the public key for a non-authoritative zone is known, but cannot be
securely obtained through DNS, either because it is the DNS root zone or its parent
zone is unsigned. Once a key has been configured as a trusted key, it is treated as
if it had been validated and proven secure. The resolver attempts DNSSEC
validation on all DNS data in subdomains of a security root.

Syntax
trusted-keys {

string number number number string ;
[string number number number string ; [...]]

};

The parameters for the trusted-keys statement are composed of the public key
resource records of the zones you choose to trust. In the following example, the
domain administrator of the raleigh.ibm.com domain sent the KEY resource record
representing the public key to the raleigh.ibm.com domain.
raleigh.ibm.com. IN KEY 256 3 1
AQOrngUMGRIDzTvoDya0noXM4WxVjuo5pKPuUFav6UylNFBfplh5w7jP
eVrfAhWZNp1Uqo4qM+qwSxpJL1V2IwIwCq6iHVH8z793gPmM64fmG7su
OJJBaAyN084mfODVgnU=

In order to convert this into a proper trusted-keys statement, remove the class (IN in
the example) and the word KEY from the resource record and place quotation
marks around the secret.

Examples
trusted-keys {

raleigh.ibm.com. 256 3 1 "AQOrngUMGRIDzTvoDya0noXM4WxVjuo5pKPuUFav6UylNFBfplh5w7jP
eVrfAhWZNp1Uqo4qM+qwSxpJL1V2IwIwCq6iHVH8z793gPmM64fmG7su OJJBaAyN084mfODVgnU=";
};

Usage notes
The trusted-keys statement can contain multiple key entries, each consisting of the
key’s domain name, flags, protocol, algorithm, and the base-64 representation of
the key data.

638 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|
|

|
|
|

view statement
The view statement is a powerful feature of BIND 9 that lets a v9 name server
answer a DNS query differently depending on who is asking. It is particularly useful
for implementing split DNS setups without having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a
subset of clients. A client matches a view if its source IP address matches the
address_match_list of the view’s match-clients clause and its destination IP address
matches the address_match_list of the view’s match-destinations clause. If not
specified, both match-clients and match-destinations default to matching all
addresses. A view can also be specified as match-recursive-only, which means that
only recursive requests from matching clients will match that view. The order of the
view statements is significant; a client request will be resolved in the context of the
first view that it matches.

Syntax
view view_name [class] {

match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only { yes_or_no } ;
[view_option; ...]
[key ...]
[server ...]
[trusted-keys ...]
[zone_statement; ...]

};

View_option can be any in the following list.

Note: This list does not include the view options already listed above.
[allow-notify { address_match_element; ... };]
[allow-recursion { address_match_element; ... };]
[allow-v6-synthesis { address_match_element; ... };]
[sortlist { address_match_element; ... };]
[auth-nxdomain boolean;]
[minimal-responses boolean;]
[recursion boolean;]
[provide-ixfr boolean;]
[request-ixfr boolean;]
[additional-from-auth boolean;
[additional-from-cache boolean;]
[query-source querysource4;]
[query-source-v6 querysource6;]
[notify-source (ipv4_address | *) [port (integer | *)];]
[notify-source-v6 (ipv6_address | *) [port (integer | *)];]
[cleaning-interval integer;
[lame-ttl integer;]
[max-ncache-ttl integer;
[max-cache-ttl integer;]
[transfer-format (many-answers | one-answer);]
[max-cache-size size_spec;]
[cache-file quoted_string;]
[allow-query { address_match_element; ... };]
[allow-transfer { address_match_element; ... };]
[allow-update-forwarding { address_match_element; ... };]
[notify notifytype;]
[also-notify [port integer] { (ipv4_address | ipv6_address) [port integer]; ... };]
[dialup dialuptype;]
[forward (first | only);]
[forwarders [port integer] { (ipv4_address | ipv6_address) [port integer]; ... };]
[transfer-source (ipv4_address | *) [port (integer | *)];]
[transfer-source-v6 (ipv6_address | *) [port (integer | *)];]
[max-transfer-time-in integer;]
[max-transfer-time-out integer;]
[max-transfer-idle-in integer;]
[max-transfer-idle-out integer;]
[max-retry-time integer;]

Chapter 16. BIND 9-based domain name system (DNS) 639

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[min-retry-time integer;]
[max-refresh-time integer;]
[min-refresh-time integer;]
[sig-validity-interval integer;]
[zone-statistics boolean;]

View-specific options

For descriptions of the view options, see options statement on page 624.

match-clients
This view is applied to the client’s request if the client’s source IP address is a
member of the specified address_match_list, provided no previous view
statements have already matched, and no other match * statements on this
view prevent the request from matching this view. The default is to match all
client IP addresses.

match-destinations
This view is applied to the client’s request if the destination IP address of the
request is a member of the specified address_match_list, provided no previous
view statements have already matched, and no other match * statements on
this view prevent the request from matching this view. The default is to match
all destination IP addresses.

match-recursive-only
If yes, this view is applied to the client’s request if the request is recursive,
provided no previous view statements have already matched, and no other
match * statements on this view prevent the request from matching this view.
The default is no. Most resolvers typically send recursive queries. Most name
servers typically send non-recursive queries.

Examples
Here is an example of a typical split DNS setup implemented using view
statements.
view "internal" {

// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal clients only.
recursion yes;

// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;
// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

640 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Usage notes
v Zones defined within a view statement will be only be accessible to clients that

match the view. By defining a zone of the same name in multiple views, different
zone data can be given to different clients, for example, internal and external
clients in a split DNS setup.

v Many of the options given in the options statement can also be used within a
view statement, and then apply only when resolving queries with that view. When
no view-specific value is given, the value in the options statement is used as a
default. Also, zone options can have default values specified in the view
statement; these view-specific defaults take precedence over those in the options
statement.

v Views are class specific. If no class is given, class IN is assumed. Note that all
non-IN views must contain a hint zone, since only the IN class has compiled-in
default hints.

v If there are no view statements in the configuration file, a default view that
matches any client is automatically created in class IN, and any zone statements
specified on the top level of the configuration file are considered to be part of this
default view. If any explicit view statements are present, all server and zone
statements must occur inside view statements.

Chapter 16. BIND 9-based domain name system (DNS) 641

|
|

zone statement

Syntax
zone zone_name [class] [{

type (master | slave | hint | stub | forward) ;
[allow-notify { address_match_list } ;]
[allow-query { address_match_list } ;]
[allow-transfer { address_match_list } ;]
[allow-update { address_match_list } ;]
[update-policy { update_policy_rule [...] } ;]
[allow-update-forwarding { address_match_list } ;]
[also-notify { ip_addr [port ip_port] ;
[ip_addr [port ip_port] ; ...] };]
[dialup dialup_option ;]
[file string ;]
[forward (only|first) ;]
[forwarders { ip_addr [port ip_port]
[ip_addr [port ip_port] ; ...] };]
[masters [port ip_port] { ip_addr [port ip_port] [key key]; [...] } ;]
[max-transfer-idle-in number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-in number ;]
[max-transfer-time-out number ;]
[notify yes_or_no | explicit ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[sig-validity-interval number ;]
[zone-statistics yes_or_no ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]}];

Parameters
master

The server has a master copy of the data for the zone and will be able to
provide authoritative answers for it.

slave
A slave zone is a replica of a master zone. The masters list specifies one or
more IP addresses of master servers that the slave contacts to update its copy
of the zone. By default, transfers are made from port 53 on the servers; this can
be changed for all servers by specifying a port number before the list of IP
addresses, or on a per-server basis after the IP address. Authentication to the
master can also be done with per-server TSIG keys. If a file is specified, then
the replica will be written to this file whenever the zone is changed, and
reloaded from this file on a server restart. Use of a file is recommended, since it
often speeds server startup and eliminates a needless waste of bandwidth.
Note that for large numbers (in the tens or hundreds of thousands) of zones per
server, it is best to use a two level naming scheme for zone file names. For
example, a slave server for the zone example.com might place the zone
contents into a file called ex/example.com where ex/ is just the first two letters
of the zone name. (Most operating systems behave very slowly if you put 100K
files into a single directory.)

stub
A stub zone is similar to a slave zone, except that it replicates only the NS

642 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

records of a master zone instead of the entire zone. Stub zones are not a
standard part of the DNS; they are a feature specific to the BIND
implementation.

Stub zones can be used to eliminate the need for glue NS record in a parent
zone at the expense of maintaining a stub zone entry and a set of v9 name
server addresses in named.conf. This usage is not recommended for new
configurations, and BIND 9 supports it only in a limited way. In BIND 4, zone
transfers of a parent zone included the NS records from stub children of that
zone. This meant that, in some cases, users could get away with configuring
child stubs only in the master server for the parent zone. BIND 9 never mixes
together zone data from different zones in this way. Therefore, if a BIND 9
master serving a parent zone has child stub zones configured, all the slave
servers for the parent zone also need to have the same child stub zones
configured.

Stub zones can also be used as a way of forcing the resolution of a given
domain to use a particular set of authoritative servers. For example, the caching
v9 name servers on a private network using RFC 2157 addressing can be
configured with stub zones for 10.in-addr.arpa to use a set of internal name
servers as the authoritative servers for that domain.

forward
A forward zone is a way to configure forwarding on a per-domain basis. A zone
statement of type forward can contain a forward or forwarders statement, which
will apply to queries within the domain given by the zone name. If no forwarders
statement is present or an empty list for forwarders is given, then no forwarding
will be done for the domain, cancelling the effects of any forwarders in the
options statement. Thus if you want to use this type of zone to change the
behavior of the global forward option (that is, forward first to, then forward only,
or vice versa, but want to use the same servers as set globally) you need to
respecify the global forwarders.

hint
The initial set of root name servers is specified using a hint zone. When the
server starts up, it uses the root hints to find a root name server and get the
most recent list of root name servers. If no hint zone is specified for class IN,
the server uses a compiled-in default set of root servers hints. Classes other
than IN have no built-in defaults hints.

Class

In general, class can now be omitted from a zone’s definition. It is now inherited for
the enclosing view, or if there is no explicit view, from the default view which is IN
(for Internet).

The hesiod class is named for an information service from MIT’s Project Athena. It
is used to share information about various systems databases, such as users,
groups, printers and so on. The keyword HS is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s.
Zone data for it can be specified with the CHAOS class. The keyword CH is a
synonym for CHAOS.

Zone Options

allow-notify
Specifies which hosts are allowed to notify slaves of a zone change in addition

Chapter 16. BIND 9-based domain name system (DNS) 643

to the zone masters. The allow-notify parameter can also be specified in the
zone statement, in which case it overrides the options allow-notify statement. It
is only meaningful for a slave zone. If not specified, the default is to process
notify messages only from a zone’s master.

allow-query
Specifies which hosts are allowed to ask ordinary questions. allow-query can
also be specified in the zone statement, in which case it overrides the options
allow-query statement. If not specified, the default is to allow queries from all
hosts.

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server.
This parameter can also be specified in the zone statement, in which case it
overrides the options allow-transfer statement. If not specified, the default is to
allow transfers from all hosts.

allow-update
Specifies which hosts are allowed to submit Dynamic DNS updates for master
zones. The default is to deny updates from all hosts.

update-policy
Specifies a Simple Secure Update policy.

allow-update-forwarding
Specifies which hosts are allowed to submit Dynamic DNS updates to slave
zones to be forwarded to the master. The default is { none; }, which means that
no update forwarding will be performed. To enable update forwarding, specify
allow-update-forwarding { any; };. Specifying values other than { none; } or {
any; } is usually counterproductive, since the responsibility for update access
control should rest with the master server, not the slaves.

Note: If the update forwarding feature is enabled on a slave server, it might
expose master servers (relying on insecure IP address based access
control) to attacks; see “Dynamic update policies” on page 649 for more
details.

also-notify
Only meaningful if notify is active for this zone. The set of machines that will
receive a DNS NOTIFY message for this zone is made up of all the listed name
servers (other than the primary master) for the zone plus any IP addresses
specified with also-notify. A port can be specified with each also-notify address
to send the notify messages to a port other than the default of 53. also-notify is
not meaningful for stub zones. The default is the empty list.

dialup
If yes, then the server treats all zones as if they are doing zone transfers across
a dial on demand dialup link, which can be brought up by traffic originating from
this server. This has different effects according to zone type and concentrates
the zone maintenance so that it all happens in a short interval, once every
heartbeat-interval and hopefully during the one call. It also suppresses some of
the normal zone maintenance traffic. The default is no.

The dialup option can also be specified in the view and zone statements, in
which case it overrides the global dialup option.

If the zone is a master zone then the server will send out a NOTIFY request to
all the slaves. This will trigger the zone serial number check in the slave
(providing it supports NOTIFY) allowing the slave to verify the zone while the
connection is active.

644 z/OS V1R4.0 CS: IP Configuration Reference

If the zone is a slave or stub zone, then the server will suppress the regular
zone up to date (refresh) queries and only perform them when the
heartbeat-interval expires in addition to sending NOTIFY requests.

Finer control can be achieved by using

v Notify, which only sends NOTIFY messages

v Notify-passive, which sends NOTIFY messages and suppresses the normal
refresh queries

v Refresh, which suppresses normal refresh processing and send refresh
queries when the heartbeat-interval expires

v Passive which just disables normal refresh processing

file
File which specifies the pathname of the zone data file for this zone. If only a
filename is specified, the working directory (specified by the directory option
under the options{} statement) will be searched.

forward
Only meaningful if the zone has a forwarders list. The only value causes the
lookup to fail after trying the forwarders and getting no answer, while first would
allow a normal lookup to be tried.

forwarders
Used to override the list of global forwarders. If it is not specified in a zone of
type forward, no forwarding is done for the zone; the global options are not
used.

masters
Specifies the IP address list of name server or servers that slave name servers
contact to update their copy of the zone. The optional key can be used to
override the per server key used for TSIG authentication (specified on the
server statement). This may be useful in situations where the secondary server
retrieves multiple zones from a single primary server, and you want to use
different TSIG keys for authorization of each zone.

max-transfer-time-in
Inbound zone transfers running longer than this many minutes will be
terminated. The default is 120 minutes (2 hours).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes will be
terminated. The default is 60 minutes (1 hour).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes will be
terminated. The default is 120 minutes (2 hours).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes will be
terminated. The default is 60 minutes (1 hour).

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time
These options control the server’s behavior on refreshing a zone (querying for
SOA changes) or retrying failed transfers. Usually the SOA values for the zone
are used, but these values are set by the master, giving slave server
administrators little control over their contents.

Chapter 16. BIND 9-based domain name system (DNS) 645

|
|
|
|

|
|
|
|
|

These options allow the administrator to set a minimum and maximum refresh
and retry time either per-zone, per-view, or per-server. These options are valid
for master, slave and stub zones, and clamp the SOA refresh and retry times to
the specified values.

notify
If yes (the default), DNS NOTIFY messages are sent when changes occur for a
zone the server is authoritative for. The messages are sent to the servers listed
in the zone’s NS records (except the master server identified in the SOA
MNAME field), and to any servers listed in the also-notify option.

If explicit, notifies are sent only to servers explicitly listed using also-notify. If no
is specified, notifies are not sent.

When the notify option is specified in the zone statement, it overrides the
options notify statement. It would only be necessary to turn off this option if it
caused slaves to crash.

notify-source
notify-source determines which local IPv4 source address, and optionally UDP
port, will be used to send NOTIFY messages. This address must appear in the
slave server’s masters zone clause or in an allow-notify clause. This statement
sets the notify-source for all zones, but can be overridden on a per-zone or
per-view basis by including a notify-source statement within the zone or view
block in the configuration file.

notify-source-v6
notify-source-v6 determines which local IPv6 source address, and optionally
UDP port, will be used to send NOTIFY messages. This address must appear
in the slave server’s masters zone clause or in an allow-notify clause. This
statement sets the notify-source-v6 for all zones, but can be overridden on a
per-zone or per-view basis by including a notify-source statement within the
zone or view block in the configuration file.

sig-validity-interval
Specifies the number of days into the future when DNSSEC signatures
automatically generated as a result of dynamic updates will expire. The default
is 30 days. The signature inception time is unconditionally set to one hour
before the current time to allow for a limited amount of clock skew.

transfer-source
Determines which local address will be bound to IPv4 TCP connections used to
fetch zones transferred inbound by the server. It also determines the source
IPv4 address, and optionally the UDP port, used for the refresh queries and
forwarded dynamic updates. If not set, it defaults to a system controlled value
which will usually be the address of the interface closest to the remote end.
This address must appear in the remote end’s allow-transfer option for the zone
being transferred, if one is specified. This statement sets the transfer-source for
all zones, but can be overridden on a per-view or per-zone basis by including a
transfer-source statement within the view or zone block in the configuration file.

transfer-source-v6
Determines which local address will be bound to IPv6 TCP connections used to
fetch zones transferred inbound by the server. It also determines the source
IPv6 address, and optionally the UDP port, used for the refresh queries and
forwarded dynamic updates. If not set, it defaults to a system controlled value
which will usually be the address of the interface closest to the remote end.
This address must appear in the remote end’s allow-transfer option for the zone
being transferred, if one is specified. This statement sets the transfer-source-v6

646 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

for all zones, but can be overridden on a per-view or per-zone basis by
including a transfer-source statement within the view or zone block in the
configuration file.

zone-statistics
If yes, the server will keep statistical information for this zone, which can be
dumped to the statistics-file defined in the server options.

Table 25 lists the named.conf options and corresponding valid types. For more
information, refer to z/OS Communications Server: IP Migration.

Table 25. named.conf options and valid zone types

Option Valid zone types

Master Slave Hint Stub Forward

allow-query x x x

allow-transfer x x x

notify x x

also-notify x x

dialup x x x

forward x x x x

forwarders x x x x

maintain-ixfr-
base

x x

max-ixfr-log-
size

x x

transfer-
source

x x x

transfer-
source-v6

x x x

max-transfer-
time-in

x x

max-transfer-
time-out

x x

max-transfer-
idle-in

x x

max-transfer-
idle-out

x x

max-retry-
time

x x

min-retry-time x x

max-refresh-
time

x x

min-refresh-
time

x x

sig-validity-
interval

x

zone-statistics x x x

allow-update x

Chapter 16. BIND 9-based domain name system (DNS) 647

|
|
|

|
|

||

||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

||||||

|
|
|||||

|
|
|||||

|
|
|||||

||||||

||||||

Table 25. named.conf options and valid zone types (continued)

allow-update-
forwarding

x

file x x x x

ixfr-base x x

ixfr-tmp-file x x x

masters x x

pubkey x x x

update-policy x

Examples
For sample files, refer to z/OS Communications Server: IP Configuration Guide.

648 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|||||

||||||

||||||

||||||

||||||

||||||

||||||
|

Dynamic update policies
BIND 9 supports two alternative methods of granting clients the right to perform
dynamic updates to a zone, configured by the allow-update and update-policy
option, respectively.

The allow-update clause grants given clients the permission to update any record of
any name in the zone.

The update-policy clause in BIND 9 allows more fine-grained control over what
updates are allowed. A set of rules is specified, where each rule either grants or
denies permissions for one or more names to be updated by one or more identities.
If the dynamic update request message is signed (that is, it includes either a TSIG
or SIG(0) record), the identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only meaningful for
master zones. When the update-policy statement is present, it is a configuration
error for the allow-update statement to be present. The update-policy statement
only examines the signer of a message; the source address is not relevant.

This is how a rule definition looks:
(grant | deny) identity nametype name [types]

Each rule grants or denies privileges. Once a message has successfully matched a
rule, the operation is immediately granted or denied and no further rules are
examined. A rule is matched when the signer matches the identity field, the name
matches the name field, and the type is specified in the type field.

The identity field specifies a name or a wildcard name. Table 26 lists the nametype
field values.

Table 26. Nametype field values

Value Description

name Matches when the updated name is the
same as the name in the name field.

subdomain Matches when the updated name is a
subdomain of the name in the name field
(which includes the name itself).

wildcard Matches when the updated name is a valid
expansion of the wildcard name in the name
field.

self Matches when the updated name is the
same as the message signer. The name field
is ignored.

Note: If no types are specified, the rule matches all types except SIG, NS, SOA,
and NXT. Types can be specified by name, including ANY (ANY matches all
types except NXT, which can never be updated).

The following example shows possible nametype field values:
update-policy {
grant example-key subdomain raleigh.ibm.com. ANY;
deny another-key name ns1.raleigh.ibm.com. A;
grant another-key wildcard *.raleigh.ibm.com.;
};

Chapter 16. BIND 9-based domain name system (DNS) 649

Zone file
The following sections explain the Zone file.

Types of resource records and when to use them
This section, largely borrowed from RFC 1034, describes the concept of a resource
record (RR) and explains when each is used. Since the publication of RFC 1034,
several new RRs have been identified and implemented in the DNS. These are also
included.

Resource records (RRs)
A domain name identifies a node. Each node has a set of resource information,
which might be empty. The set of resource information associated with a particular
name is composed of separate RRs. The order of RRs in a set is not significant
and need not be preserved by name servers, resolvers, or other parts of the DNS.
However, sorting of multiple RRs is permitted for optimization purposes, for
example, to specify that a particular nearby server be tried first.

Table 27 shows the components of a Resource Record.

Table 27. Resource record components

Owner Name Domain name of the RR location

type An encoded 16–bit value that specifies the
type of the resource in this resource record.
Types refer to abstract resources.

TTL The time to live of the RR. This field is a
32–bit integer in units of seconds, and is
primarily used by resolvers when they cache
RRs. The TTL describes how long a RR can
be cached before it should be discarded.

class An encoded 16–bit value that identifies a
protocol family or instance of a protocol.

RDATA The type and sometimes class-dependent
data that describes the resource.

Notes:

1. A6, AAAA and DNAME RRs, and experimental RRs (LOC, ISDN, and so on) are not
valid for v4.

2. $TTL directive is v9 only, which means the end TTL of the SOA statement has a
different meaning in v4 and v9.

3. $GENERATE directive is v9 only.

Table 28 shows types of valid RRs. (Some of these listed, although not obsolete,
are experimental (x) or historical (h) and no longer in general use.)

Table 28. Valid RRs

A A host address

A6 An experimental form of an IPv6 address

AAAA Format of an IPv6 address

AFSDB (x) location of AFS database servers.
Experimental.

CNAME Identifies the canonical name of an alias.

650 z/OS V1R4.0 CS: IP Configuration Reference

|

||

Table 28. Valid RRs (continued)

DNAME For delegation of reverse addresses.
Replaces the domain name specified with
another name to be looked up. Described in
RFC 2672. This resource record is
experimental.

HINFO Identifies the CPU and OS used by a host.

ISDN (x) representation of ISDN addresses.
Experimental.

KEY Stores a public key associated with a DNS
name.

LOC (x) for storing GPS info. See RFC 1876.
Experimental.

MX Identifies a mail exchange for the domain.
See RFC 974 for details.

NS The authoritative name server for the
domain.

NXT Used in DNSSEC to securely indicate that
RRs with an owner name in a certain name
interval do not exist in a zone and indicate
what RR types are present for an existing
name. See RFC 2535 for details.

PTR A pointer to another part of the domain name
space.

RP (x) information on persons responsible for
the domain. Experimental.

RT (x) route-through binding for hosts that do
not have their own direct wide area network
addresses. Experimental.

SIG (signature) contains data authenticated in the
secure DNS. See RFC 2535 for details.

SOA Identifies the start of a zone of authority.

SRV Information about well-known network
services (replaces WKS).

WKS (h) information about which well known
network services, such as SMTP, that a
domain supports. Historical, replaced by
newer RR SRV.

X25 (x) representation of X.25 network
addresses. Experimental.

The following classes of resource records are currently valid in the DNS:

IN The Internet system.

RDATA is the type-dependent or class-dependent data that describes the resource:

Table 29. RDATA as describing a resource

A For the IN class, a 32-bit IP address.

AAAA AAAA maps a domain name to a 128-bit
IPv6 address.

Chapter 16. BIND 9-based domain name system (DNS) 651

||
|
|
|
|

||
|

Table 29. RDATA as describing a resource (continued)

A6 A6 maps a domain name to an IPv6
address, with a provision for indirection for
leading prefix bits. This resource record type
is experimental.

CNAME A domain name.

DNAME Provides alternate naming to an entire
subtree of the domain name space, rather
than to a single node. It causes some suffix
of a queried name to be substituted with a
name from the DNAME record’s RDATA.
This resource record type is experimental.

MX A 16–bit preference value (lower is better)
followed by a host name willing to act as a
mail exchange for the owner domain.

NS A fully qualified domain name.

PTR A fully qualified domain name.

SOA Several fields.

The owner name is often implicit, rather than forming an integral part of the RR. For
example, many name servers internally form tree or hash structures for the name
space, and chain RRs off nodes. The remaining RR parts are the fixed header
(type, class, TTL) which is consistent for all RRs, and a variable part (RDATA) that
fits the needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a
cache. This limit does not apply to authoritative data in zones; it is also timed out,
but by the refreshing policies for the zone. The TTL is assigned by the administrator
for the zone where the data originates. While short TTLs can be used to minimize
caching, and a zero TTL prohibits caching, the realities of Internet performance
suggest that these times should be on the order of days for the typical host. If a
change can be anticipated, the TTL can be reduced prior to the change to minimize
inconsistency during the change, and then increased back to its former value
following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings
and domain names. The domain names are frequently used as pointers to other
data in the DNS.

Textual expression of RRs
RRs are represented in binary form in the packets of the DNS protocol, and are
usually represented in highly encoded form when stored in a name server or
resolver. In the examples provided in RFC 1034, a style similar to that used in
master files was employed in order to show the contents of RRs. In this format,
most RRs are shown on a single line, although continuation lines are possible using
parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then
the owner is assumed to be the same as that of the previous RR. Blank lines are
often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use
the mnemonics defined above, and TTL is an integer before the type field. In order
to avoid ambiguity in parsing, type and class mnemonics are disjoint, TTLs are

652 z/OS V1R4.0 CS: IP Configuration Reference

||
|
|
|

||
|
|
|
|
|

integers, and the type mnemonic is always last. The IN class and TTL values are
often omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the
typical representation for the data.

For example, we might show the RRs carried in a message as:

Table 30. RRs as a message

ISI.EDU. MX 10 VENERA.ISI.EDU.

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16-bit number followed by
a domain name. The address RRs use a standard IP address format to contain a
32-bit Internet address.

This example shows six RRs, with two RRs at each of three domain names.

For example:

Table 31. RR example

XX.LCS.MIT.EDU. IN A 10.0.0.44

CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

MX records
As described in previous sections, domain servers store information as a series of
resource records, each of which contains a particular piece of information about a
given domain name (which is usually, but not always, a host). The simplest way to
think of an RR is as a typed pair of datum, a domain name matched with relevant
data, and stored with some additional type information to help systems determine
when the RR is relevant.

MX records are used to control delivery of e-mail. The data specified in the record
is a priority and a domain name. The priority controls the order in which email
delivery is attempted, with the lowest number first. If two priorities are the same, a
server is chosen randomly. If no servers at a given priority are responding, the mail
transport agent will fall back to the next largest priority. Priority numbers do not
have any absolute meaning; they are relevant only respective to other MX records
for that domain name. The domain name given is the machine to which the mail will
be delivered. It must have an associated A record. CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX
record is in error, and will be ignored. Instead, the mail will be delivered to the
server specified in the MX record pointed to by the CNAME.

Chapter 16. BIND 9-based domain name system (DNS) 653

||

||||

||||
|

Table 32. MX records

example.com IN MX 10 mail.example.com.

IN MX 10 mail2.example.com.

IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1

mail2.example.com. IN A 10.0.0.2

For example, mail delivery will be attempted to mail.example.com and
mail2.example.com (in any order), and if neither of those succeed, delivery to
mail.backup.org will be attempted.

Setting TTLs
The time to live of the RR field is a 32–bit integer represented in units of seconds,
and is primarily used by resolvers when they cache RRs. The TTL describes how
long a RR can be cached before it should be discarded. The following three types
of TTL are currently used in a zone file.

Table 33. TTL types used in a zone file

SOA The last field in the SOA is the negative caching TTL. This controls how
long other servers will cache no-such-domain (NXDOMAIN) responses
from an authoritative server for this zone.

The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a
default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field, which will control how
long other servers can cache the RR.

All of these TTLs default to units of seconds, though units can be explicitly
specified, for example, 1H30M for 1 hour 30 minutes.

Inverse mapping
Reverse name resolution (that is, translation from IP address to name) for IPv4 is
achieved by means of the in-addr.arpa domain and PTR records. Entries in the
in-addr.arpa domain are made in least-to-most significant order, read left to right.
This is the opposite order to the way IP addresses are usually written. Thus, a
machine with an IP address of 10.1.2.3 would have a corresponding in-addr.arpa
name of 3.2.1.10.in-addr.arpa. This name should have a PTR resource record
whose data field is the name of the machine or, optionally, multiple PTR records if
the machine has more than one name. For example, in the [example.com] domain:

Table 34. PTR records

$ORIGIN 2.1.10.in-addr.arpa

3 IN PTR foo.example.com.

Note: The $ORIGIN lines in the examples are for providing context to the
examples only; they do not necessarily appear in the actual usage. They are
only used here to indicate that the example is relative to the listed origin.

654 z/OS V1R4.0 CS: IP Configuration Reference

||
|
|

|

||
|

|
|

When looking up an address in nibble format, the address components are simply
reversed, just as in IPv4, and ip6.arpa is appended to the resulting name. For
example, the following would provide reverse name lookup for a host with address
3ffe:8050:201:1860:42::1.
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

Some resolvers append ip6.int to reverse queries. This practice is deprecated. The
definition of reverse labels under the ip6.int domain is the same as the previous
example, but with ip6.int. instead of ip6.arpa. terminating the $ORIGIN string.

Bitstring labels can start and end on any bit boundary, rather than on a multiple of 4
bits as in the nibble format. To replicate the previous example using bitstrings, code
the following:
$ORIGIN \[x3ffe805002011860/64].ip6.arpa.
\[x0042000000000001/64] 14400 IN PTR host.example.com.

Other zone file directives
The Master File Format was initially defined in RFC 1035 and has subsequently
been extended. While the Master File Format itself is class independent, all records
in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

The $ORIGIN directive
The $ORIGIN directive syntax is:
$ORIGIN domain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records.
When a zone is first read there is an implicit $ORIGIN <zone name>. The zone
name, if not specified on the SOA record, comes from the name server
configuration zone statement. The current $ORIGIN is appended to the domain
specified in the $ORIGIN argument if it is not absolute.
$ORIGIN example.com.
WWW CNAME MAIN-SERVER

Is equivalent to:
WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

The $INCLUDE directive
The $INCLUDE directive syntax is:
$INCLUDE filename [origin] [comment]

Read and process the file name as if it were included in the file at this point. If
origin is specified, the file is processed with $ORIGIN set to that value, otherwise
the current $ORIGIN is used.

Note: The behavior when origin is specified differs from that described in RFC
1035. The origin and current domain revert to the values they were prior to
the $INCLUDE once the file has been read.

The $TTL directive
The $TTL directive syntax is:
$TTL default-ttl [comment]

Chapter 16. BIND 9-based domain name system (DNS) 655

|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

Set the default Time To Live (TTL) for subsequent records with undefined TTLs.
Valid TTLs are of the range 0-2 147 483 647 seconds.

$TTL is defined in RFC 2308.

BIND master file extension: The $GENERATE directive
The $GENERATE directive syntax is:
$GENERATE range hs type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from
each other by an iterator. $GENERATE can be used to easily generate the sets of
records required to support sub /24 reverse delegations described in RFC 2317:
Classless IN-ADDR.ARPA delegation.
$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

Is equivalent to:
0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA
2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA
...
127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA
.

range
This can be one of two forms: start-stop or start-stop/step. If the first form is
used then step is set to 1. All of start, stop and step must be positive.

hs This parameter describes the owner name of the resource records to be
created. Any single $ symbols within the lhs side are replaced by the iterator
value. To get a $ in the output you need to escape the $ using a backslash \,
for example, \$. The $ can optionally be followed by modifiers which change the
offset from the iterator, field width and base. Modifiers are introduced by a {
immediately following the $ as, ${offset[,width[,base]]}. For example, ${-20,3,d}
which subtracts 20 from the current value, prints the result as a decimal in a
0–padded field of 3. Available output forms are decimal (d), octal (o) and
hexadecimal (x or X for uppercase). The default modifier is ${0,0,d}. If the lhs is
not absolute, the current $ORIGIN is appended to the name.

For compatability with earlier versions, $$ is still recognized as indicating a
literal $ in the output.

type
Currently, the only supported types are PTR, CNAME, DNAME, NS, A, and
AAAA.

rhs
A domain name. It is processed similarly to lhs.

The $GENERATE directive is a BIND extension and not part of the standard zone
file format.

656 z/OS V1R4.0 CS: IP Configuration Reference

|
|

RNDC configuration file
The remote name daemon control (rndc) program allows you to control the
operation of a name server. If you run rndc without any options it will display a
usage message as follows:
rndc [-c config] [-s server] [-p port] [-y key] [-V] command

A configuration file is required, because all communication with the server is
authenticated with digital signatures that rely on a shared secret, and there is no
way to provide that secret other than with a configuration file. The default location
for the rndc configuration file is /etc/rndc.conf, but an alternate location can be
specified with the -c option. If the configuration file is not found, rndc will also look
in /etc/rndc.key. The rndc.key file is generated by using the rndc-confgen -a
command.

The format of the configuration file is similar to that of named configuration file, but
limited to only three statements, the options, key and server statements. These
statements are what associate the secret keys to the servers with which they are
meant to be shared. The order of statements is not significant.

The options statement has three clauses:

v Default-server

v Default-port

v Default-key

If default-server is specified, the value takes a host name or address argument and
represents the server that will be contacted if no -s option is provided on the
command line. Alternatively, default-key takes the name of key as its argument, as
defined by a key statement.

The default-port statement specifies the port to which rndc sends its commands.
Commands will be sent to port 953 if default-port is not specified.

The key statement names a key with its string argument. The string is required by
the server to be a valid domain name, though it need not actually be hierarchical;
thus, a string like ″rndc_key″ is a valid name. The key statement has two clauses:
algorithm and secret. While the configuration parser accepts any string as the
argument to algorithm, currently only the string ″hmac-md5″ has any meaning. The
secret is a base-64 encoded string, typically generated with dnssec-keygen.

After the server keyword, the server statement includes a string which is the host
name or address for a name server. This can be an IPv4 or IPv6 address, or a
name that resolves to an IPv4 or IPv6 address. The statement has two possible
clauses: key and port. The key name must match the name of a key statement in
the file. The port number specifies the port to connect to.

A sample minimal configuration file is as follows:
key rndc_key {

algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";

};
options {

default-server localhost;
default-key rndc_key;
default-port 953;

};

Chapter 16. BIND 9-based domain name system (DNS) 657

|

|
|
|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

This file, if installed as /etc/rndc.conf, would allow the command:
$ rndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name
server on the local machine were running with following controls statements:
controls {

inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};

and it had an identical key statement for rndc_key.

See the rndc.conf man page for more information.

658 z/OS V1R4.0 CS: IP Configuration Reference

|

Chapter 17. Dynamic Host Configuration Protocol (DHCP)

Configuration file option data formats
Table 35 contains a list of the data formats for the DHCP options:

Table 35. Data formats for DHCP options

Option Description

IP Address A single IP address in dotted decimal notation.

IP Addresses One or more IP addresses in dotted decimal notation
separated by white spaces.

IP Address Pair Two IP addresses in dotted decimal notation separated by a
single colon.

IP Address Pairs One or more IP address pairs, each pair separated from
another by a white space.

Boolean 0 or 1.

Byte A decimal number between -128 and 127 (inclusive).

Unsigned Byte A decimal number between 0 and 255 (inclusive). You cannot
specify a negative value for an unsigned byte.

Unsigned Bytes One or more decimal numbers between 0 and 255 (inclusive)
separated by white spaces. You cannot specify a negative
number for an unsigned byte.

Short A decimal number between -32768 and 32767 (inclusive).

Unsigned Short A decimal number between 0 and 65535 (inclusive). You
cannot specify a negative number for an unsigned short.

Unsigned Shorts One or more decimal numbers between 0 and 65535
(inclusive) separated by spaces. You cannot specify a negative
number for an unsigned short.

Long A decimal number between -2 147 483 648 and 2 147 483 647
(inclusive).

Unsigned Long A decimal number between 0 and 4 294 967 295 (inclusive).
You cannot specify a negative number for an unsigned long.

String A string of characters. If embedded spaces are used, the string
must be enclosed in double quotation marks.

Not applicable Indicates no specification is needed because the client
generates this information.

Base options
The DHCP options are divided into the following categories:

v Base options (see Table 36 on page 660)

v IP layer parameters per host options (see Table 37 on page 661)

v IP layer parameters per interface options (see Table 38 on page 662)

v Link layer parameters per interface options (see Table 39 on page 663)

v TCP parameter options (see Table 40 on page 663)

v Application and service parameter options (see Table 41 on page 663)

v DHCP extensions options (see Table 42 on page 665)

v Load balancing options (see Table 43 on page 668)

© Copyright IBM Corp. 2000, 2002 659

v IBM-specific options (see Table 44 on page 669)

Table 36. Base options

Option Description Data format

1, Subnet Mask The client’s subnet mask, specified in
32-bit dotted decimal notation.

IP address

2, Time Offset The offset (in seconds) of the client’s
subnet from universal time coordinated
(UTC). The offset is a signed 32-bit
integer.

Long

3, Router IP addresses (in order of preference) of
the routers on the client’s subnet.

IP addresses

4, Timer Server IP addresses (in order of preference) of
the time servers available to the client.

IP addresses

5, Name Server IP addresses (in order of preference) of
the IEN 116 name servers available to
the client.

IP addresses

6, Domain Name Server IP addresses (in order of preference) of
STD 13 name servers available to the
client.

IP addresses

7, Log Server IP addresses (in order of preference) of
the MIT-LCS UDP log servers available
to the client.

IP addresses

8, Cookie Server IP addresses (in order of preference) of
the Cookie or quote-of-the-day servers
available to the client.

IP addresses

9, LPR Server This option can be specified at both the
DHCP client and DHCP server.
However, if specified only at the DHCP
client, the configuration will be
incomplete.

IP addresses (in order of preference) of
the line printer servers available to the
client. Option 9 eliminates the need for
the client to specify the LPR_SERVER
environment variable.

IP addresses

10, Impress Server IP addresses (in order of preference) of
the Imagn Impress servers available to
the client.

IP addresses

11, Resource Location
Server

IP addresses (in order of preference) of
the resource location (RLP) servers
available to the client. RLP servers
allow clients to locate resources that
provide a specified service, such as the
domain name server.

IP addresses

660 z/OS V1R4.0 CS: IP Configuration Reference

Table 36. Base options (continued)

Option Description Data format

12, Host Name This option can be specified at both the
DHCP client and DHCP server. If the
DHCP client does not provide a host
name, the DHCP server does nothing
with Option 12.

Host name of the client (which may
include the local domain name). The
minimum length for the host name
option is 1 octet and the maximum is
32 characters. See RFC 1035 for
character set restrictions.

String

13, Boot File Size The length (in 512-octet blocks) of the
default boot configuration file for the
client.

Unsigned short

14, Merit Dump File The pathname of the merit dump file in
which the client’s core image is stored if
the client crashes. The path is
formatted as a character string
consisting of characters from the
network virtual terminal (NVT) ASCII
character set. The minimum length is 1
octet.

String

15, Domain Name This option specifies the domain name
that client should use when resolving
host names using the Domain Name
System. This option can be specified at
both the DHCP client and DHCP server.

String

16, Swap Server IP address of the client’s swap server. IP address

17, Root Path Path that contains the client’s root disk.
The path is formatted as a character
string consisting of characters from the
NVT ASCII character set. The minimum
length is 1 octet.

String

18, Extensions Path The extensions path option allows you
to specify a string that can be used to
identify a file that is retrievable using
Trivial File Transfer Protocol (TFTP).
The minimum length is 1 octet.

String

Table 37. Options affecting the operation of the IP layer on a per-host basis

Option Description Data format

19, IP Forwarding Enable (1) or disable (0) forwarding
by the client of its IP layer packets.

Boolean

20, Non-Local Source
Routing

Enable (1) or disable (0) forwarding
by the client of its IP layer
datagrams with nonlocal source
routes. The length is 1 octet.

Boolean

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 661

Table 37. Options affecting the operation of the IP layer on a per-host basis (continued)

Option Description Data format

21, Policy Filter IP address-net mask pair used to
filter datagrams with nonlocal
source routines. Any datagram
whose next hop address does not
match one of the filter pairs is
discarded by the client. The
minimum length for the policy filter
option is 8 octets.

IP address pair

22, Maximum Datagram
Reassembly Size

Maximum size datagram the client
will reassemble. The minimum
value is 576.

Unsigned short

23, Default IP
Time-To-Live

Default time to live (TTL) the client
uses on outgoing datagrams. TTL
is an octet with a value in the
range of 1 to 255.

Unsigned byte

24, Path MTU Aging
Timeout

Timeout in seconds used to age
path maximum transmission unit
(MTU) values discovered by the
mechanism that is described in
RFC 1191.

Unsigned long

25, Path MTU Plateau
Table

Table of MTU sizes to use in Path
MTU discover as defined in RFC
1191. The minimum MTU value is
68. The minimum length for the
path MTU plateau table option is 2
octets. The length must be a
multiple of 2.

Unsigned shorts

Table 38. IP layer parameters per-interface options

Option Description Data format

26, Interface MTU Maximum transmission unit (MTU) to
use on this interface. The minimum
MTU value is 68.

Unsigned short

27, All Subnets are Local Client assumes (1) or does not assume
(0) that all subnets use the same
maximum transmission unit (MTU). A
value of 0 means the client assumes
that some subnets have smaller MTUs.

Boolean

28, Broadcast Address Broadcast address used on the client’s
subnet.

IP address

29, Perform Mask
Discovery

Client performs (1) or does not perform
(0) subnet mask discovery using
Internet Control Message Protocol
(ICMP).

Boolean

30, Mask Supplier Client responds (1) or does not
respond (0) to subnet mask requests
using Internet Control Message
Protocol (ICMP).

Boolean

31, Perform Router
Discovery

Client solicits (1) or does not solicit (0)
routers using router discovery as
defined in RFC 1256.

Boolean

662 z/OS V1R4.0 CS: IP Configuration Reference

Table 38. IP layer parameters per-interface options (continued)

Option Description Data format

32, Router Solicitation
Address

Address to which a client transmits
router solicitation requests.

IP address

33, Static Route Static routes (destination
address-router pairs in order of
preference) the client installs in its
routing cache. The first address is the
destination address and the second
address is the router for the
destination. Do not specify 0.0.0.0 as a
default route destination.

IP address pairs

Table 39. Link layer parameters per-interface options

Option Description Data format

34, Trailer Encapsulation Client negotiates (1) or does not
negotiate (0) the use of trailers (RFC
893) when using Address Resolution
Protocol (ARP).

Boolean

35, ARP Cache Timeout Timeout in seconds for Address
Resolution Protocol (ARP) cache
entries.

Unsigned long

36, Ethernet
Encapsulation

For an Ethernet interface, the client
uses IEEE 802.3 (1) Ethernet
encapsulation described in RFC 1042
or Ethernet V2 (0) encapsulation
described in RFC 894.

Boolean

Table 40. TCP parameter options

Option Description Data format

37, TCP Default TTL Default time to live (TTL) the client
uses for sending TCP segments.

Unsigned byte

38, TCP Keep-alive
Interval

Interval in seconds the client waits
before sending a keep-alive message
on a TCP connection. A value of 0
indicates that the client does not send
keep-alive messages unless requested
by the application.

Unsigned long

39, TCP Keep-alive
Garbage

Client sends (1) or does not send (0)
TCP keep-alive messages that contain
an octet of garbage for compatibility
with previous implementations.

Boolean

Table 41. Application and service parameter options

Option Description Data format

40, Network Information
Service Domain

The client’s Network Information
Service (NIS) domain. The domain is
formatted as a character string
consisting of characters from the NVT
ASCII character set. The minimum
length is 1 octet.

String

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 663

Table 41. Application and service parameter options (continued)

Option Description Data format

41, Network Information
Servers

IP addresses (in order of preference) of
Network Information Service (NIS)
servers available to the client.

IP addresses

42, Network Time Protocol
Servers

IP addresses (in order of preference) of
network time protocol (NTP) servers
available to the client.

IP addresses

43, Vendor-Specific
Information

Option 43 is specified only at the
DHCP server, which returns this option
as an encapsulated packet to a client
that sends Option 60 (Class Identifier).

Clients and servers use this information
option to exchange vendor-specific
information. This option allows for
expansion of the number of options
that can be supported.

String

44, NetBIOS over TCP/IP
Name Server

IP addresses (in order of preference) of
NetBIOS name servers (NBNS)
available to the client.

IP addresses

45, NetBIOS over TCP/IP
Datagram Distribution
Server

IP addresses (in order of preference) of
NetBIOS datagram distribution (NBDD)
name servers available to the client.

IP addresses

46, NetBIOS over TCP/IP
Node Type

Node type used for NetBIOS over
TCP/IP configurable clients as
described in RFC 1001 and RFC 1002.

Values to specify client types include:

Value Node Type

0x1 B-node

0x2 P-node

0x4 M-node

0x8 H-node

Unsigned byte

47, NetBIOS over TCP/IP
Scope

NetBIOS over TCP/IP scope parameter
for the client, as specified in RFC 1001
and RFC 1002. The minimum length is
1 octet.

Unsigned byte

48, X Window System
Font Server

IP addresses (in order of preference) of
X Window System font servers
available to the client.

IP addresses

49, X Window System
Display Manager

IP addresses (in order of preference) of
systems running X Window System
Display Manager available to the client.

IP addresses

64, NIS Domain Name Network information service (NIS) plus
client domain name. The domain is
formatted as a character string
consisting of characters from the NVT
ASCII character set. Its minimum
length is 1.

String

65, NIS Servers IP addresses (in order of preference) of
network information service (NIS) plus
servers available to the client.

IP addresses

664 z/OS V1R4.0 CS: IP Configuration Reference

Table 41. Application and service parameter options (continued)

Option Description Data format

68, Home Address IP addresses (in order of preference) of
the mobile IP home agents available to
the client. This option enables a mobile
host to derive a mobile home address
and determine the subnet mask for the
home network. The usual length is four
octets, containing a single home
agent’s home address.

IP addresses

69, SMTP Servers IP addresses (in order of preference) of
the Simple Mail Transfer Protocol
(SMTP) servers available to the client.

IP addresses

70, POP3 Server IP addresses (in order of preference) of
the Post Office Protocol (POP) servers
available to the client.

IP addresses

71, NNTP Server IP addresses (in order of preference) of
the Network News Transfer Protocol
(NNTP) servers available to the client,
for example:

option 71 192.24.112.2

IP addresses

72, WWW Server IP addresses (in order of preference) of
the World Wide Web (WWW) servers
available to the client.

IP addresses

73, Finger Server IP addresses (in order of preference) of
the Finger servers available to the
client.

IP addresses

74, IRC Server IP addresses (in order of preference) of
the Internet Relay Chat (IRC) servers
available to the client.

IP addresses

75, StreetTalk Server IP addresses (in order of preference) of
the StreetTalk servers available to the
client.

IP addresses

76, STDA Server IP addresses (in order of preference) of
the StreetTalk Directory Assistance
servers available to the client.

IP addresses

Table 42. DHCP extensions options

Option Description Data format

50, Requested IP Address This option is specified only at the
DHCP client. The DHCP server can
refuse a DHCP client request for a
specific IP address.

Allows the client to request
(DHCPDISCOVER) a particular IP
address.

Not applicable

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 665

Table 42. DHCP extensions options (continued)

Option Description Data format

51, IP Address Lease
Time

This option can be specified at both the
DHCP client and DHCP server. The
DHCP client can use Option 51 to
override the default LeaseInterval value
the DHCP server offers.

Allows the client to request
(DHCPDISCOVER or
DHCPREQUEST) a lease time for an
IP address. In a reply (DHCPOFFER),
a DHCP server uses this option to offer
a lease time.

Unsigned long

66, Server Name Trivial File Transfer Protocol (TFTP)
server name used when the sname
field in the DHCP header has been
used for DHCP options.

String

67, Boot File Name Name of the boot file when the file field
in the DHCP header has been used for
DHCP options. The minimum length is
1.
Note: Use this option to pass a boot
file name to a DHCP client. The boot
file name is required to contain the fully
qualified pathname and be less than
128 characters in length, for example:

option 67 c:\usr\lpp\nstation\
standard\kernel

This file contains information that can
be interpreted in the same way as the
64-octet vendor-extension field within
the BOOTP response, with the
exception that the file length is limited
to 128 characters by the BOOTP
header.

String

58, Renewal (T1) Time
Value

Interval in seconds between the time
the server assigns an address and the
time the client moves to the renewing
state.

Unsigned long

59, Rebinding (T2) Time
Value

Interval in seconds between the time
the server assigns an address and the
time the client enters the rebinding
state.

Unsigned long

666 z/OS V1R4.0 CS: IP Configuration Reference

Table 42. DHCP extensions options (continued)

Option Description Data format

60, Vendor Class-Identifier The DHCP client uses this option to
identify the vendor type and
configuration of the client.

For example, the identifier may encode
the client’s vendor-specific hardware
configuration. The information is a
string of n octets interpreted by
servers. Vendors may choose to define
specific vendor class identifiers to
convey particular configuration or other
identification information about a client.

Servers not equipped to interpret the
class-specific information sent by a
client must ignore it. The minimum
length is 1 octet.

Not applicable

61, Client-Identifier DHCP clients use this option to specify
their unique identifier. DHCP servers
use this value to index their database
of address bindings. This value must
be unique for all clients in an
administrative domain.

The Client-Identifier may consist of
type-value pairs. For example, it may
consist of a hardware type and
hardware address. In this case, the
type field should be one of the ARP
hardware types defined in STD2 [22]. A
hardware type of 0 should be used
when the value field contains an
identifier other than a hardware
address (for example, a fully qualified
domain name).

For correct identification of clients,
each client’s client-identifier must be
unique among the client-identifiers
used on the subnet to which the client
is attached. Vendors and system
administrators are responsible for
choosing client-identifiers that meet this
requirement for uniqueness.

String

62, NetWare/IP Domain
Name

Netware/IP Domain Name. The
minimum length is 1 octet and the
maximum length is 255.

String

63, NetWare/IP A general purpose option code used to
convey all the NetWare/IP related
information except for the NetWare/IP
domain name. A number of NetWare/IP
suboptions are conveyed using this
option code.

The minimum length is 1 and the
maximum length is 255.

String

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 667

Table 42. DHCP extensions options (continued)

Option Description Data format

77, User Class DHCP clients use Option 77 to indicate
to DHCP servers what class the host is
a member of.

String

78, Directory Agent The Dynamic Host Configuration
Protocol provides a framework for
passing configuration information to
hosts on a TCP/IP network. Entities
using the Service Location Protocol
need to find out the address of
Directory Agents in order to transact
messages. In certain other instances,
they may need to discover the correct
scope and naming authority to be used
in conjunction with the service
attributes and URLS, which are
exchanged using the Service Location
Protocol.

A directory agent has a particular
scope and may have knowledge about
schemes defined by a particular
naming authority.

IP addresses

79, Service Scope This extension indicates a scope that
should be used by a service agent,
when responding to Service Request
messages as specified by the Service
Location Protocol.

String

80, Naming Authority This extension indicates a naming
authority, which specifies the syntax for
schemes that may be used in URLs for
use by entities with the Service
Location Protocol.

String

DHCP load balancing options
Table 43 lists and describes the DHCP load balancing options.

Table 43. DHCP load balancing options

Option Description Data format

211 (Base Code Server
Protocol)

Protocol to use for Option 66 (Base
Code Server).

String

212 (Terminal
Configuration Server)

Terminal configuration server IP
address of name. You can specify up to
two addresses separated by a blank.

String

213 (Terminal
Configuration Path)

Configuration file pathname for Option
212 (Terminal Configuration Server).
You can specify up to two paths
separated by a blank.

String

214 (Terminal
Configuration Protocol)

Protocol to use for Option 212 (Terminal
Configuration Server). You can specify
up to two values separated by a blank.

String

668 z/OS V1R4.0 CS: IP Configuration Reference

IBM-specific options
Table 44. IBM-specific options

Option Description Data format

200, LPR Printer Eliminates the need for the client to
specify the LPR_PRINTER
environment variable, which can be the
name of a device such as LPT1 or a
printer name (queue name) such as
Printer.

For example,

option 200 "lpt1"

An OS/2® client stores the updated
option value in the TCPOS2.INI file.

The length is 1 octet.

String

Chapter 17. Dynamic Host Configuration Protocol (DHCP) 669

670 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 18. Syslog daemon

Syslog daemon files
The syslog daemon uses the following files:

/dev/console
Operator console

/etc/syslog.pid
Location of the process ID

/etc/syslog.conf
Default configuration file

/dev/log
Default log path for UNIX datagram socket

/usr/sbin/syslogd
Server

Syntax for syslogd
Following is the syntax for the syslogd command:

syslogd [−f conffile] [−m markinterval] [−p logpath] [−c] [−d] [−i] [−u]

syslogd recognizes the following options:

-c Create log files and directories automatically.

-d Run syslogd in debugging mode.

-f Configuration file name.

-i Do not receive messages from the IP network.

-m Number of minutes between mark messages. The default value is 20
minutes.

-p Pathname of z/OS UNIX character device for the datagram socket. The
default value is /dev/log.

Note: This option is not used frequently. If you incorrectly use the -p option,
syslogd will not function properly.

-u For records received over the AF_UNIX socket (most messages generated
on the local system), include the user ID and job name in the record. In this
case, a forward slash (/), the user ID, and the job name will follow the local
host name for messages received over the AF_UNIX socket. The forward
slash, which immediately follows the local host name, can be used to
determine whether or not the user ID and job name are being recorded. If
not recorded, a blank immediately follows the local host name. When user
ID or job name is not available, N/A will be written in the corresponding
field.

© Copyright IBM Corp. 2000, 2002 671

Configuration statements

Facility names
The following facility names are supported and predefined in the syslogd
implementation:

user Message generated by a process (user).

mail Message generated by mail system.

news Message generated by news system.

uucp Message generated by UUCP system.

daemon
This facility name is generally used by server processes. The FTPD server,
the RSHD server, the REXECD server, the SNMP agent, and the SNMP
subagent use this facility name to log trace messages.

auth/authpriv
Message generated by authorization daemon.

cron Message generated by the clock daemon.

lpr Message generated by the (USS lp command) print client.

local0-7
Names for local use. The z/OS UNIX Telnet server uses the local1 facility
name for its log messages.

mark Used for logging MARK messages.

Facilities used by z/OS Communications Server
Table 45. Syslogd facilities

Application SYSLOGD record
identifications

Primary Syslog
facility

Other Syslog facility

DHCP Server dhcpsd user none

FTP Server ftpd, ftps daemon none

NAMED named daemon none

OMPROUTE omproute user none

OREXECD rexecd daemon auth

ORSHD rshd daemon auth

OTELNETD telnetd local1 auth

Policy Agent
(PAGENT)

Pagent daemon none

POPPER popper mail none

pwchange Command pwchange daemon none

pwtokey Command pwtokey daemon none

SENDMAIL sendmail mail none

ROUTED routed daemon none

Service Level
Agreement SNMP
Subagent

PASubA daemon none

672 z/OS V1R4.0 CS: IP Configuration Reference

Table 45. Syslogd facilities (continued)

Application SYSLOGD record
identifications

Primary Syslog
facility

Other Syslog facility

SNMP Agent
(OSNMPD)

snmpagent daemon none

SYSLOGD syslogd daemon none

TCP/IP Configuration Config daemon none

TFTP Server tftpd user none

TIMED Daemon timed user none

Traffic Regulation
Management
Daemon (TRMD)

TRMD daemon none

Trap Forwarder
Daemon

trapfwd daemon none

Priority codes
The following priority codes are supported. They are shown in priority sequence.

emerg/panic A panic condition was reported to all processes.

alert A condition that should be corrected immediately.

crit A critical condition.

err(or) An error message.

warn(ing) A warning message.

notice A condition requiring special handling.

info A general information message.

debug A message useful for debugging programs.

none Do not log any messages for the facility.

* Place holder used to represent all priorities.

Destinations
The following destinations are supported. File names are case sensitive:

/file A specific file (for example, /tmp/syslogd/auth.log). All log files used
by syslogd must be created in the hierarchical file system (HFS)
before syslogd is started.

@host A syslog daemon on another host (for example, @mya1xserver).

user1,user2,...
A list of users.

/dev/console The MVS console.

$SMF The log message will be stored in SMF record type 109. See
Appendix C, “SMF type 118 records” on page 921 for a description
of SMF record 109. Note that the maximum SMF message is 4096
and if the BPX.SMF facility is defined, the user ID with which
syslogd runs must be permitted to BPX.SMF.

Chapter 18. Syslog daemon 673

v For example, to send all log messages of severity critical or
higher from bpxroot or uswmaint to SMF, use the following
statement.
bpxroot.*.*.crit;uswmaint.*.*.crit $SMF

v When you specify a priority code, all messages with that priority and higher are
logged at the specified destination. For example, if you specify a priority code of
crit, all messages having alert, panic, emerg, and crit priorities are logged. To
send all messages with a priority of crit or higher to a user ID of OPER1, you can
enter the following rule in /etc/syslog.conf:
*.crit OPER1

v You can combine logging rules and destinations in different ways. For example,
to send all messages from the facility name daemon into one file and all
messages with a priority of crit or higher into another file, enter the following:
daemon.* /tmp/syslogd/daemon.log
*.crit /tmp/syslogd/crit.log

Note that if a server sends a message to syslogd with a facility name of daemon
and a priority code of crit, the message will be logged in both the daemon.log
and crit.log files. Likewise, if a server sends a message to syslogd with a facility
name of daemon and a priority code of alert, the message will be logged in both
files.

v A priority code of none tells syslogd not to select any messages for the specified
facility. For example, if you want to log all messages from facility name local1
into one file, all messages from the daemon into another file, and all remaining
messages into a third file, use the following:
local1.* /tmp/syslogd/local1.log
daemon.* /tmp/syslogd/daemon.log
.;local1.none;daemon.none /tmp/syslogd/the_rest.log

Note: It is recommended that the /tmp/syslogd directory be set up as a separate
HFS file. Unless managed properly, the syslogd daemon can fill up the
/tmp hfs, which can impact other applications that might require temporary
space in the /tmp directory.

v You can define logging conditions related to a job name or process name. All
messages that belong to the same facility or priority class are logged in the same
syslogd logging file, whether or not the server task has issued the message.

Each statement of the configuration file has the following syntax:

�� 1

;

facility . priority
userid . jobname.

1 \t
\b

destination �

The \t in the syntax diagram is a tab character; the \b is a blank space.

674 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

Chapter 19. z/OS UNIX system services Policy Agent and SLA
subagent

Note: IPv6 support is not provided for Policy Agent and SLA subagent at this time.

For related information about Policy Agent and SLA Subagent, refer to the policy
based networking information in z/OS Communications Server: IP Configuration
Guide.

Also, for more information about policy schema definition files, see Chapter 21,
“Intrusion Detection Services (IDS) policy” on page 733.

The Policy configuration file
The policy configuration file is used when the Policy Agent (PAGENT) is started.
This initial configuration file can be used to point to other policy files that contain
specific policies for other corresponding TCP/IP images.

There are two types of configuration files:

v Main configuration file (determined using a standard search order)

v Image configuration files (specified on the TcpImage statement)

If the TcpImage statement does not specify an image configuration file, then the
main configuration file is also the image configuration file for that TCP/IP image.
The following statements configure basic operational parameters for the Policy
Agent, and can only be specified in the main configuration file:

v TcpImage

v LogLevel

The following statements configure functional parameters for the Policy Agent and
can be specified in the image configuration files, on a per-stack basis:

v ReadFromDirectory

v PolicyPerfMonitorForSDR

The following statement configures the mapping of Type of Service (ToS) byte to
device and Virtual LAN (VLAN) user priorities and can be specified in the image
configuration files, or as an object on an LDAP server, on a per-stack basis:

v SetSubnetPrioTosMask

The following statements define policies and can be specified in the image
configuration files, or as objects on an LDAP server, on a per-stack basis:

v PolicyRule (or ServicePolicyRules)

v PolicyAction (or ServiceCategories)

The statements used in the policy configuration file follow.

The following are general configuration rules. Unless otherwise noted, these rules
apply to both the configuration file and the LDAP server.

v Text beyond the specified attribute and value is ignored.

v Text beginning with the # character is a comment and is ignored.

© Copyright IBM Corp. 2000, 2002 675

|

Note: Comments beginning with the # character in an LDAP server ldif
configuration file may only be recognized as comments at the beginning of
the file; therefore such comments should not be specified elsewhere in the
file as they will be interpreted as part of an attribute or attribute value.

v For most range specifications, the ranges may be delimited by a colon, a dash,
or a blank, but these cannot be mixed within a single range specification. IP
address ranges cannot use the colon delimiter.

v The maximum decimal value for numeric values is 4 294 967 295, unless
otherwise noted.

v IP addresses specified as 255.255.255.255 are not valid.

v Policy rule and action names are limited to 32 characters. If policy names longer
than 32 are specified, they are silently truncated.

v Most attributes for configuration file definitions should be specified only once per
rule or action (exceptions are noted where appropriate). When multiple attributes
are specified, no error or warning messages are written to the log, and the last
instance of the attribute is used.

v Attributes for policies defined on an LDAP server may be single- or multi-valued
(meaning a single value or multiple values are allowed for that attribute). The
Policy Agent detects multiple values for attributes that are defined as single
valued, and treats the policy object as in error.

v The policy version is specified by the configuration file statement name, as
follows:

– ServicePolicyRules and ServiceCategories statements specify version 1
policies.

– PolicyRule and PolicyAction statements specify version 2 policies.

Note: The policy version of LDAP-defined objects is determined by the
LDAP_SchemaVersion parameter on the ReadFromDirectory
statement.

v Errors detected in a policy rule or action result in that policy object being
discarded.

v If a rule refers to an action that does not exist (or has been discarded due to an
error) then the rule is also discarded, if the policy version is 2 or greater.

Table 46. PAGENT configuration file statements

Statement Purpose Page

LogLevel Specifies level of tracing. 677

PolicyPerfMonitorForSDR Enables or disables the policy
performance monitor function.

678

TcpImage Defines a TCP/IP image and its
associated configurations.

681

ReadFromDirectory Initializes PAGENT as an LDAP client. 683

SetSubnetPrioTosMask Defines ToS byte to device and Virtual
LAN (VLAN) user priority mapping.

689

PolicyAction Defines V2 Policies. 691

ServiceCategories Defines V1 Policies. 700

PolicyRule Defines V2 Policies. 704

ServicePolicyRules Defines V1 Policies. 711

676 z/OS V1R4.0 CS: IP Configuration Reference

LogLevel statement
The LogLevel statement specifies the level of tracing for the Policy Agent. The trace
records can be used to help debug errors in policy definition.

Syntax

�� LogLevel i �

Parameters
i

An integer that specifies the level of logging and tracing. The supported levels
are:

v 1 - SYSERR - System error messages

v 2 - OBJERR - Object error messages

v 4 - PROTERR - Protocol error messages

v 8 - WARNING - Warning messages

v 16 - EVENT - Event messages

v 32 - ACTION - Action messages

v 64 - INFO - Informational messages

v 128 - ACNTING - Accounting messages

v 256 - TRACE - Trace messages

Usage notes
Specify a desired log level or a combination of levels. If this statement is absent,
the default level is 31.

To combine log levels, add log level numbers. For example, to request SYSERR
messages (level 1) and EVENT messages (level 16), you would request log level
17.

Examples
The following example turns on all trace levels for Policy Agent.

LogLevel 511

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 677

PolicyPerfMonitorForSDR statement
The PolicyPerfMonitorForSDR statement is used to enable/disable the policy
performance monitor function. This function assigns a weight fraction to the
monitored policy performance data and sends them to the Sysplex Distributor (SD)
distributing stack as the monitored data crosses defined thresholds. The SD
distributing stack uses this weight fraction to influence its routing decisions for
incoming connection requests toward appropriate hosts within a group responsible
for processing the requests. These connection requests are for a specific
application (for example, HTTP web) for which one or more policies have been
defined. For more information about sysplex distributor policy performance
monitoring, refer to z/OS Communications Server: IP Configuration Guide.

Note: This statement applies only when policies are defined for the TCP protocol.

Syntax

�� PolicyPerfMonitorForSDR Enable Put Braces and Parameters on Separate Lines
Disable

�

Put Braces and Parameters on Separate Lines:

{
PolicyPerfMonitorForSDR Parameters

}

PolicyPerfMonitorForSDR Parameters:

SamplingInterval 60

SamplingInterval n

LossRatioAndWeightFr 10 10

LossRatioAndWeightFr r f
0

�

�
LossMaxWeightFr 100

LossMaxWeightFr n

TimeoutRatioAndWeightFr 10 20

TimeoutRatioAndWeightFr r f
0

�

�
TimeoutMaxWeightFr 100

TimeoutMaxWeightFr n

Parameters
Enable | Disable

Indicates whether or not the policy performance monitor function should be
active. When active, this function monitors policy performance data on Sysplex
Distributor target stacks and sends information to the Sysplex Distributor
distributing stack to be used in balancing the workload among the target stacks.
The policy performance data is based on statistics for traffic that maps to
defined service policies.

Note: The weight fractions determined for the loss ratio and timeout ratio are
added together to form a single weight fraction before being sent to the
SD distributing stack. One weight fraction is generated for each
DVIPA/port pair on SD target stacks that have at least one policy defined
that maps to traffic sent from the target DVIPA/port pair.

678 z/OS V1R4.0 CS: IP Configuration Reference

SamplingInterval
Specifies the interval in seconds for sampling policy performance data. The
default is 60.

LossRatioAndWeightFr
Specifies two numbers. The first is the unit ratio of retransmitted bytes (loss)
over transmitted bytes, in tenths of a percent (1-1000). The second number is
the weight fraction to be returned to the Sysplex Distributor distributing stack, in
percentage (1-100). When present, this parameter will result in creation of a
threshold table. The first number defines the loss ratio initial threshold value.
The second number defines the starting weight fraction that the Sysplex
Distributor distributing stack is to use to reduce the WLM weight for this target
stack (for example, if the weight fraction is 50% and the WLM weight is 64, then
the resulting weight used for this target stack is 32). The maximum weight
fraction reached is determined by the LossMaxWeightFr parameter. The default
values for each number is 10. A weight fraction of 0 instructs the system to
suppress the loss ratio factor in Sysplex Distributor computations. The threshold
table can be calculated using the following formula:
if x(n)% <= % Packet Loss < x(n+1)%, then weight fraction is y(n)%

where x is the initial loss ratio percentage (first number), y is the initial weight
fraction (second number), and n is an integer multiplier.

For example, if the first and second numbers are 10 and 10 then the threshold
table is:
n=0 : 0% <= % packet loss < 1%; weight fraction is 0%
n=1 : 1% <= % packet loss < 2%; weight fraction is 10%
n=2 : 2% <= % packet loss < 3%; weight fraction is 20%
n=3 : 3% <= % packet loss < 4%; weight fraction is 30%
.
.
.
1(n)% <= % packet loss < 1(n+1)%; weight fraction is 10(n)%

If the first and second numbers are 30 and 20 then the threshold table is:
n=0: 0% <= % packet loss < 3%; weight fraction is 0%
n=1: 3% <= % packet loss < 6%; weight fraction is 20%
n=2: 6% <= % packet loss < 9%; weight fraction is 40%
n=3: 9% <= % packet loss < 12%; weight fraction is 60%
.
.
.
3(n)% <= % packet loss < 3(n)%; weight fraction is 20(n)%

Note: These ratios will not only be used as input to create the above weight
fractions, but will also be used to create the service level fractions. Refer
to the z/OS Communications Server: IP Configuration Guide for more
information about policy based networking.

LossMaxWeightFr
Specifies the maximum weight fraction to be assigned for the loss ratio factor.
The default is 100 %.

TimeoutRatioAndWeightFr
Specifies two numbers. The first is the unit ratio of the number of timeouts over
transmitted packets, in tenths of a percent (1-1000). The second number is the
weight fraction to be returned to the Sysplex Distributor distributing stack, in
percentage (1-100). When present, this parameter will result in a creation of a
threshold table. The first number defines the timeout ratio initial threshold value.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 679

The second number defines the starting weight fraction that the Sysplex
Distributor distributing stack is to use to reduce the WLM weight for this target
stack (for example, if the weight fraction is 50% and the WLM weight is 64, the
resulting weight used for this target stack is 32). The maximum weight fraction
reached is determined by the TimeoutMaxWeightFr parameter. The default
values are 10 and 20. A weight fraction of 0 instructs the system to suppress
the timeout ratio factor in Sysplex Distributor computations. Refer to the
LossRatioAndWeightFr parameter for more information on how the threshold
table is calculated.

TimeoutMaxWeightFr
Specifies the maximum weight fraction to be assigned for the timeout ratio
factor. The default is 100%.

Examples
In this example, PAGENT sends a message to the SD distributing Stack when the
loss (retransmission) ratio begins to exceed 1% but not above 2%, with a weight
fraction of 20% (this means that the WLM weight will be reduced by 20% before it
is used as a measure to route incoming connection requests). When the loss
(retransmission) ratio exceeds 2% but not above 3%, a message is sent with a
weight fraction of 40%, and so on. When the loss exceeds 5%, a maximum weight
fraction of 100% will be used. The same is true with the timeout ratio. When the
timeout ratio exceeds 0.5% but not above 1%, a weight fraction of 50% is added to
the weight in the message sent to the SD distributing Stack, and so on.

PolicyPerfMonitorForSDR Enable
{
SamplingInterval 120

LossRatioAndWeightFr 10 20
LossMaxWeightFr 100
TimeoutRatioAndWeightFr 5 50
TimeoutMaxWeightFr 100

}

680 z/OS V1R4.0 CS: IP Configuration Reference

TcpImage statement
The TcpImage statement specifies a TCP/IP image and its associated image
configuration file to be installed to that image. If no TcpImage statement is specified,
any policy definitions will be installed to the default TCP/IP image (resolver supplied
with TCPIPuserid or TCPIPjobname). The parameters FLUSH or NOFLUSH
(default) can be used to force flushing (deletion) of all existing policy control data in
the stack. The parameters PURGE or NOPURGE (default) can be used to purge
(delete) policies in the stack during normal shutdown (for example, KILL or STOP).

A single stack environment is defined in BPXPRMxx parmlib member by setting
’FILESYSTYPE TYPE(INET)’. For more information, refer to z/OS UNIX System
Services Planning.

The Policy Agent uses the TcpImage statement within a Single Stack Environment
in the following ways:

v Policy Agent always uses the default TCP/IP image (Resolver supplied
TCPIPuserid or TCPIPjobname), even if multiple TcpImage statements are
specified. All associated policy control statements will be installed to this image.

v If no TcpImage statement is specified, any control statements will be installed to
the default TCP/IP image (Resolver supplied TCPIPuserid or TCPIPjobname).

v If Policy Agent cannot determine the name of the TCP/IP image (Resolver
supplied TCPIPuserid or TCPIPjobname), the default name used is INET. The
interface used by the stack to inform the Policy Agent about stack restarts will not
function.

Syntax

�� TcpImage name
path

NOFLUSH

FLUSH
NOFLUSH

NOPURGE

PURGE
NOPURGE

1800

i
�

Parameters
name

The jobname of the TCP/IP image. The name must be one to eight characters
in length.

path
The path of the image configuration file to be installed. If an image configuration
file is not specified, the following policy definitions (if any) in this policy
configuration file will be installed.

FLUSH
FLUSH specifies that all policies installed in the Policy Agent and the TCP/IP
stack are deleted on the initial startup and at each refresh interval, if any of the
following apply:

v Policies are read from an MVS data set configuration file.

v Policies are read from an HFS configuration file and the file has changed
since the last refresh interval.

Note: After a TCP/IP stack has been recycled, all active policies are
reinstalled, regardless of whether FLUSH or NOFLUSH was specified.

NOFLUSH
NOFLUSH specifies that all policies installed in the Policy Agent and the TCP/IP

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 681

stack are to remain during initial startup and at each refresh interval. In addition,
policies that are deleted from a configuration are not deleted from the Policy
Agent or the TCP/IP stack. NOFLUSH is the default.

Note: After a TCP/IP stack has been recycled, all active policies are
reinstalled, regardless of whether FLUSH or NOFLUSH was specified.

PURGE
Specifies that all policies installed in the TCP/IP stack are deleted during normal
termination.

NOPURGE
Specifies that all policies installed in the TCP/IP stack are not deleted during
normal termination. NOPURGE is the default value.

i

An integer that specifies the time interval (in seconds) for checking the creation
or modification time of the configuration file or files, and for refreshing policies
from the LDAP server. The update interval will be changed in the following
cases:

v If a value is not specified, the default is 1800 seconds (30 minutes).

v If a value of 0 is specified, the default value of 1800 (30 minutes) is used.

v If the value of 1 to 59 is specified, the value of 60 seconds (1 minute) is
used.

The Policy Agent always uses this time interval to check for changes, but also
monitors the configuration file or files in real time if the -i startup option is
specified. The smallest refresh interval specified on the set of TcpImage
statements is used as the refresh interval for the main configuration file.

For example, if i is set to 300, the corresponding configuration files and LDAP
server will be checked for changes every five minutes. If the configuration file or
files have changed within the last 5 minutes, they are read again. The LDAP
server (if configured) is also queried again for policies. Any new, changed, or
deleted policies are installed to or removed from the stack as appropriate.

Notes:

1. Dynamic monitoring is only supported for HFS files; MVS data sets are not
monitored for changes.

2. Policy changes in the LDAP directory will result in only those changes being
propogated to the stack on the next refresh interval even if FLUSH is
specified.

Examples
The following example installs the image configuration file /tmp/TCPCS.policy to the
TCPCS TCP/IP image, after flushing existing policy control data:
TcpImage TCPCS /tmp/TCPCS.policy FLUSH

682 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|

|
|

|
|
|
|

ReadFromDirectory statement
The ReadFromDirectory statement initializes PAGENT as an LDAP client. The
policies are downloaded from the LDAP server, along with the policies specified in
this PAGENT configuration file (the current one being used by PAGENT that
contains this statement). All the policies will be installed to the appropriate TCP
images.

There are a set of sample files that can be used to help in setting up the LDAP
server and populate it with policies. These files reside in the /usr/lpp/tcpip/samples
directory. Two of these sample files define the schema object classes and attributes
for LDAP protocol version 2 servers:

v pagent_oc.conf

v pagent_at.conf

These files must be installed in the LDAP server configuration file using include
statements. Another set of sample files defines the schema object classes and
attributes for LDAP protocol version 3 servers:

v pagent_schema.ldif

v pagent_v3schema.ldif

v pagent_schema_updates.ldif

v pagent_idsschema.ldif

These files must be installed on the LDAP server as a subschema of the
cn=schema object by using the ldapmodify command.

Refer to the prologs in these sample files and z/OS Communications Server: IP
Configuration Guide for more information.

The remaining sample files are examples of policy objects that can be installed on
an LDAP server once the schema has been defined using the above schema
definition files:

v pagent.ldif contains a top level structure of policy objects.

v pagent_starter_IDS.ldif contains a starter set of IDS policies.

v pagent_starter_QOS.ldif contains a starter set of QoS policies.

v pagent_advanced_IDS.ldif contains an advanced set of IDS policies.

v pagent_advanced_QOS.ldif contains an advanced set of QoS policies.

Refer to the prologs in these sample files and z/OS Communications Server: IP
Configuration Guide for more information. These policies are not intended to be
used as shipped, but they can be copied to a custom set (defined in pagent.ldif)
and modified as needed. For more information on how to use LDAP and for other
LDAP references, refer to Understanding LDAP (SG24–4986).

Syntax

�� ReadFromDirectory Place Braces and Parameters on Separate Lines �

Place Braces and Parameters on Separate Lines:

{
ReadFromDirectory Parameters

}

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 683

ReadFromDirectory Parameters:

LDAP_Server 127.0.0.1

LDAP_Server address

LDAP_Port 389

LDAP_Port port
�

�
LDAP_BackupServer address

LDAP_BackupPort 389

LDAP_BackupPort port
�

�
LDAP_DistinguishedName string LDAP_Password string

�

�
LDAP_SessionPersistent no

LDAP_SessionPersistent Yes
No

LDAP_ProtocolVersion 3

LDAP_ProtocolVersion 2
3

�

�
LDAP_SchemaVersion 2

LDAP_SchemaVersion 1
2
3

Base string LDAP_SelectedTag string
�

�
SearchPolicyBaseDN string

1 SearchPolicyKeyword keyword

�

�

1 PolicyRole role 1 SearchPolicyGroupKeyWord string

�

�

1 SearchPolicyRuleKeyWord string

LDAP_AbstractPolicy Yes

Yes
LDAP_AbstractPolicy No

�

� LDAP_SSL Place Braces and Parameters on Separate Lines

Place Braces and Parameters on Separate Lines:

{
LDAP_SSL Parameters

}

LDAP_SSL Parameters:

LDAP_SSLKeyringFile filename
LDAP_SSLKeyringPassword password

�

684 z/OS V1R4.0 CS: IP Configuration Reference

�
LDAP_SSLName string

Parameters
LDAP_Server

The name of the server that contains policy definitions. The name can be
specified as a character string (for example, ’ldapserver.mynetwork.com’) or as
an IP address (for example, 9.11.12.13). The default is the LDAP server in the
local host (127.0.0.1).

LDAP_Port
The port on which the directory server is running. If not specified, the default,
well-known LDAP port of 389 is used.

LDAP_BackupServer
This attribute specifies the name or IP address of the backup LDAP server for
which the search is performed if the Policy Agent cannot connect to the LDAP
server as specified in the LDAP_Server and LDAP_Port parameters. The
default is no backup server.

LDAP_BackupPort
This attribute specifies the port number on which the backup LDAP server is
running. The default is the well-known LDAP port 389.

LDAP_DistinguishedName
This attribute is a character string value that specifies the distinguished name
for user ID to connect to the LDAP server. If this attribute is not specified,
anonymous user ID is used for the connect. If this attribute is specified,
LDAP_Password must also be specified.

Note: Case sensitivity of this attribute is determined by the LDAP server.

LDAP_Password
LDAP_Password is the password of the connection to the LDAP server. If this
attribute is specified, LDAP_DistinguishedName must also be specified.

LDAP_SessionPersistent
A string that specifies whether the LDAP session with the directory server
should be kept open or closed during an update interval time. If this value is not
specified, the session is closed after every query from the directory server. Valid
values are yes or no. If the LDAP session update interval is small, the value of
keeping the session open is greater, because it reduces the overhead of
opening the session for each query.

LDAP_ProtocolVersion
This attribute is used to indicate to PAGENT what version of the LDAP protocol
to use. LDAP servers typically use either version 2 or 3. The default value is 3.

LDAP_SchemaVersion
This attribute indicates to PAGENT what version of the schemas to retrieve
from LDAP. The following values are supported:

1 For the schema supported as of z/OS CS V1R2. This is the default
schema value if LDAP_SelectedTag or Base options are coded with the
ReadFromDirectory statement.

2 For the schema supported in CS for OS/390 V2R10. This is the default,
if LDAP_SelectedTag or Base options are not coded with the
ReadFromDirectory statement.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 685

3 For the schema supported as of z/OS CS V1R2.

Base
The distinguished name of the subtree in the directory containing the policies.

Note: This is required if you are using schema Version 1 only.

LDAP_SelectedTag
A string used to select a subset of the policies under the base tree. If not
specified, the first machine name returned by gethostname is used.

Note: This is allowed only if you are using schema Version 1.

SearchPolicyBaseDN
This attribute is a character string value (a base distinguished name) that is
used as a key to search the LDAP server for policies. It is considered as the
initial subtree/group/object to start the search.

Notes:

1. This attribute is only allowed, and is required, if LDAP_SchemaVersion 2 or
higher is specified.

2. Case-sensitivity of this attribute is determined by the LDAP server.

SearchPolicyKeyword
Specifies a generic search keyword to match against all policy objects. Use this
attribute to filter the policy objects to be retrieved. This attribute is only valid
with LDAP_SchemaVersion 3. Up to eight instances of this attribute can be
specified. Either a single keyword delimited by blanks can be specified, or any
string containing blanks or other special characters, contained in double
quotation marks. For example:
SearchPolicyKeyword singleword
SearchPolicyKeyword "quoted string"

SearchPolicyGroupKeyWord
This attribute is a character string value used to scope the search for all group
objects. Only policy groups that have a matching PolicyGroupKeywords attribute
are returned in the initial search. This is similar to the LDAPSelectedTag
attribute that is used with LDAP_SchemaVersion 1.

Notes:

1. Up to eight instances of this attribute are allowed.

2. This attribute is only allowed if LDAP_SchemaVersion 2 or higher is
specified.

3. Case-sensitivity of this attribute is determined by the LDAP server.

SearchPolicyRuleKeyWord
This attribute is a character string value that allows users to limit the scope of
the policyRule search. Only policy rules that have a matching
policyRuleKeywords attribute are returned in the initial search. This attribute can
also be used when there is no group association in the LDAP server (for
example, there is no group hierarchy defined, only rule objects exist) for the
policyRule objects.

Notes:

1. Up to eight instances of this attribute are allowed.

2. This attribute is only allowed if LDAP_SchemaVersion 2 or higher is
specified.

3. Case-sensitivity of this attribute is determined by the LDAP server.

686 z/OS V1R4.0 CS: IP Configuration Reference

PolicyRole
Specifies a policy role or role-combination (as shown below). Use this
parameter to filter the policy rules to be retrieved. This parameter is only valid
with LDAP_SchemaVersion 3. This parameter can be repeated as many times
as necessary. Either a single role or a set of roles, known as a
role-combination, can be specified. The roles can be single words, or any
strings containing blanks or other special characters, contained in double
quotation marks. Role-combinations are specified as follows. The first role is
specified the same way that a single role is specified. Each additional role in
the role-combination is prefixed with the characters &&. For example:
PolicyRole role1
PolicyRole &&"quoted role 2"
PolicyRole "quoted role 3"
PolicyRole role4

Use this parameter to filter out policy rules that do not contain any of the
specified roles or role-combinations, using the attribute ibm-policyRoles. For
example, the set of roles specified above result in the retrieval of any policy
rules that specify ″role1&"ed rule 2″ or ″quoted role3″ or ″role4″ in their
ibm-policyRoles values.

LDAP_AbstractPolicy
Specifies whether or not the Policy Agent should search the LDAP server using
a search filter that only selects policy object classes. Valid values are YES or
NO, and YES is the default. If the LDAP server supports matching of auxiliary
classes for the objectClass attribute, specify YES. Otherwise, specify NO. This
attribute is only valid with LDAP_SchemaVersion 3 and LDAP protocol version
3.

LDAP_SSL
Indicates that additional SSL parameters follow.

LDAP_SSLKeyringFile
LDAP_SSLKeyringFile is the name of the keyring file created by gskkyman. It
usually contains the certificates of the trusted (by the client) Certificate
Authorities. It can also contain a public key and the associated certificate. This
is only needed when client authentication is required. This attribute is required
when LDAP_SSL is specified.

LDAP_SSLKeyringPassword
LDAP_SSLKeyringPassword is the password which protects the keyring file. It
is set when the keyring file is created with the gskkyman tool.

LDAP_SSLName
LDAP_SSLName is a case-sensitive value that specifies the label assigned
when creating your private key/certificate pair with gskkyman. This is used
when the client is authenticated.

Note: Some servers do not support client authentication, therefore this
parameter will not be used.

Examples
The following is a Version 1 schema example:
ReadFromDirectory

{
Ldap_server ldapserver.mynetwork.com
Ldap_port 9000
Base o=ibm,c=us
Ldap_selectedtag MVS1

}

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 687

|
|

The following is a Version 2 schema example:
ReadFromDirectory

{
LDAP_Server 9.11.12.13
LDAP_Port 9000
LDAP_SessionPersistent Yes
LDAP_BackupServer 9.11.22.23
LDAP_BackupPort 555
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password secret
LDAP_SchemaVersion 2
LDAP_ProtocolVersion 2
SearchPolicyBaseDN o=ibm, c=us
SearchPolicyGroupKeyword MVSA
SearchPolicyRuleKeyword cherryPicker
SearchPolicyRuleKeyword ripe

}

The following is a Version 3 schema example:
ReadFromDirectory
{
LDAP_Server ldapv3server
LDAP_BackupServer 10.100.1.5
LDAP_BackupPort 7500
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password secret
LDAP_SchemaVersion 3
LDAP_ProtocolVersion 3
LDAP_AbstractPolicy Yes
SearchPolicyBaseDN cn=policy, o=ibm, c=us
SearchPolicyKeyword QOS
SearchPolicyKeyword Diffserv
}

688 z/OS V1R4.0 CS: IP Configuration Reference

SetSubnetPrioTosMask statement
The SetSubnetPrioTosMask statement defines a mapping of IP Type of Service
(ToS) byte to outbound interface device and Virtual LAN (VLAN) user priority
values. It maps priorities for interfaces that use OSA-Express configured in QDIO
mode. If this statement is not specified, TCP/IP will use the system default ToS
mask and priority levels for all interfaces currently defined for IPv4 (RFC 791).

The current IPv4 ToS byte format defines the first 3 bits to be the precedence bits
(for example, priority). Therefore, the default for the subnet ToS mask, if this
statement is not specified, is 11100000. As of V1R2, only Queued Direct I/O (QDIO)
devices in zSeries™ can support priorities. This statement is used to set up ToS to
priority mapping for those devices. QDIO supports four priority levels, 1 through 4,
with 4 being the lowest priority. Following is the default mapping of these 4 priorities
to the various ToS byte values:

TOS Priority
00000000 4
00100000 4
01000000 3
01100000 2
10000000 1
10100000 1
11000000 1
11100000 1

Note that the ToS byte is also used by other network devices (for example, routers
and switches) to determine the priority of a packet.

Note: If Enterprise Extender has set ToS bytes, this will override those settings.

Syntax

�� SetSubnetPrioTosMask Place Braces and Parameters on Separate Lines �

Place Braces and Parameters on Separate Lines:

{
SetSubnetPrioTosMask Parameters

}

SetSubnetPrioTosMask Parameters:

SubnetAddr0.0.0.0

SubnetAddr address
SubnetTosMask mask �

� 1
4

PriorityTosMapping priority tos
user_priority

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 689

Parameters
SubnetAddr

The local subnet interface address. A value of 0.0.0.0 indicates that the mask is
the same for all interfaces. The default is all interfaces. All interfaces is the
same as coding a value of 0.0.0.0.

SubnetTosMask
SubnetTosMask contains eight bits, left-justified, for the ToS mask. For example,
101 would be 10100000. There is no default. This is a required parameter.

PriorityTosMapping
Three values to indicate each priority level to ToS value mapping. The first
value of each mapping is an integer to indicate the device priority level, the
second value is eight bits, left-justified, to indicate the ToS value, and the third
value is an optional integer to indicate the user priority (0 through 7, where 0 is
the lowest priority). User priority is also known as Virtual LAN (VLAN) priority.

If this parameter is not specified for a ToS value, that ToS value will map to a
device priority value of 4, and a user priority value of 0.

Examples
SetSubnetPrioTosMask
{
SubnetAddr 9.11.12.13
SubnetTosMask 11100000
PriorityTosMapping 1 11100000 7
PriorityTosMapping 1 11000000 7
PriorityTosMapping 2 10100000 6
PriorityTosMapping 2 10000000 5
PriorityTosMapping 2 01100000 5
PriorityTosMapping 3 01000000 3
PriorityTosMapping 4 00100000 2
PriorityTosMapping 4 00000000 0
}

SetSubnetPrioTosMask
{
SubnetTosMask 11100000
PriorityTosMapping 1 11100000
PriorityTosMapping 1 11000000
PriorityTosMapping 1 10100000
PriorityTosMapping 1 10000000
PriorityTosMapping 2 01100000
PriorityTosMapping 2 01000000
PriorityTosMapping 3 00100000
PriorityTosMapping 4 00000000
}

690 z/OS V1R4.0 CS: IP Configuration Reference

|
|

PolicyAction statement
The PolicyAction statement specifies the Type of Service a flow of IP packets (for
example, from a TCP connection, or UDP data) should receive end-to-end as they
traverse the network. PolicyAction can be repeated with each having a different
name so that they can be referenced later.

Note: This statement defines a Version 2 policy action.

Syntax

�� PolicyAction name Place Braces and Parameters on Separate Lines �

Place Braces and Parameters on Separate Lines:

{
PolicyAction Parameters

}

PolicyAction Parameters:

PolicyScope Both

PolicyScope DataTraffic
RSVP
Both
TR

1 OutboundInterfaceAddress address

�

�
MaxRate Kbps MinRate Kbps

OutgoingTOS 0

OutgoingTOS n
�

�
MaxDelay milliseconds MaxConnections value

�

�
FlowServiceType ControlledLoad

FlowServiceType ControlledLoad
Guaranteed

MaxRatePerFlow Kbps
�

�
MaxTokenBucketPerFlow Kbps MaxFlows n

Permission Allowed

Permission Allowed
Blocked

�

�
DiffServInProfileRate Kbps DiffServInProfilePeakRate Kbps

�

�
DiffServInProfileTokenBucket 100

DiffServInProfileTokenBucket Kb
�

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 691

�
DiffServInProfileMaxPacketSize Kbps

�

�
DiffServExcessTrafficTreatment BestEffort

DiffServExcessTrafficTreatment Drop
BestEffort

�

�
DiffServOutProfileTransmittedTOSByte 0

DiffServOutProfileTransmittedTOSByte n
�

�

1TypeActions
Statistics
Log
Limit

TotalConnections n
�

�
Percentage n

TimeInterval 60

TimeInterval minutes

LoggingLevel 0

LoggingLevel n

Parameters
name

A 1– to 32–character string for the name of this policy action.

PolicyScope
Indicates the scope of this PolicyAction. The following values are allowed:

v DataTraffic indicates the scope is Differentiated Services.

v RSVP indicates the scope is Integrated Services (for example, RSVP).

v Both indicates the scope is both DataTraffic + RSVP (this is the default).

v TR indicates the scope is Traffic Regulation.

Certain attributes of the policy action are used only with certain scope values,
as follows:

RSVP FlowServiceType, MaxRatePerFlow, MaxTokenBucketPerFlow,
MaxFlows

TR TypeActions, TotalConnections, Percentage, TimeInterval, LoggingLevel

DataTraffic
All other attributes (Permission applies to all scope values)

When the scope value is specified as Both, both RSVP and DataTraffic
attributes can be specified, but the attributes will only be applied to the
appropriate scope.

Note: When TR is specified for scope, the associated policy rule should have
only the destination port range specified as the selection criteria. If other
selection criteria are specified, the policy will not be mapped by the
Traffic Regulation Management function.

692 z/OS V1R4.0 CS: IP Configuration Reference

OutboundInterface
Specifies an outbound interface used for Sysplex Distributor distributing stack.
Incoming connection requests can be distributed to different target stacks within
the sysplex by the Sysplex Distributor distributing stack based on VIPADIST
statements (which define DXCF links) defined for the corresponding distributing
stack. This attribute selects which DXCF links are available for the incoming
connection request that maps to this policy. Up to 32 instances of this attribute
can be specified. A value of 0 can be specified for the interface, which indicates
to the Sysplex Distributor distributing stack that if it cannot distribute the request
to a target stack on one of the other specified interfaces, then the request can
be distributed to any of the other eligible target stacks. For example, suppose
five target stacks are defined by VIPADIST statements (1.1.1.1 through 5.5.5.5),
and three interfaces are defined using the OutboundInterface attribute (1.1.1.1,
2.2.2.2, and 0.0.0.0). If an incoming request cannot be distributed to either
1.1.1.1 or 2.2.2.2, then the specification of the 0 interface indicates that the
request should be distributed to any of the remaining stacks (3.3.3.3 through
5.5.5.5) that are eligible to service the request. The PolicyScope attribute must
specify either DataTraffic or Both to define interfaces using this attribute.

MaxRate
An integer value representing the maximum rate in kilobits per second (Kbps)
allowed for traffic in this service class. This attribute is only valid for TCP. If not
specified or specified as 0, there will not be any enforcement of the maximum
rate of a connection by the local host. If a number other than 0 is specified,
each TCP connection that is mapped to this PolicyAction will have its rate
limited to this MaxRate. Enforcement of the MaxRate is performed by the
TCP/IP stack by adjusting the TCP congestion window based on the connection
round-trip time (the rate is obtained by taking the congestion window and
dividing it by the round-trip time; note the units, for example, byte versus bit,
second versus millisecond). Because the minimum of the congestion window is
one TCP segment size, the minimum of the MaxRate that can be enforced is
one TCP segment over the round-trip time. If a TCP connection has a very
small round-trip delay and traverses over a very high bandwidth network (for
example, Gbit Ethernet LAN), the minimum rate that this TCP connection can
send (one segment per round-trip time) can be high. Therefore, users and
network administrators need to know their network characteristics when setting
this MaxRate; it may not be enforceable if the minimum TCP rate (for example,
one segment over round-trip time) already exceeds this specified MaxRate. As
noted, TCP segment size can play a role in this TCP minimum rate; that is, for
a given round-trip delay, the larger the segment size, the higher the minimum
TCP rate. There are different factors that can affect the TCP segment size, for
example, the local MTU size definition, the Path MTU discovery flow (this
mechanism is used to discover the maximum MTU size that can be sent into
the network without resulting in IP fragmentation), the receivers maximum
segment size, and so on.

MinRate
An integer value representing the minimum rate or throughput (Kbps) allowed
for traffic in this service class. This attribute is only valid for TCP. If not specified
or specified as 0, there will not be any enforcement on the minimum rate of a
connection by the local host. If a number other than 0 is specified, the rate for
any TCP connection that is mapped to this PolicyAction will not fall below this
MinRate, unless the network is really congested and by maintaining the
minimum rate the network throughput might collapse. Enforcement of the
MinRate is performed by the TCP/IP stack by manipulating the congestion
window over the connection round-trip time. Unlike the enforcement of
MaxRate, if TCP minimum rate due to the segment size or the round-trip time,

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 693

or both, is already high, and the specified MinRate is already below this rate, it
will not be necessary for the TCP/IP stack to enforce the MinRate.

OutgoingTOS
Eight bits, left-justified, representing the ToS value of outbound traffic belonging
to this service class. The default is 0.

MaxDelay
An integer value representing the maximum delay (in milliseconds) allowed for
traffic in this service class. This attribute is only valid for TCP. Note the TCP/IP
stack does not enforce this delay; it is mainly used by the SNMP SLA subagent
to track the service level agreements specified in the policy and to send traps
whenever the MaxDelay attribute is violated.

MaxConnections
An integer value representing the maximum number of end-to-end connections
at any instant in time. This attribute is only valid with TCP. It places a limit on
the number of TCP connections mapped to this PolicyAction that can be active
at a time. If there is a request for a new TCP connection that maps to this
PolicyAction and this limit is exceeded, the connection request is rejected. The
default is that there is no policy limit. The MaxConnections attribute is enforced
by the TCP/IP stack. If the connection request is sent by a remote client, a TCP
RST segment is returned to notify the client that the connection is refused. The
number of rejected connections is maintained and can be retrieved with the
netstat command using the -j option. If the connection request is sent by an
application in the local host (for example, using a connect socket call), a return
code of permission denied is returned.

Note: This attribute only affects new connection requests, not already active
connections. For example, if a policy is activated that limits the maximum
number of connections to 10, but 15 connections already existed for
traffic that maps to the policy rule, then only 10 of the existing
connections are mapped to the policy and no new connections are
accepted. However, the five other existing connections above the limit
remain active and unmapped by the policy.

FlowServiceType
Limits the Type of Service being requested by RSVP applications. Valid values
are ControlledLoad (the default) and Guaranteed. Guaranteed service is
considered to be greater than ControlledLoad service. If ControlledLoad service
is specified, and an application requests Guaranteed, the requested service will
be downgraded to ControlledLoad. If you want to allow RSVP applications to
request Guaranteed service, then specify Guaranteed for this parameter. All
RSVP parameters, FlowServiceType, MaxRatePerFlow,
MaxTokenBucketPerFlow, and MaxFlows, are enforced by the RSVP daemon
application and not by the TCP/IP stack. The TCP/IP stack, however, will
maintain traffic statistics of RSVP policies, which can be retrieved with the
netstat command with option -j.

MaxRatePerFlow
Specifies the maximum rate in kilobits per second for RSVP flows. RSVP
reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:

v r is the token bucket rate in bytes per second.

v b is the token bucket depth in bytes.

v p is the peak rate in bytes per second.

v m is the minimum packet size in bytes.

694 z/OS V1R4.0 CS: IP Configuration Reference

v M is the maximum packet size (MTU) in bytes.

Use this parameter to limit the r value of the Tspec. If an RSVP sender
application requests a Tspec r value larger than this parameter, the request will
be downgraded to this parameter value.

RSVP receiving applications also specify a resource specification (Rspec) when
using Guaranteed service, as part of the reservation request. The Rspec
consists of the following values:

v R is the rate in bytes per second.

v S is the slack term in microseconds.

This parameter is also used to limit the R value of the Rspec for reservation
requests from RSVP receiver applications using Guaranteed service.

Note: This parameter is specified in kilobits per second, while the Tspec and
Rspec use bytes per second. To arrive at a compatible specification,
multiply the desired Tspec or Rspec value by 8, then divide by 1000. For
example, to specify a Tspec r value of 500000 bytes per second, specify
a MaxRatePerFlow value of 4000 (500000 * 8 / 1000 = 4000).

The default for this parameter is a system defined maximum.

MaxTokenBucketPerFlow
Specifies the maximum token bucket size in kilobits per second for RSVP flows.
RSVP reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:

v r is the token bucket rate in bytes per second.

v b is the token bucket depth in bytes.

v p is the peak rate in bytes per second.

v m is the minimum packet size in bytes.

v M is the maximum packet size (MTU) in bytes.

This parameter is used to limit the b value of the Tspec. If an RSVP sender
application requests a Tspec b value larger than this parameter, the request will
be downgraded to this parameter value.

Note: This parameter is specified in kilobits, while the Tspec uses bytes. To
arrive at a compatible specification, multiply the desired Tspec value by
8, then divide by 1000. For example, to specify a Tspec b value of 75000
bytes, specify a MaxTokenBucketPerFlow value of 600 (75000 * 8 / 1000
= 600).

The default for this parameter is a system defined maximum.

MaxFlows
Specifies the maximum number of reserved flows allowed for RSVP
applications. The default is no limit on the number of reserved flows.

Permission
Indicates whether packets belonging to this policy rule should be discarded or
allowed to proceed. Valid values are Allowed and Blocked. The default is
Allowed.

DiffServInProfileRate
Specifies the mean rate at which traffic belonging to the corresponding policy
must be policed. It is a Kbps value and must be policed in kilobits per second
(Kbps). The default value is 0, meaning no policing mechanism is enforced. The

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 695

DiffServ parameters are enforced by the TCP/IP stack. Statistics regarding
in-profile byte count can be retrieved using the netstat command with option -j.
This in-profile count can be used to calculate the amount of traffic sent out of
profile. The in-profile count should be equal to or less than the total transmitted
byte count unless the count wraps.

Unlike MaxRate/MinRate, which applies on a per TCP connection basis, these
DiffServ parameters apply to aggregated flows (multiple TCP connections can
be mapped to a single policy action). Also, it is important to note that when
DiffServ parameters are enforced against TCP traffic, the TCP minimum rate will
determine whether the DiffServ parameters are enforceable, as described in the
attribute MaxRate. This is due to an optimization provision where TCP is forced
to slow down when it attempts to send beyond the committed bandwidth
specified with DiffServ parameters in the policy action with
DiffServExcessTrafficTreatment specified as Drop. TCP cannot slow down
beyond the TCP minimum rate, even if a violation occurs.

Note: This is the rate that is used to generate tokens in the token bucket traffic
policing mechanism, but it is not necessarily the user/application
generated traffic rate.

If this attribute is a nonzero value, the DiffServInProfileTokenBucket value must
also be nonzero.

Note: This parameter is used by a token bucket mechanism to control the
outbound traffic.

DiffServInProfilePeakRate
Specifies the peak rate that traffic belonging to the corresponding policy must
be policed. It is a Kbps value and must be policed in kilobits per second (Kbps).
The default is 0, which means no policing mechanism is enforced against the
peak rate if DiffServInProfileRate is nonzero. When nonzero, it must not be less
than that of the DiffServInProfileRate. If this attribute is nonzero,
DiffServInProfileRate and DiffServInProfileMaxPacketSize must also be
nonzero.

Note: This parameter is used by a token bucket mechanism to control the
outbound traffic.

DiffServInProfileTokenBucket
Specifies the maximum burst size that traffic belonging to the corresponding
policy must be policed. It is a kilobits value and must be policed in kilobits (Kb).
The default is 100 if DiffServInProfileRate is not 0. The
DiffServInProfileTokenBucket attribute is used only when the policy action also
uses the DiffServInProfileRate attribute.

Note: This parameter is used by a token bucket mechanism to control the
outbound traffic.

DiffServInProfileMaxPacketSize
Specifies the maximum packet size of traffic belonging to the corresponding
policy. Its value is used to police traffic against the peak rate. It is a kilobits
value with corresponding policy, in kilobits (Kb). The default is 100 if
DiffServInProfilePeakRate is not 0.

Note: Due to blocking in zSeries, multiple packets tend to be sent back to
back. If the maximum packet size is set to the size of one packet, traffic
will exceed the peak rate, and those packets will be sent as out of profile
packets (either with a different ToS value or dropped) if peak rate

696 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|

enforcement is in effect. To prevent this, the attribute must be set in
multiples of the maximum packet size or equal to the token bucket size.

DiffServExcessTrafficTreatment

Specifies what action to take when traffic exceeds its profile. Two values can be
specified with this attribute:

v Drop

v BestEffort

The default is BestEffort. These are described directly below.

When the DiffServExcessTrafficTreatment is Drop and the corresponding policy
is defined for TCP traffic, z/OS CS will optimize performance by simulating the
TCP packet drop and reducing the TCP transmit rate in order to force the
outbound traffic to conform to the policy defined bandwidth. This means that the
TCP packets that result in excess traffic will be transmitted, but the
corresponding TCP connections will be forced to slow down immediately (by
half, which is the TCP behavior under packet loss). This helps avoid
retransmissions and prevents further excess traffic. If the policy is defined for
UDP, because there is no slowdown mechanism in UDP as in TCP, excess
traffic will be discarded as specified in the policy definition.

When the DiffServExcessTrafficTreatment is BestEffort, the excess packets are
still sent; however, they are sent with the ToS value specified on
DiffServOutProfileTransmittedTOSByte.

DiffServOutProfileTransmittedTOSByte
Specifies the ToS/DS value to send with the excess traffic (if action is to send
excess traffic as best effort instead of dropping).

Note: The normal in profile ToS value comes from the current OutgoingTOS
attribute. This value is specified as a string of eight 1’s and 0’s. The
default is 00000000.

TypeActions
Specifies actions to take for a traffic regulation policy (one defined with
PolicyScope TR). Valid values are:

Statistics
Allows the user to gather statistics based on an experimental policy.
Statistics are reported to the syslog daemon based on the interval
specified on the TimeInterval attribute.

Log Log events that are out of TR policy specification.

Limit Refuses connections that are out of TR specification.

Any or all of these values can be specified at the same time and they are blank
delimited. This attribute is required if PolicyScope TR is specified.

TotalConnections
Specifies the maximum number of concurrent connections allowed to a port in a
TR policy (one defined with PolicyScope TR). This attribute is required if the
TypeActions includes Log or Limit.

Percentage
Specifies the percentage of available connections that a single host can
consume when connecting to a TCP port protected by a TR policy. This
attribute is required if the TypeActions includes Log or Limit.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 697

Note: The percentage of connections is based on the number of available
connections at the time of the TCP connect request. For example, if
TotalConnections is 100 and there are currently 40 connections with
other hosts, then the number of available connections is 60. If
Percentage is specified as 10, for example, the maximum number of
connections that a single host can have is 6. If the new connect request
would cause the number of connections from the source IP address of
the connecting host to exceed 6, then the connection would be refused
or logged depending on the value of the TypeActions attribute.

TimeInterval
Specifies the sampling interval in minutes for gathering statistics. The default
value is 60.

LoggingLevel
Specifies the syslog priority of log event messages associated with this action.
The priority levels are 0-7. Statistics are always written to syslog with a priority
level of 6 that corresponds to informational. The syslog facility daemon is used
for both log event messages and statistics.

The following table provides a mapping of PolicyAction statement parameters to
LDAP object classes and attributes.

Table 47. PolicyAction mapping to LDAP

PolicyAction
statement parameter

Object class LDAP attribute

PolicyScope ibm-
serviceCategoriesAuxClass

ibm-policyScope

Permission ibm-
serviceCategoriesAuxClass

ibm-Permission

MaxRate ibm-
serviceCategoriesAuxClass

ibm-maxRate

MinRate ibm-
serviceCategoriesAuxClass

ibm-minRate

MaxDelay ibm-
serviceCategoriesAuxClass

ibm-maxDelay

OutgoingTOS ibm-
serviceCategoriesAuxClass

ibm-outgoingTOS

MaxConnections ibm-
serviceCategoriesAuxClass

ibm-maxConnections

OutboundInterface ibm-
serviceCategoriesAuxClass

ibm-interface

FlowServiceType ibm-
serviceCategoriesAuxClass

ibm-flowServiceType

MaxRatePerFlow ibm-
serviceCategoriesAuxClass

ibm-maxRatePerFlow

MaxTokenBucketPerFlow ibm-
serviceCategoriesAuxClass

ibm-maxTokenBucketPerFlow

MaxFlows ibm-
serviceCategoriesAuxClass

ibm-maxFlows

DiffServInProfileRate ibm-
serviceCategoriesAuxClass

ibm-diffServInProfileRate

698 z/OS V1R4.0 CS: IP Configuration Reference

Table 47. PolicyAction mapping to LDAP (continued)

PolicyAction
statement parameter

Object class LDAP attribute

DiffServInProfile

PeakRate

ibm-
serviceCategoriesAuxClass

ibm-diffServInProfilePeakRate

DiffServInProfile

TokenBucket

ibm-
serviceCategoriesAuxClass

ibm-diffServInProfileTokenBucket

DiffServInProfile

MaxPacketSize

ibm-
serviceCategoriesAuxClass

ibm-diffServInProfileMaxPacketSize

DiffServOutProfile

TransmittedTOSByte

ibm-
serviceCategoriesAuxClass

ibm-
diffServOutProfileTransmittedTOSByte

DiffServExcessTraffic

Treatment

ibm-
serviceCategoriesAuxClass

ibm-diffServExcessTrafficTreatment

TypeActions ibm-idsNotificationAuxClass ibm-idsTypeActions

Not applicable ibm-idsNotificationAuxClass ibm-idsNotification

TotalConnections ibm-idsTRtcpActionAuxClass ibm-idsTRtcpTotalConnections

Percentage ibm-idsTRtcpActionAuxClass ibm-idsTRtcpPercentage

TimeInterval ibm-idsNotificationAuxClass ibm-idsStatInterval

LoggingLevel ibm-idsNotificationAuxClass ibm-idsLoggingLevel

Not applicable ibm-idsTRtcpActionAuxClass ibm-idsTRtcpLimitScope

Not applicable ibm-idsTRudpActionAuxClass ibm-idsTRudpQueueSize

Not applicable ibm-idsScanActionAuxClass ibm-idsFSInterval

Not applicable ibm-idsScanActionAuxClass ibm-idsFSThreshold

Not applicable ibm-idsScanActionAuxClass ibm-idsSSInterval

Not applicable ibm-idsScanActionAuxClass ibm-idsSSThreshold

Not applicable ibm-
idsScanSensitivityActionAux

Class

ibm-idsSensitivity

Not applicable ibm-
idsScanExclusionActionAux

Class

ibm-idsScanExclusion

Also, for more information about policy schema definition files, see Chapter 21,
“Intrusion Detection Services (IDS) policy” on page 733.

Examples
For an example of the PolicyAction statement, see
/usr/lpp/tcpip/samples/pagent.conf.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 699

ServiceCategories statement
The ServiceCategories statement specifies the Type of Service that a flow of IP
packets (for example, from a TCP connection, or UDP data) should receive end to
end as they traverse the network. ServiceCategories can be repeated, with each
having a different name so that they can be referenced later.

Note: This statement defines a Version 1 policy action.

Syntax

�� ServiceCategories name Place Braces and Parameters on Separate Lines �

Place Braces and Parameters on Separate Lines:

{
ServiceCategories Parameters

}

ServiceCategories Parameters:

MaxRate Kbps MinRate Kbps MaxDelay milliseconds
�

�
Interface all

Interface addr

OutgoingTOS 0

OutgoingTOS n MaxConnections n
�

�
DaysOfWeekMask 1111111

DaysOfWeekMask n

1

TimeOfDayRange 0-24

TimeOfDayRange n

�

�
FlowServiceType ControlledLoad

FlowServiceType ControlledLoad
Guaranteed

MaxRatePerFlow Kbps
�

�
MaxTokenBucketPerFlow Kbps MaxFlows n

Parameters
name

A 1- to 32-character string for the name of this service category.

MaxRate
An integer value representing the maximum rate in kilobits per second (Kbps)
allowed for traffic in this service class. This attribute is only valid for TCP. If not
specified or specified as 0, there will not be any enforcement of the maximum
rate of a connection by the local host. If a number other than 0 is specified,
each TCP connection that is mapped to this ServiceCategories will have its rate
limited to this MaxRate. Enforcement of the MaxRate is performed by the
TCP/IP stack by adjusting the TCP congestion window based on the connection

700 z/OS V1R4.0 CS: IP Configuration Reference

round-trip time (the rate is obtained by taking the congestion window and
dividing it by the round-trip time; pay attention to the units, for example, byte
versus bit, second versus millisecond). Because the minimum of the congestion
window is one TCP segment size, the minimum of the MaxRate that can be
enforced is one TCP segment over the round-trip time. If a TCP connection has
a very small round-trip delay and traverses over a very high bandwidth network
(for example, Gbit Ethernet LAN), the minimum rate that this TCP connection
can send (one segment per round-trip time) can be high. Therefore, users and
network administrators need to know their network characteristics when setting
this MaxRate; it may not be enforceable if the minimum TCP rate (for example,
one segment over round-trip time) already exceeds this specified MaxRate. As
noted, TCP segment size can play a role in this TCP minimum rate; that is, for
a given round-trip delay, the larger the segment size the higher the minimum
TCP rate. There are different factors that can affect the TCP segment size, such
as the local MTU size definition, the Path MTU discovery flow (for example, this
mechanism is used to discover the maximum MTU size that can be sent into
the network without resulting in IP fragmentation), the receivers maximum
segment size, and so on.

MinRate
An integer value representing the minimum rate or throughput (Kbps) allowed
for traffic in this service class. This attribute is only valid for TCP. If not specified
or specified as 0, there will not be any enforcement on the minimum rate of a
connection by the local host. If a number other than 0 is specified, the rate for
any TCP connection that is mapped to this ServiceCategories will not fall below
this MinRate, unless the network is really congested and by maintaining the
minimum rate the network throughput might collapse. Enforcement of the
MinRate is performed by the TCP/IP stack by manipulating the congestion
window over the connection round-trip time. Unlike the enforcement of
MaxRate, if TCP minimum rate due to the segment size or the round-trip time,
or both, is already high, and the specified MinRate is already below this rate, it
will not be necessary for the TCP/IP stack to enforce the MinRate.

MaxDelay
An integer value representing the maximum delay (in milliseconds) allowed for
traffic in this service class. This attribute is only valid for TCP. Note the TCP/IP
stack does not enforce this delay. It is mainly used by the SNMP SLA subagent
to track the service level agreements specified in the policy and to send traps
whenever the MaxDelay attribute is violated.

Interface
The local IP subnet (for example, HOME statements) for which this service
category applies. The default is all interfaces.

OutgoingTOS
Eight bits, left-justified, representing the ToS value of outbound traffic belonging
to this service class. The default is 0.

MaxConnections
An integer value representing the maximum number of end to end connections
at any instant in time. This attribute is only valid with TCP. It places a limit on
the number of TCP connections mapped to this ServiceCategories that can be
active at a time. If there is a request for a new TCP connection that maps to
this ServiceCategories and this limit is exceeded, the connection request is
rejected. The default is that there is no policy limit. The MaxConnections
attribute is enforced by the TCP/IP stack. If the connection request comes from
a remote client, a TCP RST segment is returned to notify the client that the
connection is refused. The number of rejected connections is kept and can be

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 701

retrieved by the netstat command with -j option. If the connection request
comes from an application in the local host (for example, using a connect
socket call), a return code of permission denied is returned.

DaysOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this service policy is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time of day during which this service
policy is active. Intervals are separated by a comma. Time starts at 0, which is
right after midnight. Hours and minutes can be specified, separated by a colon.
For example, the following statement would result in this policy being active
after midnight until 8:30 AM, and from 5:30 PM until midnight:
TimeOfDayRange 0-8:30, 17:30-24

The default is 24 hours.

FlowServiceType
Limits the Type of Service being requested by RSVP applications. Valid values
are ControlledLoad (the default) and Guaranteed. Guaranteed service is
considered to be greater than ControlledLoad service. If ControlledLoad service
is specified, and an application requests Guaranteed, the requested service will
be downgraded to ControlledLoad. If you want to allow RSVP applications to
request Guaranteed service, then specify Guaranteed for this parameter. All
RSVP parameters, FlowServiceType, MaxRatePerFlow,
MaxTokenBucketPerFlow, and MaxFlows are enforced by the RSVP daemon
application and not by the TCP/IP stack. The TCP/IP stack, however, will keep
traffic statistics of RSVP policies, which can be retrieved by using netstat
command with the option -j.

MaxRatePerFlow
Specifies the maximum rate in kilobits per second for RSVP flows. RSVP
reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:

v r is the token bucket rate in bytes per second.

v b is the token bucket depth in bytes.

v p is the peak rate in bytes per second.

v m is the minimum packet size in bytes.

v M is the maximum packet size (MTU) in bytes.

Use this parameter to limit the r value of the Tspec. If an RSVP sender
application requests a Tspec r value larger than this parameter, the request will
be downgraded to this parameter value.

RSVP receiving applications also specify a resource specification (Rspec) when
using Guaranteed service, as part of the reservation request. The Rspec
consists of the following values:

v R is the rate in bytes per second.

v S is the slack term in microseconds.

This parameter is also used to limit the R value of the Rspec for reservation
requests from RSVP receiver applications using Guaranteed service.

Note: This parameter is specified in kilobits per second, while the Tspec and
Rspec use bytes per second. To arrive at a compatible specification,

702 z/OS V1R4.0 CS: IP Configuration Reference

multiply the desired Tspec or Rspec value by 8, then divide by 1000. For
example, to specify a Tspec r value of 500000 bytes per second, specify
a MaxRatePerFlow value of 4000 (500000 * 8 / 1000 = 4000).

The default for this parameter is a system defined maximum.

MaxTokenBucketPerFlow
Specifies the maximum token bucket size in kilobits per second for RSVP flows.
RSVP reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:

v r is the token bucket rate in bytes per second.

v b is the token bucket depth in bytes.

v p is the peak rate in bytes per second.

v m is the minimum packet size in bytes.

v M is the maximum packet size (MTU) in bytes.

This parameter is used to limit the b value of the Tspec. If an RSVP sender
application requests a Tspec b value larger than this parameter, the request will
be downgraded to this parameter value.

Note: This parameter is specified in kilobits, while the Tspec uses bytes. To
arrive at a compatible specification, multiply the desired Tspec value by
8, then divide by 1000. For example, to specify a Tspec b value of 75000
bytes, specify a MaxTokenBucketPerFlow value of 600 (75000 * 8 / 1000
= 600).

The default for this parameter is a system defined maximum.

MaxFlows
Specifies the maximum number of reserved flows allowed for RSVP
applications. The default is no limit on the number of reserved flows.

Examples
Following is an example of the ServiceCategories Version 1 Action statement.
ServiceCategories V1Action
{
PolicyScope Both
MaxRate 10000
MinRate 2000
MaxTokenBucket 5000
Interface 9.67.116.98
OutgoingTOS 11100000
MaxDelay 50
MaxConnections 100
DaysOfWeekMask 1111111
TimeOfDayRange 08:00-13:45,13:50-24:00
FlowServiceType Guaranteed
MaxRatePerFlow 440# 55000 bytes/second
MaxTokenBucketPerFlow 48 # 6000 bytes
MaxFlows 10
}

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 703

PolicyRule statement
The PolicyRule statement specifies characteristics of IP packets that are used to
map to a corresponding policy action. It defines a set of IP datagrams that should
receive a particular service.

Note: This statement defines a Version 2 policy rule.

Syntax

�� PolicyRule name Place Braces and Parameters on Separate Lines �

Place Braces and Parameters on Separate Lines:

{
PolicyRule Parameters

}

PolicyRule Parameters:

PolicyRulePriority n

SourceAddressRange all

SourceAddressRange address address
�

�
DestinationAddressRange all

DestinationAddressRange address address

SourcePortRange all

SourcePortRange n n
�

�
DestinationPortRange all

DestinationPortRange n n

ProtocolNumberRange all

ProtocolNumberRange n
�

�
InboundInterface all

InboundInterface n

OutboundInterface all

OutboundInterface n
�

�
ApplicationName all

ApplicationName name ApplicationData string
�

�
ApplicationPriority n ConditionTimeRange range

�

�
MonthOfYearMask 111111111111

MonthOfYearMask n

DayOfMonthMask 31 n’s

DayOfMonthMask 62 n’s
�

�
DayOfWeekMask 1111111

DayOfWeekMask n

TimeOfDayRange 0-24

TimeOfDayRange n
�

704 z/OS V1R4.0 CS: IP Configuration Reference

�

1 PolicyActionReference name

ForLoadDistribution FALSE

ForLoadDistribution
TRUE
FALSE

Parameters
name

A 1– to 32–character string for the name of this policy rule.

PolicyRulePriority
PolicyRulePriority specifies the location of the PolicyRule entry in the PolicyRule
list. This entry is an integer type field. PolicyRulePriority allows the stack to
determine the rule to be used. If multiple rules have the same priority, then the
most closely matched rule will get priority. If the match criteria is equal, the rule
that gets mapped is unpredictable. Only one policy is ever mapped, per scope.
The maximum value for this attribute is 255. If this attribute is specified, the
computed priority of the rule will be the specified value plus 100. If this attribute
is not specified, the computed priority of the rule will be determined by the
number of selection criteria specified, but will always be less than 100. The
higher the number defined, the higher the assigned priority.

SourceAddressRange
Specifies the source addresses of the sender of the traffic flow. The destination
of the data can be the client or the server. For TCP connections, the destination
of the connection is the client. For inbound connections or traffic, the source is
the remote device. For outbound connections or traffic, the source is this host.

Note: When the source address range is specified on an LDAP server using
the syntax that means all local addresses, loopback and loopback-like
traffic (for example, otracert from and to a local address), it will not be
mapped due to performance reasons. However, the interface attribute
can be specified in addition to the source address to accomplish this
mapping.

DestinationAddressRange
Specifies the destination addresses of the receiver of the traffic flow. The
destination of the data may be the client or the server. For inbound connections
or traffic, the destination of the connection is this host. For outbound
connections or traffic, the destination of the connection is the remote device.

Note: When the destination address range is specified on an LDAP server
using the syntax that means all local addresses, loopback and
loopback-like traffic (for example, otracert from and to a local address), it
will not be mapped due to performance reasons. However, the interface
attribute can be specified in addition to the destination address to
accomplish this mapping.

SourcePortRange
The source port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive. The source of the data can be
the client or the server. For inbound connections or traffic, the source is the
remote device. For outbound connections or traffic, the source is this host.

DestinationPortRange
The destination port range. This field consists of two port numbers, separated
by a space, where the first port number is less than or equal to the second port

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 705

number. The default is 0, which is all inclusive. The destination of the data can
be the client or the server. For inbound connections or traffic, the destination is
this host. For outbound connections or traffic, the destination is the remote
device.

ProtocolNumberRange
This attribute specifies the protocol range for which this policy rule applies. The
format is i1:i2, where i2 >=i1. The maximum value for this attribute is 255. The
minimum value is 0, and the default is all protocols.

InboundInterface
This is an IP address format field of B.B.B.B, where B is an integer value of a
byte (for example, 0 =< B =< 255). This attribute specifies the inbound local IP
subnet for which this policy rule applies. The default is all interfaces.

Note: InboundInterface and OutboundInterface attributes should not be
specified for the same rule, because that would imply a function that is
provided by a router.

OutboundInterface
This is an IP address format field of B.B.B.B, where B is an integer value of a
byte (for example, 0 =< B =< 255). This attribute specifies the outbound local IP
subnet for which this policy rule applies. The default is all interfaces.

Note: InboundInterface and OutboundInterface attributes should not be
specified for the same rule, because that would imply a function that is
provided by a router.

ApplicationName
ApplicationName is a field of type string (up to eight characters) that specifies
the job name of the application. Names longer than eight characters are silently
truncated. A trailing asterisk indicates a wildcard specification. For example, if
″FTPD*″ is specified, job names of ″FTPD″ and ″FTPD1″ will match. Note that
the application name maps to the sending application for outbound data, and to
the receiving application name for inbound data. The name specified here is not
case sensitive, and is translated to uppercase before being compared to
application names.

The default is all applications.

ApplicationData
This string field of up to 128 characters specifies the application selector data
(for example, a URI for the Internet). Strings longer than 128 characters are
silently truncated. Conceptually, this is a virtual URL or URL template that is
used for selection; it is not necessarily the entire URL. The string specified here
is case sensitive.

This parameter is matched against a token provided by application programs.
This token may be implicitly provided by users of the Fast Response Cache
Accelerator (FRCA) function, in which case the token is a web URI. It may also
be explicitly provided by applications using the sendmsg() function with QoS
classification ancillary data. Refer to z/OS Communications Server: IP
Programmer’s Reference for more details on this support. Note that the
specified character string can be a subset of the application-defined token.
Specified URIs should begin with the first character of the path component of
the URL. For example, to select a URL of
http://www.ibm.com:80/account/order.html, specify the following:
ibm-ApplicationData = /account/order.html

706 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|

Granularity can be determined when defining policy rules based on application
defined data. For example, if the installation wants to assign a service level for
all URLs under the account path, specify:
ibm-ApplicationData = /account

This specification would match all URls beginning with /account (for example,
/account/order/info.html).

Notes:

1. When URIs are specified for Web Server requests, they have an affect on
both static and dynamic content (assuming that the corresponding Web
Server support is installed).

2. This parameter provides the ability to specify rules that match the
application-defined token specified by any applications that are providing
QoS application classification data. For more information, refer to z/OS
Communications Server: IP Application Programming Interface Guide.

ApplicationPriority n
Specifies the QoS service level assigned for each application-specified priority
and can have the following values:

0 Any application priority. This specification will match any
application-specified priority value.

1 Specifies EXPIDITED priority.

2 Specifies HIGH priority.

3 Specifies MEDIUM priority.

4 Specifies LOW priority.

5 Specifies BESTEFFORT priority.

Note: ApplicationPriority is used to select traffic with a matching
application-specified priority value. It does not assign a QoS service level
to the traffic. That function is provided by the corresponding PolicyAction.

For more information on providing classification data for differentiated services
policies from an application, refer to z/OS Communications Server: IP
Programmer’s Reference.

ConditionTimeRange
This field specifies an overall range of calendar dates and times over which a
policy rule is valid. It is a string consisting of a start date and time, then a colon
(:) followed by an end date and time. The first date indicates the beginning of
the range, and the second date indicates the end of the range. Thus, the
second date and time must be later than the first. Dates are expressed as
substrings of the form yyyymmddhhmmss. Seconds are rounded to the nearest
minute. All dates and times are converted internally to the Posix time format, so
you must not specify dates and times before the start of the Posix epoch, which
is January 1, 1970, 00:00:00 UTC.

For example, 20010101080000:20010131120000 is January 1, 2001, 0800
through January 31, 2001, noon.

Notes:

1. The internal Posix time format is expressed in terms of seconds since the
epoch, which means the time wraps sometime early in the year 2038.
Therefore, do not specify dates or times later than this.

2. All dates and times refer to local time.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 707

|
|
|

MonthOfYearMask
This string field specifies which months of the year the policy rule is valid. This
attribute is formatted as a string containing 12 0’s and 1’s, where the 1’s identify
the months (beginning with January) in which the policy rule is valid. The value
000010010000, for example, indicates that a policy rule is valid only in the
months May and August. If this attribute is omitted, then the policy assumes
that it is valid for all twelve months.

DayOfMonthMask
This string field specifies which days of the month the policy rule is valid. The
day of month mask can be 31 or 62 bits. The second 31 bits specify the days of
the month in reverse order. Bit 32 is the last day of the month, bit 33 is the
second from last day of month, and so on. This attribute is formatted as a string
containing 31 or 62 0’s and 1’s, where the 1’s identify the days of the month in
which the policy rule is valid. The value 111000000000000000000000000000,
for example, indicates that a policy rule is valid only on the first three days of
each month. For months with less than 31 days, the digits corresponding to the
missing days are ignored.

The default is every day of the month.

DayOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this policy rule is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time of day during which this policy
rule is active. Intervals are separated by a comma. Time starts at 0, which is
right after midnight. Hours and minutes can be specified, separated by a colon.
For example, the following statement would result in this policy rule being active
after midnight until 8:30 AM, and from 5:30 PM until midnight:
TimeOfDayRange 0-8:30, 17:30-24

The default is 24 hours.

PolicyActionReference
Indicates the name of a policy action from a policy action statement (for
example, interactive) that this policy rule uses.

A maximum of four action references can be specified.

ForLoadDistribution
Specifies whether or not the policy rule is intended for Sysplex Distribution.
Valid values are TRUE and FALSE. The default is FALSE. When TRUE is
specified, the policy rule is used on Sysplex Distributor distributing stacks to
route connection requests inbound from the network to one or more target
stacks.

Table 48 provides mapping of the PolicyRule statement parameters to LDAP object
classes and attributes.

Table 48. PolicyRule mapping to LDAP

PolicyRuleStatement
parameter

LDAP object class LDAP attribute

PolicyRulePriority ibm-policyRule ibm-policyRulePriority

PolicyActionReference ibm-policyRule ibm-policyRuleActionList

Not applicable ibm-policyRule ibm-policyRuleEnabled

708 z/OS V1R4.0 CS: IP Configuration Reference

Table 48. PolicyRule mapping to LDAP (continued)

PolicyRuleStatement
parameter

LDAP object class LDAP attribute

Not applicable ibm-policyRule ibm-
policyRuleConditionListType

Not applicable ibm-policyRule ibm-policyRuleConditionList

or

ibm-
policyRuleConditionListDN

Not applicable ibm-policyRule ibm-
policyRuleValidityPeriodList

Not applicable ibm-policyRule ibm-
policyRuleSequenceActions

Not applicable ibm-policyRule ibm-policyRoles

ForLoadDistribution ibm-policyGroupLoadDistribution

AuxClass

ibm-
policyGroupForLoadDistribution

SourceAddressRange ibm-hostConditionAuxClass ibm-sourceIPAddressRange

DestinationAddress

Range

ibm-hostConditionAuxClass ibm-
destinationIPAddressRange

SourcePortRange ibm-applicationConditionAuxClass ibm-sourcePortRange

DestinationPortRange ibm-applicationConditionAuxClass ibm-destinationPortRange

ProtocolNumberRange ibm-applicationConditionAuxClass ibm-protocolNumberRange

InboundInterface ibm-routeConditionAuxClass ibm-interface

OutboundInterface ibm-routeConditionAuxClass ibm-interface

ApplicationName ibm-applicationConditionAuxClass ibm-applicationName

ApplicationData ibm-applicationConditionAuxClass ibm-applicationData

ApplicationPriority ibm-applicationConditionAuxClass ibm-applicationPriority

Not applicable ibm-idsIPAttackConditionAuxClass ibm-idsIPOptionRange

Not applicable ibm-idsTransportConditionAuxClass ibm-idsLocalPortRange

Not applicable ibm-idsTransportConditonAuxClass ibm-idsRemotePortRange

Not applicable ibm-idsTransportConditonAuxClass ibm-idsProtocolRange

Not applicable ibm-idsHostConditionAuxClass ibm-idsLocalHostIPAddress

Not applicable ibm-idsHostConditionAuxClass ibm-idsRemoteHostIPAddress

ConditionTimeRange ibm-
policyTimePeriodConditionAuxClass

ibm-ptpConditionTime

MonthOfYearMask ibm-
policyTimePeriodConditionAuxClass

ibm-
ptpConditionMonthOfYearMask

DayOfMonthMask ibm-
policyTimePeriodConditionAuxClass

ibm-
ptpConditionDayOfMonthMask

DayOfWeekMask ibm-
policyTimePeriodConditionAuxClass

ibm-
ptpConditionDayOfWeekMask

TimeOfDayRange ibm-
policyTimePeriodConditionAuxClass

ibm-
ptpConditionTimeOfDayMask

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 709

Table 48. PolicyRule mapping to LDAP (continued)

PolicyRuleStatement
parameter

LDAP object class LDAP attribute

Not applicable ibm-
policyTimePeriodConditionAuxClass

ibm-ptpConditionTimeZone

Not applicable ibm-
policyTimePeriodConditionAuxClass

ibm-
ptpConditionLocalOrUtcTime

Also, for more information about policy schema definition files, see Chapter 21,
“Intrusion Detection Services (IDS) policy” on page 733.

Examples
For an example of the PolicyRule statement, see /usr/lpp/tcpip/samples/pagent.conf.

Usage notes
If PolicyRulePriority is specified, the weight of PolicyRule is equal to the specified
priority plus 100. Otherwise, the weight is determined by the number of parameters
that are specified in the PolicyRule. The parameters that affect this weight are:

v ApplicationName

v ApplicationData

v ApplicationPriority

v SourceAddressRange

v DestinationAddressRange

v SourcePortRange

v DestinationPortRange

v InboundInterface

v OutboundInterface

v Direction not equal to BOTH

v ProtocolNumberRange

710 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|

|

|

|

|

|

|

|

|

|

ServicePolicyRules statement
The ServicePolicyRules statement specifies characteristics of IP packets that are
used to map to a corresponding service category; it defines a set of IP datagrams
that should receive a particular service.

Note: This statement defines a Version 1 Service Policy Rule.

Syntax

�� ServicePolicyRules name Put Braces and Parameters on Separate Lines �

Put Braces and Parameters on Separate Lines:

{
ServicePolicyRules Parameters

}

ServicePolicyRules Parameters:

PolicyScope DataTraffic

PolicyScope DataTraffic
RSVP
Both

Direction Outgoing

Direction Incoming
Outgoing
Both

�

�
Permission Allowed

Permission Allowed
Blocked

ProtocolNumber all

ProtocolNumber n

Interface all

Interface addr
�

�
SourceAddressRange all

SourceAddressRange addr addr

DestinationAddressRange all

DestinationAddressRange addr addr
�

�
SourcePortRange all

SourcePortRange n n

DestinationPortRange all

DestinationPortRange n n
�

�
DaysOfWeekMask 1111111

DaysOfWeekMask n

TimeOfDayRange 0-24

TimeOfDayRange n
�

�

1 ServiceReference name

Parameters
name

A 1– to 32–character string for the name of this policy rule.

PolicyScope
Indicates to what traffic this policy rule applies. Valid values are DataTraffic,
RSVP, and Both. The default is DataTraffic. When RSVP (Resource reSerVation
Protocol, a network protocol running on top of IP) is specified, this policy only

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 711

applies to data that are specifically reserved by using RSVP. When DataTraffic
is specified, the policy applies to all other non-RSVP data.

Direction
Indicates the direction of traffic for which this policy rule applies. Valid values
are Incoming, Outgoing, and Both. The default is Outgoing.

It is important to note that policies are applied to TCP on a connection basis,
whereas they are applied to UDP/RAW on a per-packet basis. Therefore, the
Direction attribute is also mapped accordingly. More specifically, if a policy is
defined for TCP, the Direction attribute will apply to the direction of the
connection (inbound if the local 390 host is to receive the connection request,
such as incoming TCP SYN segments). If a policy is defined for UDP/RAW,
Direction will apply to individual packets.

Permission
Indicates whether packets belonging to this policy rule should be discarded or
allowed to proceed. Valid values are Allowed and Blocked. The default is
Allowed.

ProtocolNumber
This is a 1-byte field in the IP header to identify the protocol running on top of
IP. Common protocols are UDP and TCP. For UDP, TCP, and RAW, this field
can be specified with these names. For others, a number has to be specified
(for example, 1 for ping). The default is all protocols.

Interface
The local IP subnet for which this policy rule applies. The default is all
interfaces.

SourceAddressRange
The local IP address range. This field consists of two addresses, separated by
a space, where the first address is less than or equal to the second address.
The default is 0, which is all inclusive.

SourceAddressRange is the address range of addresses that are local to the
390 host (for example, defined by way of HOME statements in the TCP/IP
configuration).

DestinationAddressRange
The remote IP address range. This field consists of two addresses, separated
by a space, where the first address is less than or equal to the second address.
The default is 0, which is all inclusive.

DestinationAddressRange is the address range of the remote hosts that are
communicating with the local 390 host.

SourcePortRange
The local port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive.

SourcePortRange contains the port range of the remote hosts that are
communicating with the local 390 host.

DestinationPortRange
The remote port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive.

DestinationPortRange contains the address range of the remote hosts that are
communicating with the local 390 host.

712 z/OS V1R4.0 CS: IP Configuration Reference

DaysOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this policy rule is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time of day during which this policy
rule is active. Intervals are separated by a comma. Time starts at 0, which is
right after midnight. Hours and minutes can be specified, separated by a colon.
For example, the following statement would result in this policy rule being active
after midnight until 8:30 AM, and from 5:30 PM until midnight:
TimeOfDayRange 0-8:30, 17:30-24

The default is 24 hours.

ServiceReference
Indicates the name of a service category from a service category statement (for
example, interactive) that this policy rule uses. One or more service category
names can be specified to associate this policy rule with different interfaces or
different service policies depending, for example, on the time when each of
those service policies are active.

Examples
Following is an example of the ServicePolicyRules Version 1 statement.
ServicePolicyRules V1Rule
{
PolicyScope Both
Direction Both
Permission Allowed
ProtocolNumber TCP
Interface 9.67.116.98
SourceAddressRange 9.67.100.7.9.67.100.11
DestinationPortRange 100-5000
DaysOfWeekMask 1111111
TimeOfDayRange 08:00-23:00
ServiceReference V1Action
}

Usage notes
The weight of ServicePolicyRules is determined by the number of parameters that
are specified in the ServicePolicyRules. The parameters that affect this weight are:

v SourceAddressRange

v DestinationAddressRange

v SourcePortRange

v DestinationPortRange

v Interface

v ProtocolNumber

v Direction not equal to BOTH

v PolicyScope not equal to BOTH

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 713

|
|
|

|

|

|

|

|

|

|

|

PAGENT search order
The search order for accessing PAGENT.CONF information is as follows. The first
file found in the search order is used.

1. File or data set specified with the -c startup option

2. File or data set specified with the PAGENT_CONFIG_FILE environment variable

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

Starting PAGENT from the z/OS shell
The pagent executable resides in /usr/lpp/tcpip/sbin. There is also a link from
/usr/sbin. Make sure your PATH statement contains either /usr/sbin or
/usr/lpp/tcpip/sbin.

�� pagent
-c/C filename -d/D n -i/I -t/T tlevel -l/L logfile &

�

Note: The options can be in either upper- or lowercase (for example, C or c).

PAGENT should be run in the background to avoid tying up the shell session. To do
this, add a trailing & to the command line used to start PAGENT.

Parameters

-c/C
The -c/C option allows a policy configuration file name to be specified. If it is not
specified, the configuration file is located using the search order.

This can be an HFS or MVS file.

-d/D n
When -d is specified, all debug messages are logged in the Policy Agent log
file. If -d is not used, log messages are written to the Policy Agent log file as
specified by the LogLevel configuration statement. The log file should be the
first place checked for error messages.

n is an integer that specifies the level of debugging. Specify a desired debug
level or a combination of levels. If this start option is absent, the default level is
0. To combine debug levels, add debug level numbers. For example, to request
BASE messages (level 1) and Sysplex Summary Messages (Level 4), you
would request a debug level of 5 (for example, -d 5).

0 None. No debug messages are logged. This is the default.

1 Base. The Policy Agent logs internal debug information.

Note: When this level is selected, the Policy Agent also uses the
maximum LogLevel value, regardless of what is configured.

2 LDAP. The Policy Agent logs information about each LDAP object
attribute that is processed.

4 Sysplex Summary. The Policy Agent logs summary information
concerning performance monitor QoS fraction calculations at target
stacks.

8 Sysplex Detail. The Policy Agent logs detailed information concerning

714 z/OS V1R4.0 CS: IP Configuration Reference

performance monitor QoS fraction calculations at target stacks, and
additional Sysplex Distributor information.

-i/I When specified, the Policy Agent monitors its local files (all configuration files)
in real time for changes. The time interval configured on the TcpImage
statement is also used to monitor configuration files and the LDAP server for
updates. Use of the -i/I option provides the following benefit:

v More timely updating of policy statements when a configuration file is
changed

Notes:

1. You can cause an immediate refresh of policy from the LDAP server by
changing the configuration file, which causes the file to be reread. If the file
is configured to read policy from the LDAP server, PAGENT does so at that
time.

2. Dynamic monitoring is only supported for HFS files; MVS data sets are not
monitored for changes (these files are reread at each refresh interval).

-t/T
The -t/T options specify whether to turn on LDAP client debugging. The
following levels are supported:

0 No LDAP client debugging. This is the default.

1 This level turns on LDAP client debugging. Note that the destination of
LDAP client debug messages is stderr. This is controlled by the LDAP
client library, not the Policy Agent. This turns on the following LDAP
DEBUG Options (For details on debug options, refer to z/OS Security
Server LDAP Client Application Development Guide and Reference):

v LDAP_DEBUG_TRACE

v LDAP_DEBUG_PACKETS

v LDAP_DEBUG_ARGS

v LDAP_DEBUG_CONNS

v LDAP_DEBUG_BER

v LDAP_DEBUG_FILTER

v LDAP_DEBUG_MESSAGE

v LDAP_DEBUG_STATS

v LDAP_DEBUG_THREAD

v LDAP_DEBUG_PARSE

v LDAP_DEBUG_PERFORMANCE

v LDAP_DEBUG_REFERRAL

v LDAP_DEBUG_ERROR

Note: If PAGENT was started with the trace option disabled, then the output
destination of stderr will be closed. This option cannot later be enabled
by using the modify command.

-l/L logfile
The -l/L option can be used to specify the destination of the log output file.
Either an HFS file or SYSLOGD can be specified. The environment variable
PAGENT_LOG_FILE also specifies the destination of the log file, using the
same format as this option. The -l/-L option overrides the PAGENT_LOG_FILE
environment variable. Another environment variable,
PAGENT_LOG_FILE_CONTROL, specifies the number and size of log files (if
SYSLOGD is not specified). The format is:

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 715

PAGENT_LOG_FILE_CONTROL=x,y where x is the log file size (kilobytes). A
maximum value of 1 000 000 can be specified. y is the number of log files. The
default is 3 log files, each 300 kilobytes in size.

The default is /tmp/pagent.log.

Starting PAGENT as a started task
Use the S PAGENT command on an MVS console or SDSF to start PAGENT. A
sample procedure is shipped in member EZAPAGSP in hlq.SEZAINST. All of the
information regarding default locations for the configuration and log files is the same
as for starting from the z/OS shell. Following is a copy of the sample procedure:

//PAGENT PROC
//*
//* IBM Communications Server for OS/390
//* SMP/E distribution name: EZAPAGSP
//*
//* 5647-A01 (C) Copyright IBM Corp. 1998, 2000
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV2R10
//*
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/&’
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c /
//* etc/pagent3.conf -l SYSLOGD’
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* PAGENT_CONFIG_FILE=/etc/pagent2.conf
//* PAGENT_LOG_FILE=/tmp/pagent2.log
//*
//* For information on the above environment variables, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.PAGENT.ENV(PAGENT),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/pagent.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, PAGENT doesn’t write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the PAGENT_LOG_FILE environment variable, and defaults to
//* /tmp/pagent.log. When the -d parameter is specified, however,
//* output is also written to stdout.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 17. PAGENT sample procedure

716 z/OS V1R4.0 CS: IP Configuration Reference

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

Starting the SLA subagent from the z/OS shell
The SLA Subagent executable resides in /usr/lpp/tcpip/sbin. There is also a link
from /usr/sbin. Make sure your path statement (in the profile) contains either
/usr/sbin or /usr/lpp/tcpip/sbin.

Syntax

�� pagtsnmp 1

-d n
-o
-c community
-P port
-p tcpipProcName
-t cacheTime

�

Parameters

-d n
Specifies that the subagent should run in debugging mode. The following
modes are supported:

1 Internal debugging messages are written.

2 Internal debugging messages, output from the ioctls issued to the stack,
DPIdebug() level 2, and Policy Agent API output are written.

Output from the -d parameter is written to syslogd or stdout depending on the
-o parameter. The debug level can be dynamically changed using a MODIFY
command.

-o Specifies that debug output should be written to stdout. The default is to write to
syslogd.

-c community
A character string of up to 32 characters used as the SNMPv1 community name
(or password) in establishing contact with the SNMP Agent. For pagtsnmp to
communicate with the z/OS CS SNMP Agent, the community name specified on
the -c startup option must match one that is defined in a data set configured to
the SNMP Agent (or defaulted) on the -c parameter when the SNMP Agent is
started. The default value is public.

-P port
A port number in the range of 1 to 65535 used in establishing communication
with the SNMP Agent. For pagtsnmp to communicate with the z/OS CS SNMP
Agent, the port number specified must match the port number specified (or
defaulted) on the -p parameter when the SNMP Agent is started. The default
value is 161.

-p tcpipProcName
The tcpipProcName is an 8-byte procedure name that is used to start TCP/IP. If
this parameter is not specified, pagtsnmp uses the standard resolver
configuration search order to determine this parameter.

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 717

-t cacheTime
Amount of time in seconds to elapse before rebuilding the MIB object tables.

Starting the SLA subagent as a started task
Use the S PAGTSNMP command on an MVS console or SDSF to start the SLA
subagent. A sample procedure is shipped in member EZAPAGSN in hlq.SEZAINST.
Following is a copy of the sample procedure:

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

//PAGTSNMP PROC
//*
//* SecureWay Communications Server IP
//* SMP/E distribution name: EZAPAGSN
//*
//* 5647-A01 (C) Copyright IBM Corp. 1999.
//* Licensed Materials - Property of IBM
//*
//PAGTSNMP EXEC PGM=PAGTSNMP,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/’
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c p
//* ublic -P 1234’
//*
//* Provide environment variables to run with the desired stack. As
//* an example, the data set or file specified by STDENV could
//* contain:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA)’
//*
//* For information on the above environment variable, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.PAGTSNMP.ENV(PAGTSNMP),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/pagtsnmp.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, PAGTSNMP doesn’t write output to stdout or stderr.
//* Instead, output is written to syslogd. When the -o parameter
//* is specified, however, output is written to stdout instead of
//* syslogd.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 18. PAGTSNMP sample procedure

718 z/OS V1R4.0 CS: IP Configuration Reference

Starting the traffic regulation manager daemon (TRMD) from the z/OS
shell

TRMD is used with Traffic Regulation (TR) and Intrusion Detection (IDS) policy to
write event messages and statistics to the syslog daemon (syslogd).

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable
described in the z/OS UNIX System Services User’s Guide.

Change the TZ specification in /etc/profile or export TZ=″0″ before starting TRMD if
you want the timestamp to appear in Coordinated Universal Time (UTC).

The resolver configuration file is used to determine the stack that TRMD will use.

Syntax

�� trmd
-d n

�

Parameters

-d n
Specifies that the TRMD should run in debugging mode. The following modes
are supported:

1 Internal debugging messages are written.

2 Internal and API debugging messages are written.

3 Internal debugging messages and output from the ioctls issued to the
stack are written.

Output is written to syslogd.

Starting the traffic regulation manager daemon (TRMD) as a started
task

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable
described in z/OS UNIX System Services User’s Guide.

If you want the timestamp to appear in coordinated universal time (UTC) specify the
TZ environment variable in the start TRMD procedure. For example:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib"’,
// ’"TZ=0")/-d 1’)

Use the S TRMD command on an MVS console or SDSF to start the TRM daemon.
A sample procedure is shipped in member EZATRMD in hlq.SEZAINST.
//TRMD PROC

//*
//* IBM Communications Server for OS/390
//* SMP/E distribution name: EZATRMDP
//*
//* 5694-A01 (C) Copyright IBM Corp. 1996, 2001.
//* Licensed Materials - Property of IBM

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 719

//* "Restricted Materials of IBM"
//* Status = CSV1R2
//*
//* Function: Sample procedure for running the Traffic
//* Regulator Management Daemon (TRMD)
//*
//TRMD EXEC PGM=EZATRMD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib")/’)
//*
//*** Notes:
//*
//* - TRMD can also be invoked from the Unix System Services shell
//* as a shell command: trmd
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//*
//* - To pass parameters to TRMD, specify them after the final slash
//* on the PARM statement. For example:
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("LIBPATH=/usr/lib")/-d 1’)
//*
//* - TRMD must find the TCP/IP job name with which it should be
//* associated. It uses the TCPIPJOBNAME value from the TCPIP.DATA
//* file. The TCPIP.DATA file used can be controlled by setting the
//* RESOLVER_CONFIG environment variable. See examples below.
//*
//*** Examples for specifying configuration data sets
//*
//* Example 1: TCPIP.DATA in partioned data set
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("RESOLVER_CONFIG=//’’SYS1.TCPPARMS(TCPDATA)’’")/’)
//*
//* Example 2: TCPIP.DATA in HFS file
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("RESOLVER_CONFIG=/etc/resolv.conf")/’)
//*
//* Example 3: Specification of data sets via STDENV DD statement
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("_CEE_ENVFILE=DD:STDENV")/’)
//*
//* For this method, the STDENV DD statement below must be
//* changed to point to a data set containing settings for any
//* environment variables. For example, it can contain
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA)’
//* LIBPATH=/usr/lib:
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM= statement.
//*
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

720 z/OS V1R4.0 CS: IP Configuration Reference

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

Figure 19. TRMD sample procedure

Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent 721

722 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 20. RSVP agent

Note: IPv6 support is not provided for RSVP agent at this time.

For related information about RSVP Agent, refer to the policy based networking
information in z/OS Communications Server: IP Configuration Guide.

RSVP configuration file
The RSVP Agent uses the following search order to locate the configuration file
(highest priority is listed first):

v HFS file or MVS data set specified by the -c startup option. The syntax for an
HFS file is ’/dir/file’ and the syntax for an MVS data set is
″//’MVS.DATASET.NAME’″.

v HFS file or MVS data set specified with the RSVPD_CONFIG_FILE environment
variable.

v /etc/rsvpd.conf HFS file.

v ’hlq.RSVPD.CONF’ MVS data set.

Note: If this file is not present, RSVP is enabled on all network interfaces with
default parameters.

© Copyright IBM Corp. 2000, 2002 723

|

LogLevel statement
The LogLevel statement specifies the level of tracing.

Syntax

�� LogLevel i �

Parameters
i

An integer that specifies the level of logging/tracing. The supported levels are:

v 1 - SYSERR - System error messages

v 2 - OBJERR - Object error messages

v 4 - PROTERR - Protocol error messages

v 8 - WARNING - Warning messages

v 16 - EVENT - Event messages

v 32 - ACTION - Action messages

v 64 - INFO - Informational messages

v 128 - ACNTING - Accounting messages

v 256 - TRACE - Trace messages

Usage notes
Specify a desired log level or a combination of levels. If this statement is absent,
the default level is 15.

To combine log levels, add log level numbers. For example, to request SYSERR
messages (level 1) and EVENT messages (level 16), you would request log level
17.

Examples
The following example turns on all trace levels for RSVP.

LogLevel 511

724 z/OS V1R4.0 CS: IP Configuration Reference

TcpImage statement
The TcpImage statement identifies the name of the stack to which the RSVP agent
should establish affinity.

If this statement is absent, the RSVP agent establishes affinity with the default
stack.

Syntax

�� TcpImage name �

Parameters
name

The name of the TCP/IP image. The name must be one to eight characters.

Examples
TcpImage TCPCS2

Chapter 20. RSVP agent 725

Interface statement
The Interface statement makes available to the RSVP agent one or more of the
network interfaces of the local host.

If this statement is absent, none of the network interfaces are available to the RSVP
agent.

Syntax

��
ENABLED

Interface ALL See Note 1
OTHERS off
ip_address ENABLED

DISABLED

�

Note 1: Place braces and parameters on separate lines:

{
Interface parameters

}

Interface Parameters:

ENABLED
TrafficControl

off
ENABLED
DISABLED

Parameters
IP_address

The IP address (dotted decimal format) of the interface. You can choose a
specific interface IP address such as all, which means all configured interfaces
(currently configured on the HOME statement or dynamically added in the
future), or others, which means all interfaces except those previously
configured.

In the following example, all interfaces except 9.10.11.12 would be enabled.

Interface 9.10.11.12 Disabled
Interface others Enabled

Enabled
Specifies that RSVP should use this interface.

Disabled
Specifies that RSVP should not use this interface.

Off
Specifies to ignore this statement.

TrafficControl
Specifies whether or not traffic control is in effect. When traffic control is

726 z/OS V1R4.0 CS: IP Configuration Reference

disabled, the RSVP agent does not install any filters (resource reservations). If
off is specified, the traffic control specification portion of the Interface statement
will be ignored.

Examples
Interface 9.23.78.13
{

trafficcontrol enabled
}

interface others disabled

interface all

Chapter 20. RSVP agent 727

RSVP statement
The RSVP statement enables RSVP processing on one or more of the network
interfaces of the local host.

If this statement is absent, RSVP processing is disabled on all network interfaces.

Syntax

��
ENABLED

RSVP ALL RSVP Parameters
OTHERS off
ip_address ENABLED

DISABLED

�

Put Braces and Parameters on Separate Lines:

{
RSVP Parameters

}

RSVP Parameters:

MaxFlows i

Parameters
IP_address

The IP address (dotted decimal format) of the interface. You can choose a
specific interface IP address such as all, which means all configured interfaces
(currently configured on the HOME statement or dynamically added in the
future), or others which means all interfaces except those previously configured.

In the following example, all interfaces except 9.10.11.12 would be enabled.

Interface 9.10.11.12 Disabled
Interface others Enabled

Enabled
Specifies that RSVP processing should use this interface.

Disabled
Specifies that RSVP processing should not use this interface.

Off
Specifies to ignore this statement.

MaxFlows
Specifies the maximum number of data flows.

i An integer defining the maximum number of data flows to be allowed using this
interface. The default is 32.

Examples
rsvp 87.13.112.6

{
maxflows 100
}

728 z/OS V1R4.0 CS: IP Configuration Reference

rsvp others

rsvp all

Chapter 20. RSVP agent 729

RSVPD.CONF search order
The search order for accessing RSVPD.CONF information is as follows. The first
file found in the search order is used.

1. HFS file or MVS data set specified by the -c startup option. The syntax for an
HFS file is ’/dir/file’ and the syntax for an MVS data set is
″//’MVS.DATASET.NAME’″.

2. HFS file or MVS data set specified with the RSVPD_CONFIG_FILE environment
variable.

3. /etc/rsvpd.conf HFS file.

4. ’hlq.RSVPD.CONF’ MVS data set.

Note: If this file is not present, RSVP is enabled on all network interfaces with
default parameters.

Starting RSVP from the z/OS shell
The rsvp executable resides in /usr/lpp/tcpip/sbin. There is also a link from /usr/sbin.
Make sure your path statement (in the profile) contains either /usr/sbin or
/usr/lpp/tcpip/sbin.

�� rsvpd
-c filename

�

-c The -c option allows an RSVP Agent configuration file to be specified. If it is not
specified, the configuration file is located using the search order.

Starting RSVP as a started task
Use the S RSVPD command on an MVS console or SDSF to start RSVP. A sample
procedure is shipped in member EZARSVPP in hlq.SEZAINST. All of the
information regarding default locations for the configuration and log files is the same
as for starting from the z/OS shell. Following is a copy of the sample procedure:

730 z/OS V1R4.0 CS: IP Configuration Reference

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

//RSVPD PROC
//*
//* SecureWay Communications Server IP
//* SMP/E distribution name: EZARSVPP
//*
//* 5647-A01 (C) Copyright IBM Corp. 1999.
//* Licensed Materials - Property of IBM
//*
//RSVPD EXEC PGM=RSVPD,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")
//’
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c /
//* etc/rsvpd25.conf’
//*
//* Provide environment variables to run with the desired stack and
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* RSVPD_CONFIG_FILE=/etc/rsvpd2.conf
//* RSVPD_LOG_FILE=/tmp/rsvpd2.log
//*
//* For information on the above environment variables, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.RSVPD.ENV(RSVPD2),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/rsvpd2.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, RSVPD doesn’t write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the RSVPD_LOG_FILE environment variable, and defaults to
//* /tmp/rsvpd.log.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 20. RSVP sample procedure

Chapter 20. RSVP agent 731

732 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 21. Intrusion Detection Services (IDS) policy

Note: IPv6 support is not provided for IDS policy at this time.

This chapter lists the LDAP object classes and attributes used to define IDS policy
objects. The default and allowable values for IDS-specific attributes are included, as
well as information showing the allowable combinations of attributes in various
types of IDS policies. See Appendix E, “LDAPv2 schema 2 definition files” on
page 967 for more information about object classes and their attributes. Refer to
z/OS Communications Server: IP Configuration Guide for additional guidance about
defining IDS policies.

The following Object classes are useful in building an LDAP tree structure of policy
groups of rules and policy repositories of reusable conditions and actions.

v objectclass ibm-policy

v objectclass ibm-policyGroup

v objectclass ibm-policyRepository

v objectclass ibm-policySubtreesPtrAuxClass

v objectclass ibm-policyGroupContainmentAuxClass

v objectclass ibm-policyRuleContainmentAuxClass

The following Object classes are useful in building IDS rule, condition association,
rule-specific condition, reusable condition, action association, rule-specific action
and reusable action objects.

v objectclass ibm-policyRule

v objectclass ibm-policyRuleConditionAssociation

v objectclass ibm-policyRuleActionAssociation

v objectclass ibm-policyInstance

v objectclass ibm-policyConditionInstance

v objectclass ibm-policyActionInstance

v objectclass ibm-policyConditionAuxClass

v objectclass ibm-policyActionAuxClass

v objectclass ibm-policyTimePeriodConditionAuxClass

The following Object classes are required for IDS-specific condition objects. These
classes are not permitted in QoS specific policies.

v objectclass ibm-idsConditionAuxClass

v objectclass ibm-idsAttackConditionAuxClass

v objectclass ibm-idsIPAttackConditionAuxClass

v objectclass ibm-idsTrafficRegulationConditionAuxClass

v objectclass ibm-idsScanConditionAuxClass

v objectclass ibm-idsScanEventConditionAuxClass

v objectclass ibm-idsTransportConditionAuxClass

v objectclass ibm-idsHostConditionAuxClass

The following Object classes are required for IDS-specific action objects. These
classes are not permitted in QoS specific policies.

v objectclass ibm-idsActionAuxClass

v objectclass ibm-idsNotificationAuxClass

© Copyright IBM Corp. 2000, 2002 733

|

v objectclass ibm-idsAttackActionsAuxClass

v objectclass ibm-idsTrafficRegulationActionAuxClass

v objectclass ibm-idsTRtcpActionAuxClass

v objectclass ibm-idsTRudpActionAuxClass

v objectclass ibm-idsScanActionAuxClass

v objectclass ibm-idsScanSensitivityActionAuxClass

v objectclass ibm-idsScanExclusionActionAuxClass

The following Object classes are not permitted in IDS specific objects either
because they are only valid for Version 2 policies or because they are only
permitted in QoS specific objects.

v objectclass ibm-policyCondition

v objectclass ibm-policyTimePeriodCondition

v objectclass ibm-networkingPolicyCondition

v objectclass ibm-policyAction

v objectclass ibm-serviceCategories

v objectclass ibm-networkingPolicyConditionAuxClass

v objectclass ibm-routeConditionAuxClass

v objectclass ibm-hostConditionAuxClass

v objectclass ibm-applicationConditionAuxClass

v objectclass ibm-serviceCategoriesAuxClass

v objectclass ibm-policyGroupLoadDistributionAuxClass

v objectclass SetSubnetPrioTosMask

IDS-specific condition attributes, their object class, as well as allowed and default
values are listed in Table 49.

Table 49. IDS-specific condition attributes

Attribute Class Allowed and default
values

ibm-idsConditionType ibm-idsConditionAuxClass v ATTACK

v TR

v SCAN_GLOBAL

v SCAN_EVENT

No default

ibm-idsAttackType ibm-idsAttackConditionAuxClass v MALFORMED_

PACKET

v FLOOD

v OUTBOUND_RAW

v PERPETUAL_ECHO

v IP_FRAGMENT

v RESTRICTED_IP_

OPTIONS

v RESTRICTED_IP_

PROTOCOL

v ICMP_REDIRECT

No default

734 z/OS V1R4.0 CS: IP Configuration Reference

Table 49. IDS-specific condition attributes (continued)

Attribute Class Allowed and default
values

ibm-idsIPOptionRange ibm-idsIPAttackConditionAuxClass 1–255

Default: 0 (all)

ibm-idsLocalPortRange ibm-idsTransportConditionAuxClass 0–65535

Default: 0 (all)

ibm-
idsRemotePortRange

ibm-idsTransportConditionAuxClass 0–65535

Default: 0 (all)

ibm-idsProtocolRange ibm-idsTransportConditionAuxClass 1–255

Default: 0 (all/none)

ibm-
idsLocalHostIPAddress

ibm-idsHostConditionAuxClass Any valid IP address

Default: 0 (all)

ibm-
idsRemoteHostIPAddress

ibm-idsHostConditionAuxClass Any valid IP address

Default: 0 (all)

IDS-specific action attributes, their object class, and allowed and default values are
shown in Table 50.

Table 50. IDS-specific action attributes

Attribute Class Allowed values

ibm-idsActionType ibm-idsActionAuxClass v ATTACK

v TR

v SCAN_GLOBAL

v SCAN_EVENT

No default

ibm-idsNotification ibm-idsNotificationAuxClass v NONE

v SYSLOG

v SYSLOGDETAIL

v CONSOLE

Default: NONE

ibm-idsStatInterval ibm-idsNotificationAuxClass 0-4294967295

Default: 60

ibm-idsLoggingLevel ibm-idsNotificationAuxClass 0–7

Default: 0

ibm-idsTypeActions ibm-idsNotificationAuxClass v STATISTICS

v EXCEPTSTATS

v LOG

v LIMIT

No default

Chapter 21. Intrusion Detection Services (IDS) policy 735

Table 50. IDS-specific action attributes (continued)

Attribute Class Allowed values

ibm-idsTraceData ibm-idsNotificationAuxClass v NONE

v HEADER

v FULL

v RECORDSIZE

Default: HEADER

ibm-idsTraceRecordSize ibm-idsNotificationAuxClass 0-4294967295

Default: 100

ibm-idsMaxEventMessage ibm-idsAttackActionsAuxClass 0-4294967295

Default: 0

ibm-
idsTRtcpTotalConnections

ibm-idsTRtcpActionAuxClass 0-65535

Default: 65535

ibm-idsTRtcpPercentage ibm-idsTRtcpActionAuxClass 0-100

Default: 100

ibm-idsTRtcpLimitScope ibm-idsTRtcpActionAuxClass v PORT

v PORT_INSTANCE

Default:
PORT_INSTANCE

ibm-idsTRudpQueueSize ibm-idsTRudpActionAuxClass v VERY_LONG

v LONG

v SHORT

v VERY_SHORT

Default:
VERY_LONG

ibm-idsFSInterval ibm-idsScanActionAuxClass 1–1440

Default: 1

ibm-idsFSThreshold ibm-idsScanActionAuxClass 1–64

Default: 5

ibm-idsSSInterval ibm-idsScanActionAuxClass 0-1440

Default: 120

ibm-idsSSThreshold ibm-idsScanActionAuxClass 0–60

Default: 10

ibm-idsSensitivity ibm-idsScanSensitivityActionAuxClass v NONE

v HIGH

v MEDIUM

v LOW

Default: NONE

736 z/OS V1R4.0 CS: IP Configuration Reference

Table 50. IDS-specific action attributes (continued)

Attribute Class Allowed values

ibm-idsScanExclusion ibm-idsScanExclusionActionAuxClass Any validIP address,
0–65535 for ports

Default: 0 (none)

The tables in this section list the combinations of attributes that are used for
different types of IDS policy. Mapping conditions are the attributes used by the code
when searching for rules.

Use the following guidelines for interpreting the following tables:

v Quoted strings are literal attribute values.

v X indicates not supported; the containing policy is not mapped.

v I indicates ignored.

v A indicates allowed.

v R indicates required.

Table 51 lists the IDS scan global policies.

Table 51. IDS scan global policies

Mapping conditions

ibm-idsConditionType ″SCAN_GLOBAL″

Other Conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsLocalPortRange X

ibm-idsRemotePortRange X

ibm-idsProtocolRange X

ibm-idsLocalHostIPAddress X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType ″SCAN_GLOBAL″ (1)

ibm-idsTypeActions A (2)

ibm-idsNotification A

ibm-idsLoggingLevel A

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval A

Chapter 21. Intrusion Detection Services (IDS) policy 737

Table 51. IDS scan global policies (continued)

ibm-idsFSThreshold A

ibm-idsSSInterval A

ibm-idsSSThreshold A

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. Additional values are allowed in same action.

2. STATISTICS, EXCEPTSTATS ignored.

Table 52 lists the IDS scan event policies.

Table 52. IDS scan event policies (ICMP)

Mapping conditions

ibm-idsConditionType ″SCAN_EVENT″ (1)

ibm-idsProtocolRange ″1″ (ICMP)

Other Conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsLocalPortRange X

ibm-idsRemotePortRange X

ibm-idsLocalHostIPAddress X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType ″SCAN_EVENT″ (2)

ibm-idsTypeActions I

ibm-idsNotification I

ibm-idsLoggingLevel I

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData I

ibm-idsTraceRecordSize I

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity A

ibm-idsScanExclusion A

738 z/OS V1R4.0 CS: IP Configuration Reference

Table 52. IDS scan event policies (ICMP) (continued)

Notes:

1. A SCAN EVENT rule that includes ICMP in the protocol range will not be mapped for
ICMP if it also includes a local host IP address or port condition.

2. Additional values are allowed in same action.

Table 53 lists more IDS scan event policies.

Table 53. IDS scan event policies (TCP and UDP)

Mapping conditions

ibm-idsConditionType ″SCAN_EVENT″ (1)

ibm-idsProtocolRange ″6″ (TCP) | ″17″ (UDP)

ibm-idsLocalHostIPAddress A

ibm-idsLocalPortRange A

Other conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsRemotePortRange X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType ″SCAN_EVENT″ (2)

ibm-idsTypeActions I

ibm-idsNotification I

ibm-idsLoggingLevel I

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData I

ibm-idsTraceRecordSize I

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity A

ibm-idsScanExclusion A

Notes:

1. A SCAN EVENT rule that includes ICMP in the protocol range will not be mapped for
ICMP if it also includes a local host IP address or port condition.

2. Additional values are allowed in same action.

Chapter 21. Intrusion Detection Services (IDS) policy 739

Table 54 lists IDS attack policies.

Table 54. IDS attack policies (MALFORMED and FLOOD)

Mapping conditions

ibm-idsConditionType ″ATTACK″

ibm-idsAttackType ″MALFORMED_PACKET″ | ″FLOOD″

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType ″ATTACK″ (1)

ibm-idsTypeActions A (2)

ibm-idsNotification A (3)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. Additional values are allowed in same action.

2. One condition level has ibm-idsAttackType, a second has one or more
ibm-idsLocalPortRange conditions, and a third has one or more ibm-
idsRemotePortRange conditions.

3. SYSLOGDETAIL is equivalent to SYSLOG.

Table 55 lists more IDS attack policies.

Table 55. IDS attack policies (FRAGMENT and REDIRECT)

Mapping conditions

ibm-idsConditionType ″ATTACK″

740 z/OS V1R4.0 CS: IP Configuration Reference

Table 55. IDS attack policies (FRAGMENT and REDIRECT) (continued)

ibm-idsAttackType ″IP_FRAGMENT″ | ″ICMP_REDIRECT″

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType ″ATTACK″ (1)

ibm-idsTypeActions A

ibm-idsNotification A (2)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. Additional values are allowed in same action.

2. SYSLOGDETAIL is equivalent to SYSLOG.

Table 56 lists more IDS attack policies.

Table 56. IDS attack policies (RESTRICTED PROTOCOL and RAW)

Mapping conditions

ibm-idsConditionType ″ATTACK″

ibm-idsAttackType ″RESTRICTED_IP_PROTOCOL″ |
″OUTBOUND_RAW″

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

Chapter 21. Intrusion Detection Services (IDS) policy 741

Table 56. IDS attack policies (RESTRICTED PROTOCOL and RAW) (continued)

ibm-idsProtocolRange A (1)

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType ″ATTACK″ (2)

ibm-idsTypeActions A

ibm-idsNotification A (3)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. If no protocol ranges are specified, no protocols are restricted. Protocols 1 (ICMP), 6
(TCP), and 17 (UDP) are treated differently for RESTRICTED_IP_PROTOCOL and
OUTBOUND_RAW. They are ignored if present in a RESTRICTED_IP_PROTOCOL
policy. They are obeyed if present in an OUTBOUND_RAW policy.

2. Additional values are allowed in same action.

3. SYSLOGDETAIL is equivalent to SYSLOG.

Table 57 lists more IDS attack policies.

Table 57. IDS attack policies (RESTRICTED OPTIONS)

Mapping conditions

ibm-idsConditionType ″ATTACK″

ibm-idsAttackType ″RESTRICTED_IP_OPTIONS″

Other conditions

ibm-idsIPOptionRange A

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

742 z/OS V1R4.0 CS: IP Configuration Reference

Table 57. IDS attack policies (RESTRICTED OPTIONS) (continued)

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType ″ATTACK″ (1)

ibm-idsTypeActions A

ibm-idsNotification A (2)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. Additional values are allowed in same action.

2. SYSLOGDETAIL is equivalent to SYSLOG.

Table 58 lists more IDS attack policies.

Table 58. IDS attack policies (PERPETUAL ECHO)

Mapping conditions

ibm-idsConditionType ″ATTACK″

ibm-idsAttackType ″PERPETUAL_ECHO″ (1)

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange R (1), (2)

ibm-idsRemotePortRange R (1), (2)

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType ″ATTACK″ (3)

ibm-idsTypeActions A

ibm-idsNotification A (4)

Chapter 21. Intrusion Detection Services (IDS) policy 743

Table 58. IDS attack policies (PERPETUAL ECHO) (continued)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. This must be CNF with three condition levels.

2. Only the first 20 ports specified will be used.

3. Additional values are allowed in same action.

4. SYSLOGDETAIL is equivalent to SYSLOG.

Table 59 lists IDS traffic regulation (TR) policies.

Table 59. IDS TR policies

Mapping conditions

ibm-idsConditionType ″TR″

ibm-idsProtocolRange ″6″ (TCP) ″17″ (DUP)

ibm-idsLocalHostIPAddress A A

ibm-idsLocalPortRange A A

Other conditions

ibm-idsAttackType X

ibm-
idsIPOptionRangeLocalPortRange

X

ibm-idsRemotePortRange X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType ″TR″ (1)

ibm-idsTypeActions A

ibm-idsNotification A

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage I

744 z/OS V1R4.0 CS: IP Configuration Reference

Table 59. IDS TR policies (continued)

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections A | I

ibm-idsTRtcpPercentage A I

ibm-idsTRtcpLimitScope A I

ibm-idsTRudpQueueSize I A

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

Notes:

1. Additional values are allowed in same action.

Chapter 21. Intrusion Detection Services (IDS) policy 745

746 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 22. Simple Network Management Protocol (SNMP)

OSNMPD procedure

Note: IPv6 support is not provided for OSNMPD at this time.

Following is the sample OSNMPD procedure:
//OSNMPD PROC
//*
//* Sample procedure for running the OE SNMP agent
//*
//* Communications Server for OS/390
//* SMP/E Distribution Name: EZASNDPR in AEZASMP1
//*
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1997, 2000
//* Status = CSV2R10
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/-d 0’
//*
//*** Notes:
//*
//* - The C runtime libraries should be in the system’s link list
//* or this sample procedure will need to STEPLIB to them.
//*
//* - TCP/IP runtime libraries should also be in the system’s link
//* list.
//*
//* - OSNMPD must find the name (TCPIPJOBNAME in TCPIP.DATA) that
//* it should be associated with. The OE function __iptcpn() is
//* used to find this name. It is suggested that the parmlist
//* be modified to set the environment variable
//* RESOLVER_CONFIG to point to the correct resolver file when
//* multiple INET Physical File Systems are started. See the
//* examples below.
//*
//* If only one INET PFS will be started then /etc/resolv.conf
//* may be used.
//*
//* - The OSNMPD agent can also be invoked from the OMVS shell as
//* a shell command.
//*
//*** Examples for specifying configuration data sets
//*
//* Example 1: TCPIP.DATA in partioned data set
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("RESOLVER_CONFIG=//’’TCPA.MYFILE(TCPDATA)’’")/-d 0’)
//*
//* Example 2: TCPIP.DATA and SNMPD.CONF in HFS files
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("RESOLVER_CONFIG=/etc/tcpa.data"’,
//* // ’"SNMPD_CONF=/etc/snmpd.conf.tcpa")’,
//* // ’/-d 0’)
//*
//* Example 3: Specification of data sets via STDENV DD statement
//*
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-d 0’)

© Copyright IBM Corp. 2000, 2002 747

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//*
//* For this method, the STDENV DD statement below must be
//* uncommented and set to point to a data set containing
//* settings for any environment variables. For example, it
//* can contain
//*
//* RESOLVER_CONFIG=//’TCPIVP.TCPPARMS(TCPDATA)’
//* SNMPD_CONF=//’TCPIVP.TCPPARMS(SNMPDIVP)’
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM= statement.
//*
//* See the IP Configuration manual for details on the configuration
//* files used by the SNMP agent and the search orders associated
//* with them.
//*
//*STDENV DD DSN=TCPIVP.TCPPARMS(SNMPENV),DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

SNMP agent (OSNMPD)

Starting OSNMPD from the z/OS UNIX System Services shell
To start OSNMPD from the z/OS UNIX System Services shell, use the following
syntax:

�� osnmpd
-a -c community -d level -i interval

�

�
-p port -s socketname ?

�

OSNMPD parameters
The SNMP agent (OSNMPD) runs in a separate address space that executes load
module EZASNMPD. OSNMPD can be started without parameters or you can add
any of the parameters listed below.

When starting OSNMPD from MVS, add the parameters to the PARMS= keyword on
the EXEC statement of the OSNMPD cataloged procedure. When starting
OSNMPD from z/OS UNIX System Services, specify the desired parameters on the
osnmpd command.

Note: The parameters are case sensitive. They must be entered in lowercase.

Parameter Description

-a Specifies that the packets sent by the SNMP Agent for responses

Figure 21. OSNMPD sample procedure

748 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

and notifications should be sent using the physical interface
address, rather than a VIPA address (if SOURCEVIPA is
configured).

-c community Specifies a community name. The community name is a password
that can accompany an SNMP request that the agent receives.
Specifying a community on this parameter when starting the agent
causes the community to effectively be added with a mask and an
IP address of zeros. Therefore, any request received with this
community would be authenticated (for example, the request would
be accepted from any IP address). This parameter is case
sensitive.

-d level Specifies the level of tracing to be started. The valid values for level
are 0–255. If the -d parameter is not specified, then the default
level of 0 is used, meaning no tracing will be done. If the -d
parameter is specified without a level, then a level of 31 is used,
meaning all SNMP requests/responses/traps and DPI activity will be
traced.

There are eight levels of tracing provided. Each level selected has
a corresponding number. The sum of the numbers associated with
each level of tracing selected is the value which should be specified
as level. Once the agent is started, tracing options can be
dynamically changed using the MVS MODIFY command. For more
information on agent tracing, see the z/OS Communications Server:
IP Diagnosis.

The numbers for the trace levels are:
0 No tracing (default)
1 Trace SNMP requests
2 Trace SNMP responses
4 Trace SNMP traps
8 Trace DPI packets
16 Trace DPI internals (currently, no specific traces are

recorded for this trace level)
32 Agent internal trace
64 Agent internal trace plus extended storage dump traces
128 Agent internal trace plus extended storage dump traces and

additional information

-i interval Specifies the interval (in minutes) at which dynamic configuration
changes to the SNMP agent should be written out to the
SNMPD.CONF configuration file. Valid values are 0–10. The default
value is 5. This parameter is only relevant when the SNMPD.CONF
file is used for SNMPv3 configuration.

Note: Configuration updates made dynamically (by SNMP SET
requests) will cause the SNMPD.CONF file to be overwritten
by the SNMP agent.

-p port Listens for SNMP packets on this port. The default is port 161. If
you change the port to something other than 161, you must also
configure any subagents and commands, such as osnmp, to use
the new port.

-s socketname Specifies the name of the UNIX socket to be used in accepting
requests from subagents that communicate with the agent by way
of AF_UNIX connections. This value can be configured either by

Chapter 22. Simple Network Management Protocol (SNMP) 749

specifying it on the -s parameter or by specifying it as the value of
the dpiPathNameForUnixStream MIB object in OSNMPD.DATA. The
default is /tmp/dpi_socket. The file permission bits for this file must
be read and write for the subagents to connect.

? Displays the usage statement for the command. If this parameter is
specified, all other parameters are ignored. If OSNMPD was started
from MVS, the usage information is written to syslogd. If OSNMPD
was started from z/OS UNIX System Services, the usage
information is displayed to the invoker of the command.

OSNMPD.DATA statement syntax
The OSNMPD.DATA statements specify MIB objects and their values. The format of
each statement is:
object_name value

Notes:

1. There can only be one object_name and associated value per statement.

2. The value (if the value is a display or octet string) is case sensitive and is saved
in mixed case.

3. Any display or octet string value that has imbedded white space must be
enclosed in double quotation marks. For an example, refer to the sysDescr
setting in the sample OSNMPD.DATA shipped as
/usr/lpp/tcpip/samples/osnmpd.data.

4. If the value is a display or octet string, it must be enclosed within double
quotation marks.

5. An entry must be contained on one line.

6. Sequence numbers are not allowed on the statements.

7. Comments begin with either an asterisk (*) or a # character.

OSNMPD.DATA search order
The search order for accessing OSNMPD.DATA information is as follows. The first
file found in the search order is used.

1. The name of an HFS file or MVS file specified by the OSNMPD_DATA
environment variable

2. /etc/osnmpd.data HFS file

3. The data set specified on the OSNMPD DD statement in the agent procedure

4. jobname.OSNMPD.DATA, where jobname is the name of the job used to start
the SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlq.OSNMPD.DATA, where hlq either defaults to TCPIP or is specified on the
DATASETPREFIX statement in the TCPIP.DATA file being used

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

OSNMPD.DATA example
A sample of OSNMPD.DATA is installed as HFS file
/usr/lpp/tcpip/samples/osnmpd.data. This sample can be modified for your
installation.

750 z/OS V1R4.0 CS: IP Configuration Reference

#
osnmpd.data sample
#
Sample file for setting MIB variables and options for
the SNMPv3 Agent provided by z/OS Communications Server
#
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5694-A01
(C) Copyright IBM Corp. 1996, 2002
Status = CSV1R4
#

sysDescr "SNMPv3 agent version 1.0 with DPI version 2.0"
sysContact "Unknown"
sysLocation "Unknown"
sysName "z/OS V1R4 Communications Server"

Default value of sysObjectID is equivalent to ibmTcpIpMvs
in the ibmAgents subtree; this is the sysObjectID representing
IBM z/OS Communications Server
Changing this value is not recommended, as it is intended to allow
network management applications to identify this agent as the
z/OS Communication Server SNMP agent. The ability to change it
will be disabled in a subsequent release.
sysObjectID "1.3.6.1.4.1.2.3.13"

snmpEnableAuthenTraps 1
saDefaultTimeout 6
saMaxTimeout 700

saAllowDuplicateIDs must be set to 1 to allow multiple DPI version 1
subagents

saAllowDuplicateIDs 1
dpiPathNameForUnixStream "/tmp/dpi_socket"

Default value of sysServices indicates support for
internet, end-to-end, and application layers as
defined in RFC 1907.

sysServices 76

PW.SRC statement syntax
The PW.SRC statements specify community names and hosts that can use each
community name. The format of a statement is:
community_name desired_network snmp_mask

The community_name can be up to 32 characters in length. This value can contain
both uppercase and lowercase letters; however, it is case sensitive. In any requests
received by the SNMP agent, the community_name must match the
community_name specified in PW.SRC exactly, including the correct case.

v All parameters for each community must be on the same statement.

v Sequence numbers are not allowed on the statements.

v Comments begin with either an asterisk (*) or a # character.

PW.SRC search order
The search order for accessing PW.SRC information is as follows. The first file
found in the search order is used.

1. The name of an HFS file or an MVS file specified by the PW_SRC environment
variable

2. /etc/pw.src HFS file

Figure 22. OSNMPD.DATA example

Chapter 22. Simple Network Management Protocol (SNMP) 751

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

3. The data set specified on SYSPWSRC DD statement in the agent procedure

4. jobname.PW.SRC, where jobname is the name of the job used to start the
SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either defaults to TCPIP or is specified on the
DATASETPREFIX statement in the TCPIP.DATA file being used

Note: Verify that there is no SNMPD.CONF file because this file can only be used
with SNMPv3. If an SNMPD.CONF file is found, the PW.SRC file will not be
used.

SNMPTRAP.DEST statement syntax
The SNMPTRAP.DEST statements list managers who are to receive the traps, and
the protocol used to send traps. The format of a statement is:
manager UDP

The manager is the host to which the trap is to be sent. This can be a host name,
or it can be the IP address of the host. If a host name is specified, the value may
contain both uppercase and lowercase letters and it is not case sensitive. The
protocol must be UDP. There should be one entry in the data set for each host to
which you want to send traps.

v All parameters for each host must be on the same statement.

v Sequence numbers are not allowed on the statements.

v Comments begin with an asterisk (*) or a # character.

v SNMP uses the C function call, inet_addr(), to convert destination IP addresses
into Internet addresses. Numbers supplied as address parts in standard
dotted-decimal notation can be decimal, hexadecimal, or octal. Numbers are
interpreted in C language syntax. A leading 0x implies hexadecimal; a leading 0
implies octal. A number without a leading 0 implies decimal.

SNMPTRAP.DEST search order
The search order for accessing SNMPTRAP.DEST is as follows. The first file found
in the search order is used.

1. The name of an HFS file or an MVS file specified by the SNMPTRAP_DEST
environment variable

2. /etc/snmptrap.dest HFS file

3. The data set specified on SNMPTRAP DD statement in the agent procedure

4. jobname.SNMPTRAP.DEST, where jobname is the name of the job used to start
the SNMP agent

5. SYS1.TCPPARMS(SNMPTRAP)

6. hlq.SNMPTRAP.DEST, where hlq either defaults to TCPIP or is specified on the
DATASETPREFIX statement in the TCPIP.DATA file being used

Note: Verify that there is no SNMPD.CONF file. If an SNMPD.CONF file is found,
the SNMPTRAP.DEST file will not be used.

SNMPD.CONF search order
The search order for accessing SNMPD.CONF information is as follows. The first
file found in the search order is used.

1. The name of an HFS file or an MVS file specified by the SNMPD_CONF
environment variable.

752 z/OS V1R4.0 CS: IP Configuration Reference

2. /etc/snmpd.conf

Note: If the SNMPD.CONF file is found, the PW.SRC file and the
SNMPTRAP.DEST file are not used.

SNMPD.CONF statement syntax
The SNMPD.CONF file supports the following types of entries:

USM_USER
Defines a user for the user-based security model (USM).

VACM_GROUP
Defines a security group (made up of users or communities) for the
view-based access control model (VACM).

VACM_VIEW
Defines a particular set of MIB objects, called a view, for the VACM.

VACM_ACCESS
Identifies the access permitted to different security groups for the VACM.

NOTIFY
Identifies management targets to receive notifications.

NOTIFY_FILTER_PROFILE
Associates a notify filter with a particular set of target parameters.

NOTIFY_FILTER
Defines a filter profile used to filter notifications (for example, traps or
informs).

TARGET_ADDRESS
Defines a management application’s address and identifies parameters to
be used in sending notifications.

TARGET_PARAMETERS
Defines the message processing and identifies security parameters to be
used in sending notifications to a particular management target.

COMMUNITY
Defines a community for community based security. Communities defined
with this syntax are supported for compatibility purposes, but they cannot
be changed dynamically by way of SNMP SET commands.

SNMP_COMMUNITY
Defines a community for community-based security. Communities defined
with this statement may be dynamically changed by way of SNMP SET
commands to the snmpCommunityTable.

DEFAULT_SECURITY
Identifies the default security posture configured for the SNMP agent.
Additional security definitions defined by the use of the preceding eight
entry definition types augment any default security configurations defined as
a result of the DEFAULT_SECURITY statement.

Chapter 22. Simple Network Management Protocol (SNMP) 753

|
|

Coding the SNMPD.CONF entries
Defining the USM_USER entry

�� USM_USER userName engineID authProto authKey �

� privProto privKey keyType storageType �

Defining the VACM_GROUP entry

�� VACM_GROUP groupName securityModel securityName storageType �

Defining the VACM_VIEW entry

�� VACM_VIEW viewName viewSubtree viewMask viewType storageType �

Defining the VACM_ACCESS entry

�� VACM_ACCESS groupName contextPrefix contextMatch securityLevel �

� securityModel readView writeView notifyView storageType �

Defining the NOTIFY entry

�� NOTIFY notifyName tag type storageType �

Defining the NOTIFY_FILTER_PROFILE entry

�� NOTIFY_FILTER_PROFILE targetParamsName profileName storageType �

Defining the NOTIFY_FILTER entry

�� NOTIFY_FILTER profileName filterSubtree filterMask filterType storageType �

Defining the TARGET_ADDRESS entry

�� TARGET_ADDRESS targetAddrName tDomain tAddress tagList �

� targetParams timeout retryCount storageType tMask tMMS �

Defining the TARGET_PARAMETERS entry

�� TARGET_PARAMETERS paramsName mpModel securityModel �

� securityName securityLevel storageType �

Defining the COMMUNITY entry

754 z/OS V1R4.0 CS: IP Configuration Reference

�� COMMUNITY communityName securityName securityLevel netAddr �

� netMask storageType �

Defining the SNMP_COMMUNITY entry

�� SNMP_COMMUNITY communityIndex communityName securityName �

� contextEngineID contextName transportTag storageType �

Defining the DEFAULT_SECURITY entry

�� DEFAULT_SECURITY securityPosture password privacy �

Parameters

USM_USER entry:
USM_USER userName engineID authProto authKey privProto privKey keyType storageType

Field definitions:

v userName indicates the name of the user for the User-Based Security Model
(USM). The userName must be unique to the SNMP agent. The userName is
used as the security name for the User-based Security Model; the contents of
this field will be used as the securityName value for other entries (such as the
VACM_GROUP entry) when the securityModel is USM. The userName field is a
1–32 character string. There is no default value.

v engineID indicates the engineID of the authoritative side of the message. The
engineID for the z/OS CS SNMP agent is determined at agent initialization; it is
either read in from the SNMPD.BOOTS file or it is generated automatically and
stored in the SNMPD.BOOTS file. It can be retrieved dynamically by issuing a
get request for object snmpEngineID.0. For get, getbulk, set, response, and trap
messages, the authoritative side is the SNMP agent. For inform messages, the
authoritative side is the notification receiver. Valid values are a string of 2–64
hexadecimal digits or a dash (-) to indicate the default value (the local SNMP
agent’s engineID).

v authProto indicates the authentication protocol to be used on authenticated
messages on behalf of this user. Valid values are HMAC-MD5, HMAC-SHA, none
to indicate that no authentication is to be done, or a dash (-) to indicate the
default value HMAC-MD5.

v authKey indicates the authentication key to be used in authenticating messages
on behalf of this user. This field is ignored when authProto is specified as none.
The keyType field will indicate whether the key is localized or nonlocalized. Valid
values are 32 hexadecimal digits when authProto is HMAC-MD5 and 40
hexadecimal digits when authProto is HMAC-SHA. A (-) dash indicates the
default (no key, indicating no authentication). For information on generating
authentication and privacy keys using the pwtokey command, refer to z/OS
Communications Server: IP System Administrator’s Commands.

v privProto indicates the privacy protocol to be used on encrypted messages on
behalf of this user. Privacy can be requested only if authentication is also
requested. If authentication is not requested, this field is ignored. Valid values are
DES to indicate CBC 56-bit DES, none to indicate no privacy, and a dash (-) to
indicate the default of no privacy.

Chapter 22. Simple Network Management Protocol (SNMP) 755

v privKey is used in authenticating messages to and from this user. This field is
ignored when privProto is specified or defaulted as none. The keyType field
indicates whether the key is localized or nonlocalized. Privacy can be requested
only if authentication is also requested. If authentication is not requested, this
field is ignored. The privacy key and the authentication key are assumed to have
been generated using the same authentication protocol (HMAC-MD5 or
HMAC-SHA). Valid values are 32 hexadecimal digits if the key is localized or if
the key is nonlocalized and the authProto is HMAC-MD5; 40 hexadecimal digits if
the key is nonlocalized and the authProto is HMAC-SHA; or a dash (-) to indicate
the default of no key, indicating no encryption. For information on generating
privacy keys using the pwtokey command, refer to z/OS Communications Server:
IP System Administrator’s Commands.

v keyType indicates whether the keys defined by authKey and privKey are
localized or nonlocalized. Localized indicates that they have been generated with
the appropriate engineID, making the key usable only at one snmpEngine.
Nonlocalized indicates the key can be used at different snmpEngines. The
authKey and privKey, if both are specified, must both be localized or both be
nonlocalized. This field is ignored if no authentication or privacy is requested.
Valid values are L to indicate keys are localized, N to indicate keys are
nonlocalized, or a dash (-) to indicate the default value of localized.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent,
but it can, however, be changed or even deleted by dynamic configuration
requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests. For the
USM_USER entry, readOnly is not allowed unless the authentication protocol
is none because protocols require that user keys be changeable.

– dash (-)

Indicates the default value of nonVolatile.

VACM_GROUP entry:
VACM_GROUP groupName securityModel securityName storageType

Field definitions:

v groupName is the group name for the View-Based Access Control Model
(VACM). The groupName must be specified; there is no default value. It must be
a 1–32 character string.

v securityModel indicates the SNMP security model for this entry. When an SNMP
message comes in, the securityModel and the securityName are used to
determine the group to which the user (or community) represented by the
securityName belongs. Valid values are SNMPv1 to indicate community-based
security using SNMPv1 message processing; SNMPv2c to indicate
community-based security using SNMPv2c message processing; USM to indicate
the User-Based Security Model; or a dash (-) to indicate the default value of
USM.

756 z/OS V1R4.0 CS: IP Configuration Reference

v securityName indicates a member of this group. Valid values are 1–32 characters
indicating a USM userName when securityModel is USM, or a community Name
when securityModel is SNMPv1 or SNMPv2c. There is no default value.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

VACM_VIEW entry:
VACM_VIEW viewName viewSubtree viewMask viewType storageType

Field definitions:

v viewName indicates the textual name of the view for the View-Based Access
Control Model. View names do not need to be unique. Multiple entries with the
same name together define one view. However, the viewname, together with the
subtree object ID, must be unique to an SNMP engine. Valid values are 1–32
characters in length. There is no default value.

v viewSubtree indicates the MIB object prefix of the MIB objects in the view. Valid
values are an object ID of up to 128 sub-OIDs, a textual object name (or object
prefix), or a combination of textual object name followed by numeric sub-OIDs.
The name must be found within the compiled MIB or in the logical extension to
the MIB, the /etc/mibs.data file. There is no default value.

v viewMask indicates a mask that specifies which of the sub-OIDs in the subtree
are relevant. See RFC 2575 for further information on the viewMask. Valid values
are a hex string of up to 16 bytes (up to 128 bits), where each hexadecimal digit
represents four bits. Each bit indicates whether or not the corresponding sub-OID
in the subtree is relevant, or a dash (-) to indicate the default value (a mask of all
ones meaning all sub-OIDs are relevant).

v viewType indicates the type of the view definition. Valid values are included to
indicate the MIB objects identified by this view definition are within the view,
excluded to indicate the MIB objects identified by this view definition are
excluded from the view, or a dash (-) to indicate the default value of included.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

Chapter 22. Simple Network Management Protocol (SNMP) 757

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

VACM_ACCESS entry:
VACM_ACCESS groupName contextPrefix contextMatch securityLevel
securityModel readView writeView notifyView storageType

Field definitions:

v groupName is the group name for the View-Based Access Control Model (VACM)
for which access is being defined. The groupName must be specified; there is no
default value. It must be a 1–32 character string.

v contextPrefix indicates a character string to be compared with the incoming
contextName, if the value specified for the contextMatch field is prefix. Note,
however, that the SNMP agent in z/OS CS supports MIB objects in only the local
(null) context. Valid values are 1–32 characters, or a dash (-) to indicate the
default value of the null context (″″).

v contextMatch indicates whether the incoming contextName must be compared
with (and match exactly) the entire contextName or whether only the first part of
the contextName (up to the length of the indicated value of the contextPrefix)
must match. Valid values are exact to indicate that the entire contextName must
match, prefix to indicate that only the prefix of the contextName must match, or a
dash (-) to indicate the default value of exact.

v securityLevel indicates the securityLevel for this entry and is used in determining
which access table entry to use. Valid values are noAuthNoPriv or none to
indicate no authentication or privacy protocols are applied; AuthNoPriv or auth to
indicate authentication protocols are applied but no privacy protocol is applied;
AuthPriv or priv to indicate both authentication and privacy protocols are applied;
or a dash (-) to indicate the default value of noAuthNoPriv.

v securityModel indicates the SNMP security model for this entry and is used in
determining which access table entry to use. Valid values are SNMPv1 to
indicate community-based security using SNMPv1 message processing,
SNMPv2c to indicate community-based security using SNMPv2c message
processing, USM to indicate the User-Based Security Model, or a dash (-) to
indicate the default value of USM.

v readView indicates the name of the view to be applied when read operations
(get, getnext, getbulk) are performed under control of this entry in the access
table. Valid values are 1–32 characters identifying a view defined by a
VACM_VIEW definition or a dash (-) to indicate the default value of no view (no
readView defined for members of this group).

v writeView indicates the name of the view to be applied when write operations
(set) are performed under control of this entry in the access table. Valid values
are 1–32 characters identifying a view defined by a VACM_VIEW definition or a
dash (-) to indicate the default value of no view (no writeView defined for
members of this group).

v notifyView indicates the name of the view to be applied when notify operations
(traps or informs) are performed under control of this entry in the access table.
Valid values are 1–32 characters identifying a view defined by a VACM_VIEW
definition or a dash (-) to indicate the default value of no view (no notifyView
defined for members of this group).

758 z/OS V1R4.0 CS: IP Configuration Reference

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

NOTIFY entry:
NOTIFY notifyName tag type storageType

Field definitions:

v notifyName is a locally unique identifier for this notify definition. Valid values are
1–32 characters in length. There is no default value.

v tag indicates a tag value to be compared with the values in the tagLists defined
in the snmpTargetAddrTable (either on TARGET_ADDRESS entries or by way of
dynamic configuration). For each match of this tag with a value in the tagLists
defined in the snmpTargetAddrTable, a notification may be sent. See RFC 2573
for a definition of SnmpTagValue. Valid values are 1–255 characters. No
delimiters are allowed. A dash (-) indicates the default, which is no tag value.

v type indicates which type of notification should be generated. Valid values are:

– A trap; an unconfirmed notification; notification sent with trap PDUs

– An inform; a confirmed notification; notification sent with inform PDUs

– dash (-) Indicates the default value of trap

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent,
but it can, however, be changed or even deleted by dynamic configuration
requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

NOTIFY_FILTER_PROFILE entry:
NOTIFY_FILTER_PROFILE targetParamsName profileName storageType

Chapter 22. Simple Network Management Protocol (SNMP) 759

Field definitions:

v targetParamsName indicates the name of the target parameter definition
(paramsName in the TARGET_PARAMETERS entry) for which the specified
notify filter profile will be used. Valid values are 1–32 characters in length. There
is no default value.

v profileName indicates the name of the notify filter profile (profileName on the
NOTIFY_FILTER entry) used. Valid values are 1–32 characters in length. There
is no default value.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent,
but it can, however, be changed or even deleted by dynamic configuration
requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

NOTIFY_FILTER entry:
NOTIFY_FILTER profileName filterSubtree filterMask filtertype storageType

Field definitions:

v profileName indicates the name of the filter profile defined by this entry. Valid
values are 1–32 characters. There is no default value.

v filterSubtree identifies the MIB subtree that, when combined with the
corresponding filterMask, defines a family of subtrees which are included in or
excluded from the filter profile. Valid values are an object ID of up to 128
sub-OIDs or a textual object name (or object prefix). There is no default value.

v filterMask indicates the bit mask that, in combination with the corresponding
filterSubtree, defines a family of subtrees that are included in or excluded from
the filter profile. See RFC 2573 for a definition of the viewMask. Valid values are
a hex string of up to 16 octets (up to 128 bits). Each bit indicates whether or not
the corresponding subtree sub-OID is relevant, or a dash (-) to indicate the
default value (a mask of all ones meaning that all sub-OIDs are relevant). inform
indicates a confirmed notification (for example, notification sent with inform
PDUs).

v filterType indicates whether the family of filter subtrees defined by this entry are
included in or excluded from a filter. Valid values are included to indicate the MIB
objects identified by this definition are within the filter, excluded to indicate the
MIB objects identified by this definition are excluded from the filter, or a dash (-)
to indicate the default value of included.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

760 z/OS V1R4.0 CS: IP Configuration Reference

Indicates the entry definition will persist across reboots of the SNMP agent,
but it can, however, be changed or even deleted by dynamic configuration
requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

TARGET_ADDRESS entry:
TARGET_ADDRESS targetAddrName tDomain tAddress tagList targetParams
timeout retryCount storageType tMask tMMS

Field definitions:

v targetAddrName indicates a locally unique identifier for this target address
definition. Valid values are 1–32 characters in length. There is no default value.

v tDomain indicates the transport type of the address indicated by tAddress. Valid
values are UDP for UDP datagrams or a dash (-) for the default value of UDP.

v tAddress indicates the transport address to which notifications are sent. Valid
values are a 1–21 character octet string indicating the IP address and optionally
the UDP port in the form ip_address:port (for example, 9.37.84.48:162). The IP
address must be specified as a.b.c.d where a, b, c, and d are in the range of
0–255, and the port (if specified) must be in the range 1–65535. The IP address
may not be defaulted, but the port, if not specified, will default to 162.

v tagList indicates a list of tag values that are used to select target addresses for a
notification operation. The z/OS CS implementation supports, by way of the
configuration file, only one tag in a tagList. RFC 2573 contains the complete
definition of SnmpTagList and SnmpTagValue. The z/OS CS implementation
accepts as valid values a string of 1–255 characters. No delimiters are allowed. A
dash (-) indicates the default value, an empty list.

v targetParams indicates a TARGET_PARAMETERS paramsName value that
indicates which security and message processing is to be used in sending
notifications to this target. Valid values are 1–32 characters in length. There is no
default value.

v timeout indicates the expected maximum round-trip time for communicating with
this target address (in 1/100ths of a second). Valid values are 0–2 147 483 647,
or a dash (-) to indicate the default value of 1500. Timeout is used only for inform
type notifications; it is not used for traps.

v retryCount indicates the number of retries to be attempted when a response is
not received for a generated message. Valid values are 0–255, or a dash (-) to
indicate the default value of 3. RetryCount is used only for inform type
notifications; it is not used for traps.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Chapter 22. Simple Network Management Protocol (SNMP) 761

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

v tMask is the IP_address:port mask value associated to this Target Address entry.
A dash (-) indicates the default, which is 255.255.255.255:65535 (Transport
address must match with tAddress entry).

Note: The default value on the tMask field is 255.255.255.255:65535 whether or
not the port is specified in the tAddress field.

v tMMS is the maximum message size value associated with this Target Address
entry. Valid values are 0-2 147 483 647. A dash (-) indicates the default, which is
484.

TARGET_PARAMETERS entry:
TARGET_PARAMETERS paramsName mpModel securityModel securityName
securityLevel storageType

Field definitions:

v paramsName is a locally unique identifier for this target parameters definition.
Valid values are 1–32 characters in length. There is no default value.

v mpModel is the message processing model to be used in sending notifications to
targets with this parameter definition. Valid values are SNMPv1, SNMPv2c, and
SNMPv3. There is no default value.

v securityModel indicates the security model to be used in sending notifications to
targets with this parameter definition. Valid values are SNMPv1, SNMPv2c, or
USM to indicate User-Based Security Model. There is no default value.

v securityName identifies the principal (user or community) on whose behalf SNMP
messages will be generated using this parameter definition. For
community-based security, this is a community name. For USM, this is a user
name. Valid values are 1–32 characters in length. There is no default value.

v securityLevel indicates the security level to be used in sending notifications to
targets with this parameter definition. Valid values are noAuthNoPriv or none to
indicate no authentication or privacy protocols are applied, AuthNoPriv or auth to
indicate that authentication protocols are applied but no privacy protocol is
applied, AuthPriv or priv to indicate that both authentication and privacy protocols
are applied (If the additional encryption product is not applied, this level can be
configured, but not actually used), or a dash (-) to indicate the default value of
noAuthNoPriv.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

762 z/OS V1R4.0 CS: IP Configuration Reference

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

COMMUNITY entry:
COMMUNITY communityName securityName securityLevel netAddr netMask storageType

Field definitions:

v communityName is the community name for community-based security (SNMPv1
or SNMPv2c). The communityName must be specified; there is no default value.
It must be a 1–32 character string.

v securityName is the securityName defined for this communityName. The
securityName is the more generic term for the principal (user or community) for
which other entries, such as VACM_GROUP and TARGET_PARAMETERS, are
defined. The community name must match the securityName exactly. The
securityName is 1–32 characters. A dash (-) indicates the default value; a
securityName equal to the specified communityName.

v securityLevel indicates the security level to be applied when processing incoming
or outgoing messages with this community name. Valid values are noAuthNoPriv
or none to indicate no authentication or privacy protocols are applied, or dash (-)
to indicate the default value of noAuthNoPriv. Encryption is not supported on
SNMPv1 and SNMPv2c messages.

v netAddr is the IP address in dotted decimal notation representing the range of
addresses for which this communityName may be used. The netAddr must be
specified; there is no default value.

Valid values are in the form a.b.c.d, where a, b, c, and d are in the range 0–255.

v netMask is the IP address mask to be logically ANDed with the origin address of
the incoming SNMP message. If the resulting value equals the value of netAddr,
the incoming message is accepted. netMask must be specified; there is no
default value.

Valid values are in the form a.b.c.d, where a, b, c, and d are in the range 0–255.

v storageType indicates the type of storage in which this definition is to be
maintained. Storage types are defined in RFC 1903. Note that the value of
volatile is not supported in the SNMPD.CONF file. Valid values are:

– nonVolatile

Indicates the entry definition will persist across reboots of the SNMP agent; it
can, however, be changed or even deleted by dynamic configuration requests.

– permanent

Indicates the entry definition will persist across reboots of the SNMP agent; it
can be changed but not deleted by dynamic configuration requests.

– readonly

Indicates the entry definition will persist across reboots of the SNMP agent; it
cannot be changed or deleted by dynamic configuration requests.

– dash (-)

Indicates the default value of nonVolatile.

SNMP_COMMUNITY entry:
SNMP_COMMUNITY communityIndex communityName securityName contextEngineID
contextName transportTag storageType

Chapter 22. Simple Network Management Protocol (SNMP) 763

Field definitions:

v communityIndex indicates a locally unique identifier for this SNMP_Community
definition. Valid values are 1–32 characters in length. There is no default value.

v communityName is the community name for community-based security (SNMPv1
or SNMPv2c) . Valid values are 1–32 characters in length. There is no default
value.

v securityName is the securityName defined for this communityName. The
securityName is the more generic term for the principle (user or community) for
which other entries, such as VACM_GROUP and TARGET_PARAMETERS, are
defined. Valid values are 1–32 characters in length. There is no default value.

v contextEngineID indicates the location of the context in which information is
accessed. A dash (-) indicates the default value of the local SNMP agent’s
engine ID. Only the default value is supported.

v contextName is the corresponding context value. Valid values are 1-32
characters in length. Only a dash (-) indicating the default, which is an empty
string, is supported.

v transportTag indicates a tag value to be compared with the values in the tagLists
defined in the snmpTargetAddrTable (either on TARGET_ADDRESS entries or by
way of dynamic configuration). Those target addresses (whose tag value match
this tag) identify the transport endpoints from which a request containing this
community will be accepted. Valid values are 1–255 characters. No delimiters are
allowed. A dash (-) indicates the default, which is no tag value.

v storageType indicates the type of storage in which this definition is to be
maintained. Valid values are:

nonVolatile
Indicates the entry definition will persist across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition will persist across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition will persist across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

- Indicates the default value of nonVolatile.

DEFAULT_SECURITY entry:
DEFAULT_SECURITY securityPosture password privacy

Field definitions:

v securityPosture indicates the default security posture to be configured for the
SNMP agent, as defined by Appendix A of RFC 2575. Valid values are
minimum-secure to indicate the SNMP agent will be configured with the least
secure default configurations; semi-secure to indicate the SNMP agent will be
configured with moderately secure default configurations; and no-access to
indicate the SNMP agent will be configured with no default configurations. The
default value is no-access.

Following are the default security definitions based on the selected security
posture:

764 z/OS V1R4.0 CS: IP Configuration Reference

– no-access

No initial configurations are done.

– semi-secure

If privacy is not requested, a default user is configured as if the following
USM_USER entry had been specified:
USM_USER initial- HMAC-MD5 ### none - N permanent

where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

If privacy is requested, a default user is configured as if the following
USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent

where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had
been specified:
VACM_GROUP initial USM initial readOnly

Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:
VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly

Two default MIB views are configured as if the following VACM_VIEW entries
had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted system - included readOnly
VACM_VIEW restricted snmp - included readOnly
VACM_VIEW restricted snmpEngine - included readOnly
VACM_VIEW restricted snmpMPDStats - included readOnly
VACM_VIEW restricted usmStats - included readOnly

– minimum-secure

If privacy is not requested, a default user is configured as if the following
USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### none - N permanent

where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

If privacy is requested , a default user is configured as if the following
USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent

where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had
been specified:
VACM_GROUP initial USM initial readOnly

Chapter 22. Simple Network Management Protocol (SNMP) 765

Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:
VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly

Two default MIB views are configured as if the following VACM_VIEW entries
had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted internet - included readOnly

v password indicates the password to be used to generate authentication and
privacy keys for user initial. If no-access is specified as the securityPosture, this
keyword is ignored. Valid values are a string of 8–255 characters, or a dash (-) to
indicate the default value (no password). The default is only accepted if
securityPosture is no-access.

v privacy indicates whether or not encryption is to be supported for messages on
behalf of user ’initial’. Valid values are Yes to indicate that privacy is supported
for user initial, No to indicate that privacy is not supported for user initial, or a
dash (-) to indicate the default value of no. If no-access is selected as the
security posture, this value will be ignored.

Usage notes
v An entry must be contained on one line.

v Keywords in the SNMPD.CONF file are accepted in any case (that is, they are
not case sensitive.)

v Values in the SNMPD.CONF file are case sensitive. For example, a userName of
user1 is not equivalent to a userName of USER1.

v All of the entry definitions above require that all fields be specified, either with a
specific value or with a dash (-). A dash indicates that the appropriate default
value should be applied.

v If an error is detected in processing an entry and no appropriate default value
can be assumed, the entry is discarded and an error message is generated.

v Statements in the SNMPD.CONF file are not order dependent. However, if more
than one DEFAULT_SECURITY statement is found, the last one in the file is the
one that is used.

v If there are no valid entries in the SNMPD.CONF file (but the file exists) and no
-c parameter specified at agent invocation, no requests are accepted.

v Comments may be entered in the SNMPD.CONF file. They must must begin with
an asterisk (*) or a # character in column 1.

v The SNMP agent uses a ¢ character to precede a hex string that represents a
value for an SnmpAdminString syntax object for which the value cannot be
printed. Use of the ¢ is reserved for this purpose. Also, IBM recommends that
you do not change the contents of the entries in the configuration file that have a
¢ character preceding them.

766 z/OS V1R4.0 CS: IP Configuration Reference

SNMPD.CONF sample
The following shows the SNMPD.CONF sample:

Note: The SNMP agent requires that each entry be contained on a single line. For
readability, the sample below has been formatted with long entries wrapped
to the next line.

snmpd.conf sample
#
Sample file showing format of configuration file for the SNMP agent
#
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5694-A01
(C) Copyright IBM Corp. 1997, 2001
Status = CSV1R2
Distribution library SEZASAMP(SNMPDCON)
#
#--
Notes
- All values for an entry must be on the same line.
- All keys need to be regenerated using the pwtokey command in order
for these sample entries to actually be used.
- In this sample:
- Keys are generated for use with engineID 00000002000000000943714F
- Authentication keys were generated with password of
username+"password", such as "u1password"
- Privacy keys were generated with password of
username+"privpass", such as "u1privpass"
#---

#---
USM_USER entries
Format is:
userName engineID authProto authKey privProto privKey keyType storageType
#
Note: Users u3 and u4 use non-localized keys. Not recommended, but allowed.
Note: Users u5 and u6 use the same password for generating the
authkey and privkey.
#Not recommended, but allowed.
#---
USM_USER u1 - HMAC-MD5 6da6c69c64b7737360f8319d90e4d511 - - L -
*USM_USER u1 - HMAC-MD5 6da6c69c64b7737360f8319d90e4d511
DES 959709e534eade82cecbacb42a10c90a
L -
USM_USER u2 - HMAC-SHA f26562da268f21a916792d3f45500cd5a8163071 - -
L -
*USM_USERu2 - HMAC-SHA f26562da268f21a916792d3f45500cd5a8163071
DES 3b3249ad3eb10d46d2731ee6fbaf8591 L -
USM_USER u3 - HMAC-MD5 d1f86e9c9346253c10a4cd2da339b1db - -
N -
*USM_USERu3 - HMAC-MD5 d1f86e9c9346253c10a4cd2da339b1db

DES cfccde3249ba521ae4da0ddfc2b76ee7
N -
USM_USER u4 - HMAC-SHA 42529b3c6c138c173e70db1050de8d74c04205cb

DES ef70a0a98d399a9189f3169e82010f3b46e694e2 N -
USM_USER u5 - HMAC-MD5 2b0e2c55d452b5ada056d50e8a66ea35

DES 2b0e2c55d452b5ada056d50e8a66ea35
L -
USM_USER u6 - HMAC-SHA aaa2f3b36f840549b6e8916b7b90430765dd3858
DES aaa2f3b36f840549b6e8916b7b904307 L -
#---
VACM_GROUP entries
Format is:
groupName securityModel securityName storageType
#--

Chapter 22. Simple Network Management Protocol (SNMP) 767

|
|
|

VACM_GROUP group1 USM u1 -
VACM_GROUP group1 USM u2 -
VACM_GROUP group1 USM u3 -
VACM_GROUP group1 USM u4 -

VACM_GROUP group2 USM u5 -
VACM_GROUP group2 USM u6 -

VACM_GROUP group3 SNMPv1 publicv1 -
VACM_GROUP group3 SNMPv2c publicv2c -

VACM_GROUP group4 SNMPv1 MVSsubagent -
VACM_GROUP group4 SNMPv2c MVSsubagent -

VACM_GROUP group5 SNMPv1 scsecnamev1 -
VACM_GROUP group5 SNMPv2c scsecnamev2c -

#--
VACM_VIEW entries
Format is:
viewName viewSubtree viewMask viewType storageType
#--
VACM_VIEW bigView internet - included -

VACM_VIEW prettyBigView internet - included -
VACM_VIEW prettyBigView interfaces - excluded -

VACM_VIEW mediumView system - included -
VACM_VIEW mediumView interfaces - included -
VACM_VIEW mediumView tcp - included -
VACM_VIEW mediumView udp - included -
VACM_VIEW mediumView icmp - included -

VACM_VIEW smallView snmp - included -

VACM_VIEW subagentView dpiPort - included -

#---
VACM_ACCESS entries
Format is:
groupName contextPrefix contextMatch securityLevel securityModel
readView writeView
notifyView storageType
#--
VACM_ACCESS group1 - - AuthPriv USM bigView bigView bigView -
VACM_ACCESS group1 - - AuthNoPriv USM bigView prettyBigView bigView -
VACM_ACCESS group1 - - noAuthNoPriv USM smallView smallView smallView -

VACM_ACCESS group2 - - AuthPriv USM bigView bigView bigView -
VACM_ACCESS group2 - - AuthNoPriv USM bigView mediumView smallView -
VACM_ACCESS group2 - - noAuthNoPriv USM bigView mediumView - -

VACM_ACCESS group3 - - noAuthNoPriv SNMPv1 mediumView mediumView mediumView -
VACM_ACCESS group3 - - noAuthNoPriv SNMPv2c bigView bigView bigView -

VACM_ACCESS group4 - - noAuthNoPriv SNMPv1 subagentView - - -
VACM_ACCESS group4 - - noAuthNoPriv SNMPv2c subagentView - - -

VACM_ACCESS group5 - - noAuthNoPriv SNMPv1 mediumView mediumView mediumView -
VACM_ACCESS group5 - - noAuthNoPriv SNMPv2c bigView bigView bigView -

#---
NOTIFY entries
Format is:
notifyName tag type storageType
#--
NOTIFY notify1 traptag trap -

768 z/OS V1R4.0 CS: IP Configuration Reference

*NOTIFY notify2 informtag inform -

#--
TARGET_ADDRESS
Format is:
targetAddrName tDomain tAddress tagList targetParams timeout

retryCount storageType tMask tMMS
#--
TARGET_ADDRESS Target1 UDP 9.67.113.10 traptag trapparms1 - - - - -
TARGET_ADDRESS Target2 UDP 9.67.113.5:2162 traptag trapparms2 - - - - -
TARGET_ADDRESS Target3 UDP 127.0.0.1 traptag trapparms3 - - - 255.0.0.255:65535 -
*TARGET_ADDRESS Target4 UDP 127.0.0.1 informtag informparms - - - - -
#---
TARGET_PARAMETERS
Format is:
paramsName mpModel securityModel securityName securityLevel storageType
#--
TARGET_PARAMETERS trapparms1 SNMPv1 SNMPv1 publicv1 noAuthNoPriv -
TARGET_PARAMETERS trapparms2 SNMPv2c SNMPv2c publicv2c noAuthNoPriv -
TARGET_PARAMETERS trapparms3 SNMPv3 USM u2 AuthNoPriv -
*TARGET_PARAMETERS informparms SNMPv3 USM u4 noAuthNoPriv -
#--
NOTIFY_FILTER_PROFILE
Format is:
targetParamsName profileName storageType
#--
NOTIFY_FILTER_PROFILE trapparms3 filProf -
#--
NOTIFY_FILTER
Format is:
profileName filterSubtree filterMask filterType storageType
#--
NOTIFY_FILTER filProf authenticationFailure - included -
#--
COMMUNITY
Format is:
communityName securityName securityLevel netAddr netMask storageType
NOTE:
For CSV1R2 and later releases, the SNMP_COMMUNITY statement is recommended
rather than the COMMUNITY statement for community-based security.
#---
COMMUNITY publicv1 publicv1 noAuthNoPriv 9.67.113.79 255.255.255.255 -
COMMUNITY publicv2c publicv2c noAuthNoPriv 0.0.0.0 0.0.0.0 -
COMMUNITY MVSsubagent MVSsubagent noAuthNoPriv 9.0.0.0 255.0.0.0 -

#--
SNMP_COMMUNITY
Format is:
communityIndex communityName securityName contextEngineID contextName

transportTag storageType
#--
SNMP_COMMUNITY scindexv1 sccomnamev1 scsecnamev1 - - - -
SNMP_COMMUNITY scindexv2c sccomnamev2c scsecnamev2c - - - -

#---
DEFAULT_SECURITY
Format is:
securityPosture password privacy
#--
DEFAULT_SECURITY semi-secure defaultpassword no

#---
Any SNMP agent configuration entries added by dynamic configuration
(SET) requests get added to the end of the SNMPD.CONF file.
#---

Chapter 22. Simple Network Management Protocol (SNMP) 769

SNMPD.BOOTS statement syntax
The syntax is:

engineID engineBoots

where:

engineID
A string of 2–64 (must be an even number) hexadecimal digits. The engine
identifier uniquely identifies the agent within an administrative domain. By
default, the engine identifier is created using a vendor-specific formula and
incorporates the IP address of the agent. However, a customer can choose
to use any engine identifier that is consistent with the snmpEngineID
definition in RFC 2571 and that is also unique within the administrative
domain.

engineBoots
The number of times (in decimal) the agent has been restarted since the
engineID was last changed.

Notes:

1. engineID and engineBoots must be specified in order and on the same line.

2. Comments are specified in the file by starting the line with either an asterisk (*)
or a # character.

3. No comments are allowed between the engineID and engineBoots values.

4. Only the first non-comment line is read. Subsequent lines are ignored.

SNMPD.BOOTS search order
The search order for accessing SNMPD.BOOTS information is as follows. The first
file found in the search order is used.

1. The name of an HFS file or an MVS file specified by the SNMPD_BOOTS
environment variable.

2. /etc/snmpd.boots

Note: If the SNMPD.BOOTS file is not provided, the SNMP agent creates the file.
If multiple SNMPv3 agents are running on the same MVS image, use the
environment variable to specify different SNMPD.BOOTS files for the
different agents. For security reasons, ensure unique engineIDs are used for
different SNMP agents.

Figure 23. SNMPD.CONF sample

770 z/OS V1R4.0 CS: IP Configuration Reference

SNMP query engine (SNMPQE)

SNMP query engine cataloged procedure (SNMPPROC)

Specifying the SNMPQE parameters
The SQESERV module can be configured to start without parameters or you can
add any of the following parameters to PARMS=’ in the PROC statement of the
SNMPQE cataloged procedure. For example,
//SNMPQE PROC MODULE=SNMPQE,PARMS=’-h MVSA’

Notes:

1. These parameters are also valid when starting SNMPQE with the START
command.

2. The commands are case sensitive. They must be entered in lowercase.

//SNMPQE PROC MODULE=SQESERV,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01W
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2002
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R4
//*
//SNMPQE EXEC PGM=&MODULE,PARM=’&PARMS’,
// REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZADSIL,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* MSSNMPMS identifies an optional data set for NLS support.
//* It specifies the SNMP message repository.
//*
//*MSSNMPMS DD DSN=TCPIP.SEZAINST(MSSNMP),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 24. SNMP query engine cataloged procedure (SNMPPROC)

Chapter 22. Simple Network Management Protocol (SNMP) 771

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameter Description

-d trace_level Specifies the level of tracing to be run. Valid values for the trace
level are:

0 No tracing (default)

1 Displays errors

2 In addition to errors, also displays SNMP query engine
protocol packets sent and received

3 In addition to 2, also displays the SNMP packets sent and
received

4 In addition to 3, also displays the buffers in hexadecimal
format

-h host_name Specifies the IP address to which to bind, so that SQESERV
accepts connections only through that IP address. This parameter is
useful if multiple IP addresses exist for a single host, and you want
to restrict access from one side.

-it Specifies that a trace of IUCV communication be done. This is only
used for debugging the socket layer in a user’s application. It can
result in a large amount of STDOUT output.

-tp port_number
Specifies the port at which the SNMP Query Engine listens for
traps. If this option is not specified, the SNMP Query Engine will
listen on the well-known port 162. The valid values are 1 to 65535.

See z/OS Communications Server: IP Diagnosis for more information on tracing.

SNMP parameter data set (SNMPARMS) sample
Following is the SNMPARMS sample:

772 z/OS V1R4.0 CS: IP Configuration Reference

Specifying the SNMPARMS parameters
You can change the following parameters in SNMPARMS:

Parameter Description

SNMPQE name
The name of the SNMP query engine started procedure. This value
is case sensitive. The default address space name is SNMPQE. If
you change the name of the SNMP query engine started procedure,
you must change this parameter to match the new procedure name.

* Member name: *
* SNMPARMS *
* *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5647-A01 *
* *
* (C) Copyright IBM Corp. 1977, 1998 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV2R6 *
* *
* *
* Function: *
* Externalized paramters for SNMPIUCV module, the task *
* that communicates with the SNMP Query Engine. *
* *
* Attributes: *
* Read by DSIDKS to obtain actual parameters. *
* *
* Library: *
* On MVS: Member SNMPARMS in NetView’s DSIPRM dataset. *
* On VM: File SNMPARMS NCCFLST on a NetView minidisk. *
* *
* Change activity: *
* *
* PTM DATE DESCRIPTION *
* ------- ------- ---*
* 24Sep89 Initial version *
* 09Nov89 Final version *
* 20Feb90 Adapt defaults as recommended during test*
* 27Mar90 Adapt defaults for new AF_IUCV sockets *
* 09Jul90 Remove not needed paramters *
* *

*

SNMPQE SNMPQE * Userid of SNMP Query Engine
SNMPQERT 60 * Retry timer (seconds) for IUCV CONNECT
SNMPRCNT 2 * Retry count for sending SNMP requests
SNMPRITO 10 * Retry initial timeout (10ths of a second)
SNMPRETO 2 * Retry backoff exponent (1=linear, 2=exponential)
SNMPMMLL 80 * Line length for Multiline Messages 38/44

Figure 25. SNMP parameter data set (SNMPARMS) sample

Chapter 22. Simple Network Management Protocol (SNMP) 773

SNMPQERT seconds
The retry timer, in seconds, for IUCV CONNECT. When SNMPIUCV
is started, it tries to connect to the SNMP query engine. If the
connection fails or breaks, SNMPIUCV retries a connect every n
seconds, as specified by this parameter. The valid range of values
is 0–9999. The default is 60 seconds.

SNMPRCNT number
The retry count for sending SNMP requests. This is the number of
times the SNMP query engine will resend an SNMP PDU when no
response was received. If no response is received after all retries
have been exhausted, the SNMP query engine will return a no
response error for the SNMP request. The valid range of values is
0–255. The default is 2.

If the request being sent by the SNMP query engine contains a
community name that is not valid, no response will be received.
This causes the SNMP query engine to resend the request until the
retry count is exhausted. If authentication failure traps are enabled,
the agent generates multiple authentication-Failure traps, one for
the initial request and one for each of the retries.

SNMPMMLL length
The line length for multiline messages 38 and 44. The maximum
length is 255. A value of 80 allows the complete text to appear on
an 80-character-wide screen. The default and minimum acceptable
line length value is 80.

SNMPRETO exp
The retry back-off exponent. Specifies whether the timeout value
between retries of an SNMP request is calculated linearly or
exponentially. The valid values are 1 (linear) or 2 (exponential). The
default is 2.

For example, if the retry timeout was 1 second, SNMPRETO of 1
causes a new retry to be sent at constant 1-second intervals until
all retries have been sent. SNMPRETO of 2 causes the first retry to
be sent after 1 second, the second retry 2 seconds later, the third
retry 4 seconds later, and so on until all retries have been sent.

SNMPRITO tenths_seconds
The timeout value for a request specified in tenths of a second.
After sending an SNMP request to an agent, the SNMP query
engine waits the specified number of tenths of a second for a
response.

v If the retry count (SNMPRCNT) is greater than 0, the SNMP
request is sent again if a response is not received in this time.

v If the retry count (SNMPRCNT) is 0, a no response error is sent
to the NetView® program, if a response is not received within this
period of time.

The valid range of values is 0–255. The default is 10 tenths of a
second.

MIBDESC.DATA
The MIBDESC.DATA statement syntax is:
short_name asn.1_name type time_to_live

774 z/OS V1R4.0 CS: IP Configuration Reference

where:

v short name is the textual name for the MIB object, either as defined in the MIB
definition or chosen by the customer.

v asn.1_name is the MIB object identifier that describes the location of the object in
the MIB tree.

v type is the syntax of the MIB object.

v time_to_live is the number of seconds the SNMP Query Engine can cache the
object before requesting an updated copy from the SNMP agent.

The following SNMP variable type values (from SMI version 1) are supported in the
type field of the MIBDESC.DATA statement:

v Number for integers

v String for octet strings

v Object for object identifiers

v Internet for IP addresses

v Counter for counters (unsigned)

v Gauge for gauge (unsigned)

v Ticks for time ticks

v Display for display strings

v Table for table header variables

v Empty for no value

MIBDESC.DATA search order
The search order for MIBDESC.DATA is
Data set specified on MIB_DESC environment variable
hlq.MIBDESC.DATA

where

v The file specified by the MIB_DESC environment variable can reside in the HFS.

v hlq is identified as the value of the DATASETPREFIX statement in the
TCPIP.DATA file.

osnmp

OSNMP.CONF statement syntax
The configuration file is required when sending requests to the SNMPv2 or
SNMPv3 nodes in your network. The configuration file can also be used to send
SNMPv1 requests.

The syntax of a statement in the configuration file is:
winSNMPname targetAgent admin secName password context secLevel
authProto authKey privProto privKey NOSVIPA

Field definitions:

winSNMPname
An administrative name by which the winSNMP code used by osnmp can
locate an entry in this configuration file. There is no default value. Specified
on the -h option (maximum 32 characters).

targetAgent
Host name or IP address of the node of the target agent (maximum 80

Chapter 22. Simple Network Management Protocol (SNMP) 775

characters). There is no default value. To direct the command to a port
other than 161, specify host:port#. For example, for port 222 at mvs150,
specify mvs150:222. Port number, if specified, must be in the range of 1 to
65535.

admin Specifies the administrative model supported by the targetAgent. Valid
values are:
v snmpv1 - Community-based SNMPV1 security
v snmpv2 - Community-based SNMPV2 security
v snmpv3 - User-based SNMPV3 security

There is no default value.

secName
Specifies the security name of the principal using this configuration file
entry. For user-based security, this is the userName. The user must be
defined at the targetAgent. This field is ignored unless snmpv3 is specified
for the admin keyword. A valid value is a user name of 1–32 characters.
There is no default.

password
Specifies the password to be used in generating the authentication and
privacy keys for this user. If a password is specified, it is used to
automatically generate any needed keys and the ″authKey″ and ″privKey″
fields below are ignored. This field is ignored unless snmpv3 is specified for
the admin keyword. If no password is desired, set field to a single dash (-).
(The minimum is eight characters, and the maximum is 64 characters.)

Note: The use of password instead of keys in this configuration file is not
recommended, as storing passwords in this file is less secure than
using keys.

context
The SNMP contextName to be used at the target agent. The contextName
is needed only at agents that support multiple contexts; otherwise, the only
context supported is the null context, which is the default value of this
keyword. The z/OS CS SNMP agent does not support multiple contexts.
This field is ignored unless snmpv3 is specified for the admin keyword. If
the blank ″″ context selector is desired, set this field to a single dash (-).
(The maximum is 32 characters).

secLevel
Specifies the security level to be used in communicating with the target
SNMP agent when this entry is used. This field is ignored unless snmpv3 is
specified for the admin keyword. Valid values are noAuthNoPriv or none to
indicate that no authentication or privacy is requested; AuthNoPriv or auth
to indicate that authentication is requested but privacy is not requested;
AuthPriv or priv to indicate that both authentication and privacy are
requested; or a dash (-) to indicate the default value (noAuthNoPriv).

authProto
SNMP authentication protocol to be used in communicating with the target
SNMP agent when this entry is used. This field is ignored unless snmpv3 is
specified for the admin keyword. Valid values are HMAC-MD5, HMAC-SHA,
or a single dash (-) for no authentication.

authKey
Specifies the SNMP authentication key to be used in communicating with
the target SNMP agent when this entry is used. This key must be the
nonlocalized key. This field is ignored if the password keyword is used. This

776 z/OS V1R4.0 CS: IP Configuration Reference

field is ignored unless snmpv3 is specified for the admin keyword and a
nondefault value is specified for authProto. Valid values are 16 bytes (32
hex digits) when authProto is HMAC-MD5 and 20 bytes (40 hex digits)
when authProto is HMAC-SHA. A dash (-) indicates the default value, which
is no key.

privProto
Specifies the SNMP privacy protocol to be used in communicating with the
target SNMP agent when this entry is used. This field is ignored unless
snmpv3 is specified for the admin keyword. Valid values are DES for
CBC-DES or a dash (-) to indicate the default value, which is no privacy.

privKey
Specifies the SNMP privacy key to be used in communicating with the
target SNMP agent when this entry is used. This key must be the
nonlocalized key. This field is ignored if the password keyword is used. The
privacy and authentication keys are assumed to have been generated using
the same authentication protocol (for example, both with HMAC-MD5 or
both with HMAC-SHA). This field is ignored unless snmpv3 is specified for
the admin keyword and a nondefault value is specified for privProto. Valid
values are 16 bytes (32 hex digits) when authProto is HMAC-MD5, 20 bytes
(40 hex digits) when authProto is HMAC-SHA, or a dash (-) to indicate the
default value (no key).

NOSVIPA
The NOSVIPA keyword is an optional value. If specified, it indicates the
osnmp command should cause physical interface addresses to be used as
the originating address in packets sent by the osnmp command to this host.
NOSVIPA is disabled by default, meaning that SOURCE VIPA addresses
can be used. If specified, NOSVIPA must be either the fourth parameter (for
community-based security) or the twelfth parameter (for user-based
security).

v All parameters for an entry must be contained on one line in the configuration
file.

v A dash (-) indicates the default value for a keyword.

v Sequence numbers are not allowed on the statements.

v Comments begin with a # character in column 1.

v The secName and password parameters are case sensitive.

v The pwtokey command can be used to generate the authentication and privacy
keys. For information on the pwtokey command, refer to z/OS Communications
Server: IP System Administrator’s Commands.

v Because the osnmp command supports both issuance of SNMP requests and
receipt of SNMP traps, the entries in the OSNMP.CONF file must be defined for
both uses. Multiple entries for the same USM user are allowed within the file.
This may be useful when defining different security levels for the same user. If
multiple entries for the same USM user are defined, be aware that only the first
one in the file can be used for receiving notifications. If multiple entries for the
same USM user are defined and the user will receive notifications, the definition
with the highest (most stringent) securityLevel should be defined first. Doing so
will allow the user to be used for any level of security equal to or lower (less
stringent) than the securityLevel defined.

OSNMP.CONF search order
The following search order for this file enables different copies of the file to be used
by different users:

Chapter 22. Simple Network Management Protocol (SNMP) 777

1. An HFS file or MVS data set pointed to by the OSNMP_CONF environment
variable

2. /etc/osnmp.conf

3. /etc/snmpv2.conf

OSNMP.CONF sample

Note: The osnmp command requires that all fields for a given entry are specified
on a single line. For readability, the sample below has been formatted such
that long entries are wrapped to the next line.

osnmp.conf sample
(used as /etc/snmpv2.conf unless OSNMP_CONF environment variable set)
#
Sample file showing format of configuration file for the osnmp command
#
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5694-A01
(C) Copyright IBM Corp. 1996, 2001
Status = CSV1R2
Distribution library SEZASAMP(SNMPV2_C)
#
#---
#
Format of entries (SNMPv1 and SNMPv2c):
#
winSnmpName targetAgent admin nosvipa
#
Format of entries (SNMPv3):
#
winSnmpName targetAgent admin secNamepassword context secLevel authProto
authKey privProto privKey
#
#--
#--
Community-based security (SNMPv1 and SNMPv2c)
#---
v1 127.0.0.1 snmpv1
v2c 127.0.0.1 snmpv2c
mvs1 9.67.113.79 snmpv2c
mvs2 mvs2c snmpv2c nosvipa
mvs3 mvs3:1061 snmpv2c
#
#---
User-based Security Model (USM with SNMPV3)
#
Notes
- Keys in this file must not be localized.
- All keys need to be regenerated using the pwtokey command in order
for these sample entries to actually be used.
- In this sample:
- Keys are generated for use with engineID 00000002000000000943714F
- Authentication keys were generated with password of
username+"password", such as "u1password"
- Privacy keys were generated with password of
username+"privpass", such as "u1privpass"
#
#--
#
#v3mpk 127.0.0.1 snmpv3 u1 - - AuthPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987
DES eac02a0d9fe90eca7911fdcaba20deae
v3mak 127.0.0.1 snmpv3 u1 - - AuthNoPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987

- -
v3n 127.0.0.1 snmpv3 u1 - - noAuthNoPriv - - - -

778 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

#
#v3spk 127.0.0.1 snmpv3 u2 - - AuthPriv HMAC-SHA

76784e5935acd6033a855df1fac42acb187aa867
DES adaaf313277a55a3df3a8d2fb70192c427799e0c
v3sak 127.0.0.1 snmpv3 u2 - - AuthNoPriv HMAC-SHA

76784e5935acd6033a855df1fac42acb187aa867 - -
#
#v3mpk2 127.0.0.1 snmpv3 u3 - - AuthPriv HMAC-MD5 d1f86e9c9346253c10a4cd2da339b1db
DES cfccde3249ba521ae4da0ddfc2b76ee7
#
v3spk2 127.0.0.1 snmpv3 u4 - - AuthPriv HMAC-SHA

42529b3c6c138c173e70db1050de8d74c04205cb
DES ef70a0a98d399a9189f3169e82010f3b46e694e2
#
v3mpp 127.0.0.1 snmpv3 u5 u5password - AuthPriv HMAC-MD5 - DES -
nosvipa
v3map 127.0.0.1 snmpv3 u5 u5password - AuthNoPriv HMAC-MD5 - - -
nosvipa
#
v3spp 127.0.0.1 snmpv3 u6 u6password - AuthPriv HMAC-SHA - DES -
v3sap 127.0.0.1 snmpv3 u6 u6password - AuthNoPriv HMAC-SHA - - -

MIBS.DATA statement syntax
The MIBS.DATA statements can be used to specify character (usually called textual)
names for MIB objects not defined in any compiled MIB supplied with z/OS
Communications Server. You can then use these character/textual names as the
name of the objects on the osnmp command.

The format of a statement in this file is:
character_object_name object_identifier object_type

Field definitions:

character_object_name
The character or textual name of the MIB object. The
character_object_name value can contain both uppercase and lowercase
letters.

object_identifier
The ASN.1 value for the MIB object.

object_type
The SMI_type for the MIB object. The valid SMI_type values are:
v bitstring
v counter
v counter32
v counter64
v dateAndTime
v display or display string
v integer
v integer32
v ipaddress
v gauge
v gauge32
v nsapaddress
v null
v objectidentifier or OID

Figure 26. OSNMP.CONF sample

Chapter 22. Simple Network Management Protocol (SNMP) 779

v octetstring
v opaque
v opaqueascii
v snmpAdminString
v timeticks
v uinteger

v The maximum length of each statement in this file is 2048 bytes.

v All parameters for each character or textual name must be on the same
statement.

v Sequence numbers are not allowed on the statements.

v Comments begin with a # character in column 1.

MIBS.DATA search order
The search order for accessing the MIBS.DATA information is as follows. The first
file found in the search order is used.

v The name of an HFS file or an MVS file specified by the MIBS_DATA
environment variable

v /etc/mibs.data HFS file

TRAPFWD daemon
The TRAPFWD daemon forwards traps from the SNMP agent to network
management applications. It listens for traps on port 162 and forwards them to all
configured managers.

Starting TRAPFWD from an MVS console
Update cataloged procedure TRAPFWD by copying the sample in
SEZAINST(TRAPFWD) to your system.

The following is a sample JCL Procedure for starting TRAPFWD from MVS:

780 z/OS V1R4.0 CS: IP Configuration Reference

Specifying TRAPFWD parameters
The following parameters are available for TRAPFWD:

Parameter Description

-d n The -d flag indicates the level of debug information that is desired.
The valid values are:

v 0 - No tracing

v 1 - Minimal tracing. Ttrace address from which the trap is
received.

v 2 - In addition to 1, trace addresses to which the trap packet is
forwarded.

v 3 - In addition to 2, trace trap packets.

//TRAPFWD PROC
//*
//* Sample procedure for running the OE Trap Forwarder daemon
//*
//* IBM Communications Server for OS/390
//* SMP/E Distribution Name: EZASNTPR in AEZASMP1
//*
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 2000
//* Status = CSV2R10
//*
//TRAPFWD EXEC PGM=EZASNTRA,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/-d 0’
//*
//*** Notes:
//*
//* - The C runtime libraries should be in the system’s link list
//* or this sample procedure will need to STEPLIB to them.
//*
//* - TCP/IP runtime libraries should also be in the system’s link
//* list.
//*
//* - TRAPFWD must find the name (TCPIPJOBNAME in TCPIP.DATA) that
//* it should be associated with. The OE function __iptcpn() is
//* used to find this name. It is suggested that the parmlist
//* be modified to set the environment variable
//* RESOLVER_CONFIG to point to the correct resolver file when
//* multiple INET Physical File Systems are started.
//*
//* If only one INET PFS will be started then /etc/resolv.conf
//* may be used.
//*
//* - The TRAPFWD daemon can also be invoked from the OMVS shell as
//* a shell command.
//*
//*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*

Figure 27. TRAPFWD cataloged procedure

Chapter 22. Simple Network Management Protocol (SNMP) 781

If the -d parameter is not specified, the default value of 0 is used.

-p port_number
The -p flag indicates the UDP port at which the daemon should
listen for traps. The default is UDP port 162.

-l max_packet_len
The -l flag indicates the maximum packet length of the trap
datagram that has to be forwarded. The valid values are 4096 (4K)
to 16384 (16K). The default value is 4096. Note that if the
ADD_RECVFROM_INFO option is specified, then the maximum
packet size will be max_packet_len minus the length of the address
information.

-? The -? flag will display the usage statement for the trap forwarder
daemon. If the -? option is specified, all the other options will be
ignored.

Starting TRAPFWD from the UNIX shell
The trapfwd command is used to start the trap forwarder daemon.

To start TRAPFWD from the UNIX shell:

�� trapfwd
-d 0 -p 162 -l 4096

-d n -pport_number -l max_packet_len
?

�

TRAPFWD.CONF syntax
The format of a statement in this file is:
host_name port_number number

Field definitions:

host_name
The host name or IP address to which the trap should be forwarded. If a
dash (-) is used, then the local host name is used.

port_number
The port number to which the trap should be forwarded. There is no default
value.

option
This field is optional. If a value of ADD_RECVFROM_INFO is specified, the
received from information is appended to the trap. The default is not to
append the received from information.

Usage Notes:

Lines starting with an asterisk (*) or a # character are considered comment lines.

TRAPFWD.CONF search order
The following search order is used to access the TRAPFWD.CONF information:

1. An HFS file or an MVS data set specified by the TRAPFWD_CONF
environment variable

2. /etc/trapfwd.conf

782 z/OS V1R4.0 CS: IP Configuration Reference

The first file found in the search order will be used.

Note: If the environment variable is set and if the file specified by the environment
variable is not found, the Trap Forwarder daemon will terminate.

TRAPFWD examples
To start the trap forwarder daemon on the standard port (port 162), enter:
trapfwd

To start the trap forwarder daemon on a particular port (port 5062), enter:
trapfwd -p 5062

Chapter 22. Simple Network Management Protocol (SNMP) 783

784 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 23. Remote print server (LPD)

LPD server cataloged procedure (LPSPROC)
//LPSERVE PROC MODULE=LPD,
// LPDDATA=TCPIP.SEZAINST(LPDDATA),
// LPDPRFX=’PREFIX TCPIP’,
// DIAG=’’
//*
//* z/OS Communications Server
//* SMP/E Name: EZAEB019 alias LPSPROC in library SEZAINST
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1996, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//* Turn on SMSG support
//*
//SETSMSG EXEC PGM=SETSMSG,PARM=ON
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//LPD EXEC PGM=MVPMAIN,
// PARM=(’&MODULE,ERRFILE(SYSERR),HEAP(512)’,
// ’NOSPIE/ ’’&LPDATA’’ &LPDPRFX &DIAG’),
// REGION=6M,TIME=1440
//SPOOL OUTPUT CHARS=GT12
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//LPD1 OUTPUT CHARS=GT12
//*
//* SYSPRINT contains runtime diagnostics from LPD. It
//* can be a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains runtime diagnostics from Pascal. It can be
//* a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* SYSDEBUG receives output that is generated when the TRACE
//* parameter is specified in the PARM on the EXEC card.
//* It can be a data set or SYSOUT.
//*
//SYSDEBUG DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.

© Copyright IBM Corp. 2000, 2002 785

//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DISP=SHR,DSN=TCPIP.SEZAINST(TCPDATA)

Sample LPD server configuration data set (LPDDATA)
;LPD CONFIGURATION DATA SET
;==========================
;
; COPYRIGHT = NONE.
; Change Activity
; $L1=MV11199 HTP320 951206 RTPMCL: Added comments
; $01=PN66730 HTP310 960131 RTPMCL: Added change flag
;
; This data set describes the printers and punches (which are both calle
; SERVICE) that are usable from LPR client programs for this host.
;
; Each SERVICE must be described as LOCAL, NJE, or REMOTE. Data for
; LOCAL services are managed directly by JES. Data for NJE services
; are managed by NJE. REMOTE services’ data are forwarded to another
; LPD (print server).
;
; You can control which types of printing or punching can be done
; through a particular SERVICE with FILTERS. The 4 currently
; available FILTERS are:
;
; f which paginates the data set at the size of the page given.
; It also truncates lines if they exceed a maximum length.
; l which does not insert pagination but will truncate lines
; as the "f" filter does.
; p which paginates the data set, adding titles, the date, and
; page numbers as well as providing line truncation.
; r which prints the data set, interpreting the first column
; of each line as FORTRAN carriage control.
;
;
; Most printer SERVICEs should allow all three but you probably only
; want to specify "l" for punches.
;
; The LINESIZE option can be used to limit the length of lines written
; by the filters.
;
; The PAGESIZE option can be used for filters that do pagination to
; specify how many lines should appear on a page.
;
; The RACF option will cause the server to verify that a user knows
; the account password for a user ID on this host.
;
; These statements define a LOCAL PRINTER SERVICE called locprt1, which
; is a conventional printer that will use the JES printing facilities.
;
;DEBUG
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60

;
; These statements define an NJE PRINTER SERVICE called njeprt1, which
; provides access to the NJE service on this system.
;
;SERVICE njeprt1 PRINTER

Figure 28. LPD Server cataloged procedure (LPSPROC)

786 z/OS V1R4.0 CS: IP Configuration Reference

; NJE DEST=RALVMM IDENTIFIER=JOHN OUTPUT=LPD1
; FILTERS f l p r
; LINESIZE 132
; PAGESIZE 60
;
; These statements define a REMOTE SERVICE called pebprt, which
; provides access to the printing queues on another system.
; From an LPR client, specify the printer name defined on the SERVICE
; statement and the hostname or IP address of the host that this LPD
; is running on, NOT the names on the REMOTE statement.
; Example: LPR fn (p pebprt h LPDSrvHostName
; The above is required if you wish to send the data to the REMOTE
; printer via this LPD.
;
;SERVICE pebprt PRINTER
; REMOTE lpt1@PEBBLES.TCP.RALEIGH.IBM.COM
; FAILEDJOB MAIL
;
; These statements define a PUNCH SERVICE called pun1, which
; provides access to the JES controlled PUNCH.
;
;SERVICE pun1 PUNCH
; LOCAL
; FILTERS l
; LINESIZE 80
;

Specifying LPD server parameters
The system parameters required by the LPD server are passed by the PARM option
on the EXEC statement of the LPD cataloged procedure. Update the following
parameters as required.

LPDDATA=‘data_set_name’
Specifies the fully qualified name of the data set containing the LPD
configuration statements. This data set can be sequential or a member of a
PDS.

LPDPRFX=‘PREFIX your_prefix’
Specifies the high-level qualifier to be used for temporary data sets created by
the LPD server. Include both the PREFIX keyword and your qualifier in the
quoted string. The qualifier may be up to 26 characters. If it is blank, it defaults
to the procedure name. The LPD task requires the authority to create and
modify data sets with this prefix.

DIAG=‘options’
Specifies any of the following diagnostic options in a quoted string of keywords
separated by blanks. For example, DIAG=’VERSION TRACE’

VERSION
Displays the version number.

TYPE Activates high-level trace facility in the LPD server. Significant events,
such as the receipt of a job for printing, are recorded in the //SYSOUT
DD data set specified in your LPD server cataloged procedure.

TRACE
Causes a detailed trace of activities within the LPD server to record in
the //SYSOUT DD data set specified in your LPD server cataloged

Figure 29. Sample LPD server configuration data set (LPDDATA)

Chapter 23. Remote print server (LPD) 787

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

||
|
|

|
|
|

procedure. The detailed tracing can also be activated with the DEBUG
statement in the LPD server configuration data set and with the TRACE
command of the SMSG interface.

Note: The JCL PARM= statement has a limit of 100 characters.

Summary of LPD server configuration statements
The valid statements for this data set are listed in the following table.

Table 60. Summary of LPD server configuration statements

Statement Description Page

DEBUG Turns on tracing of all LPD processes. 789

JOBPACING Restricts parallel processing of jobs to conserve memory. 790

OBEY Specifies users IDs that can use the SMSG interface. 791

SERVICE Specifies the name and Type of Service. 792

STEPLIMIT Restricts complexity of jobs received to conserve memory. 802

UNIT Specifies type of DASD that LPD should use for temporary
data sets.

803

VOLUME Specifies the volume that LPD should use for temporary
data sets.

804

Statements for the LPD server configuration data set
This section includes the syntax rules and alphabetically listed definitions of the
statements for the data set used to configure the LPD Server.

Syntax rules
In the LPD server configuration data set, tokens are delimited by blanks and record
boundaries. All characters to the right of and including a semicolon are treated as
comments.

788 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|

|

DEBUG statement
Use the DEBUG statement to activate full tracing of the processing within the LPD
server.

Syntax

�� DEBUG �

Parameters
There are no parameters for this statement.

Usage notes
v Detailed tracing can also be activated using the TRACE parameter on the PROC

statement of the LPD server procedure or by specifying TRACE ON with the
SMSG interface. The DEBUG statement can be placed anywhere in the data set
but will only affect those services following it. Including DEBUG as the first
statement in the configuration data set allows trace messages to be written from
the point LPD is initialized.

v LPD generates minimal tracing under the following conditions:

– No value in DIAG parameter

– TRACE not passed as a parameter

– DEBUG not defined in the LPD configuration file

v Coding LPD with DIAG=Version results in minimal tracing plus the message
EZB0614I. Coding LPD with DIAG=Type results in minimal tracing plus brief
messages describing JOB status, such as:

– JOBreceived

– JobStartPRINTING

– JOBcontinuePRINTING

– JOBfinishPRINTING

Coding LPD with DIAG=Trace results in configuration messages and details of
print job.

v TRACE passed as a parameter yields the same results coding DIAG=TYPE.

Chapter 23. Remote print server (LPD) 789

|

|

|

|

|
|
|

|

|

|

|

|
|

|

JOBPACING statement
Use the JOBPACING statement to limit the number of jobs that the LPD server will
concurrently write to the JES spool or send to another LPD server. This limits
memory requirements in LPD, but does not cause any jobs to be lost. Received
jobs are queued until they can be processed.

Syntax

�� JOBPACING 1 limit �

Parameters
limit

An integer specifying the maximum number of jobs that the LPD server will
concurrently write to the JES spool or send to another LPD server.

Usage notes
v Concurrent processing of jobs requires memory for control blocks and large I/O

buffers. Some concurrent job processing keeps a long job or slow receiving LPD
from delaying all the other jobs. Too much concurrent processing causes
thrashing and requires extensive memory.

v JOBPACING defaults to the recommended value of 5 when the keyword is not
specified. Increasing this value may cause memory allocation problems with
certain system configurations.

v If LPD runs out of memory, reduce the value of either JOBPACING or
STEPLIMIT.

790 z/OS V1R4.0 CS: IP Configuration Reference

OBEY statement
Use the OBEY statement to specify user IDs authorized to use the SMSG interface
provided with LPD server.

Syntax

�� OBEY 1 user_id �

Parameters
user_id

The user IDs authorized to use the SMSG interface. Refer to z/OS
Communications Server: IP Configuration Guide for more information.

Examples
The following statement allows three test user IDs to use the SMSG interface:
OBEY TESTER01 TESTER02 TESTER03

Usage notes
Multiple user IDs can be specified on the OBEY statement. More than one OBEY
statement can be included in the data set.

Chapter 23. Remote print server (LPD) 791

SERVICE statement
Use the SERVICE statement to specify the name and Type of Service for the
printers and punches used by the LPD server. This service name is used in the
LPR command.

Note: The parameters shown on separate lines must be coded on separate lines.
Follow the example in the sample configuration data set shown in “Sample
LPD server configuration data set (LPDDATA)” on page 786.

Syntax

�� SERVICE name PRINTER
RECFMU
RECFMUA
PUNCH
NONE

LOCAL local_options
NJE nje_options
REMOTE printer@host

EPORT

�

� 1

1

.

EXIT START program
END

FAILEDJOB MAIL
DISCARD

FILTERS f
l
lASf
p
r

LINESIZE 132

LINESIZE length
NLSTRANSLATE ... see separate diagram ...

PAGESIZE 60

PAGESIZE lines
RACF

SMTP SMTP

SMTP server_name
CLASS=class DEST=node

TRANSLATETABLE name
XLATETABLE name

�

local_options:

CLASS=A or B

CLASS=class
OUTPUT=name

792 z/OS V1R4.0 CS: IP Configuration Reference

nje_options:

CLASS=A or B

CLASS=class

DEST=local_node

DEST=node

IDENTIFIER=SYSTEM

IDENTIFIER=user_id
�

�
PRIORITY=50

PRIORITY=priority
OUTPUT=name

Syntax

Chapter 23. Remote print server (LPD) 793

�� NLSTRANSLATE BIG5
(

ASCII
SOSI

EBCDIC
SPACE

EUckanji
(

ASCII
SOSI

EBCDIC
SPACE

HAngeul
(

ASCII
SOSI

EBCDIC
SPACE

Ibmkanji
JIS78kj

(
ASCII

JISROMAN
JIS83kj

(
ASCII

JISROMAN
Ksc5601

(
ASCII

SOSI
EBCDIC
SPACE

SChinese
(

ASCII
SOSI

EBCDIC
SPACE

SJiskanji
(

ASCII
SOSI

EBCDIC
SPACE

TChinese
(

ASCII
SOSI

EBCDIC
SPACE

�

Parameters
name

The service name must be one to eight characters in length. Only characters
permitted in MVS data set names are valid. This value is case sensitive.

794 z/OS V1R4.0 CS: IP Configuration Reference

PRINTER
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=UM and machine carriage control is
written in column 1 of the file. For filter 1, this will always be single space
(’09’X). For other filters, it will be determined from the data received.

RECFMU
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=U and carriage control characters are not
added to the beginning of each line. The JES spool file is like PRINTER, but
carriage control is not added.

RECFMUA
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=UA. The carriage control (CC) character is
taken from the first column of user data after any LPD processing. Only filter 1
should be allowed with this device type. Specify filters 1 in the SERVICE
statement so LPD will not print jobs requesting other filter options. The LPD
trace would show message EZA0801I for these aborted jobs.

PUNCH
Specifies the service is to a punch device. For LOCAL or NJE devices, the JES
spool file created is allocated with RECFM=UM and machine carriage control is
written in column 1 of the file.

NONE
Specifies that the service is not currently in use.

LOCAL
Specifies that the data sets sent to a service are written to the local MVS printer
or punch.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

OUTPUT=name
Specifies the name of an OUTPUT DD statement that contains additional
spool parameters.

NJE
Specifies that the data sets sent to a service are delivered to the NJE system.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

DEST=node
The name of the NJE node. The default is the local node.

IDENTIFIER=user_id
The device user ID. The default is SYSTEM.

PRIORITY=priority
Specifies the transmission priority. The default is 50.

OUTPUT=name
Specifies the name of an OUTPUT DD statement that contains additional
spool parameters.

REMOTE
Specifies that data sets (jobs) sent to this service queue are forwarded
immediately to the specified remote printer. If the remote printer is not available,
then the job will be discarded.

Chapter 23. Remote print server (LPD) 795

Note: If discarded jobs are a problem, consider sending the jobs directly to the
final LPD with LPR, instead of using the MVS LPD as an intermediate
router.

printer@host
The destination printer at a specified Internet host. This can be an Internet
name or an IP address.

EPORT
For the Remote service, when LPR ports 721-731 are in use, LPD will try to
use non-reserved ports in the 732-1023 range. The default action, when
EPORT is not specified, is to only use the ports 721-731 defined by RFC
1179.

EXIT
Specifies any program to be executed before closing, but after allocating and
opening, an output data set.

START
Specifies that the program is invoked after allocating and opening the
output data set, but before anything is written to the data set. This
parameter is mutually exclusive of the END parameter.

END
Specifies that the program is invoked just before closing the output data
set. This parameter is mutually exclusive of the START parameter.

program
Name of the program to be invoked. Refer to z/OS Communications Server:
IP Configuration Guide for information about using the default LPBANNER
or creating your own banner page program. The library containing the
program should be in the system’s link list (LNKLSTxx), or a STEPLIB
definition can be used if the library is APF authorized.

FAILEDJOB
Specifies whether a notice of failed jobs should be mailed to users or a job is
discarded without notice.

MAIL
Specifies that notices of failed jobs are mailed to users.

Note: To use the MAIL parameter, you must also specify the SMTP
parameter. Messages are logged in the LPD joblog, showing the
information sent to SMTP.

DISCARD
Specifies that failed jobs are discarded without notice.

FILTERS
The control file received by LPD specifies the filter actually used. LPD
formatting for each possible filter is described below. When lASf is specified,
any filter l received will be treated as filter f (described below):

f Print formatted file paginates the data set at the size of the page given. It
also truncates lines if they exceed a maximum length.

This filter causes the data file to be printed as a plain text file, providing
page breaks as necessary. Only ASCII control characters in the following
list are honored: HT, CR, FF, LF, VT, and BS. They are removed from the
data stream (not printed) and changed into equivalent spacing and machine

796 z/OS V1R4.0 CS: IP Configuration Reference

carriage control. Any ASCII code that translates to an EBCDIC NL is also
honored. However, standard ASCII tables do not have an NL (new line)
control character.

JES writers start each job on a new page. Therefore, LPD suppresses any
FF (form feed) at the beginning of the data to avoid an extra page eject
before the user’s data set is printed.

l Print file leaving control characters does not insert pagination but does
truncate lines. All lines are single spaced.

This filter causes the specified data file to be printed without filtering out
control characters (except LF, which is used to determine line endings when
converting to a JES record oriented spool file). Other ASCII control
characters will be translated to EBCDIC and printed as text. They will not
be converted to equivalent machine carriage control. Use filter f when you
want control codes like FF and HT to be honored.

If you would prefer filter l to behave like filter lASf , specify lASf instead of l.
See lASf below.

lASf

p - Print file with ’pr’ format
Paginates data set, adding titles, the date, and page numbers as well as
providing line truncation.

This filter causes the data file to be printed with a heading, page numbers,
and pagination. Page breaks are determined by the PAGESIZE
configuration on the SERVICE statement, or by ASCII FF (form feed)
control characters in the data stream. PAGESIZE includes the title lines
printed.

JES writers start each job on a new page. Therefore, LPD suppresses any
FF (form feed) at the beginning of the data to avoid an extra page eject
before the user’s data set is printed.

r - File to print with FORTRAN carriage control
Prints the data set, interpreting the first column of each line as a FORTRAN
carriage control. The FORTRAN controls are removed from the data stream
and translated into equivalent machine carriage control. LPD honors ″ ″,
″1″, ″0″, ″+″, and ″-″. Other values in column 1 cause single spacing. LPD
also truncates lines if they exceed LINESIZE. Page breaks are determined
by the PAGESIZE configuration as well as the Fortran controls in column 1.

LINESIZE
Specifies the line length used by the filters when they truncate lines. This
statement only applies to services that are designated as either LOCAL or NJE
on PAGESIZE (for example, 100000).

length
The number of characters in a line on a page. Lines longer than this
number are truncated. The default is 132.

PAGESIZE
Specifies the page length used by the filters when they paginate.

This statement only applies to services that are designated as either LOCAL or
NJE.

lines
The number of lines on a page. The default is 60.

Chapter 23. Remote print server (LPD) 797

RACF
Allows control of which users print data sets on this service.

SMTP
Specifies the SMTP server name, CLASS, and DEST options for sending failed
jobs notices. (For additional information, see the description of the FAILEDJOB
MAIL parameter.)

server_name
Specifies the name of the SMTP server. If this statement is omitted, the
default is SMTP.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

DEST=node
The NJE node to which SMTP messages should be sent.

TRANSLATETABLE
Specifies the translation table in the name.TCPXLBIN data set to be used by
the client. XLATETABLE is a synonym for this parameter.

name
Specifies the SBCS translate table to be used when a client selects this
SERVICE. The name parameter is preceded by either the jobname or the
hlq and followed by TCPXLBIN to form the data set name of the translate
table (jobname.name.TCPXLBIN or hlq.name.TCPXLBIN). If both data sets
exist, which one to use is determined by a search order hierarchy.

Refer to z/OS Communications Server: IP Configuration Guide for more
information about search order hierarchy, loading, and customizing of SBCS
translation tables.

XLatetable is a synonym for this option.

XLATETABLE
Specifies the translation table in the name.TCPXLBIN data set to be used by
the client. TRANSLATETABLE is a synonym for this parameter.

name
Specifies the SBCS translate table to be used when a client selects this
SERVICE. The name parameter is preceded by either the jobname or the
hlq and followed by TCPXLBIN to form the data set name of the translate
table (jobname.name.TCPXLBIN or hlq.name.TCPXLBIN). If both data sets
exist, which one to used is determined by a search order hierarchy.

Refer to z/OS Communications Server: IP Configuration Guide for more
information about search order hierarchy, loading, and customizing of SBCS
translation tables.

TRANslatetable is a synonym for this option.

NLSTRANSLATE
Specifies the DBCS translation type to be used when a client selects the
named SERVICE.

BIG5
Select the translation type from Big-5 P-C DBCS codes to Traditional
Chinese host codes.

EUckanji
Select the translation type from Japanese EUC DBCS codes to
Japanese host codes.

798 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|

HAngeul
Select the translation type from Korean PC DBCS codes to Korean host
codes.

Ibmkanji
This option actually causes no conversion to be performed; in other
words, data is sent to a printer without translation. Ibmkanji may be
used for sending data in EBCDIC. If you select this option, be sure
other printers on the same network are all configured with Ibmkanji.

JIS78kj
Select the translation type from JIS 1978 DBCS codes to Japanese
host codes. The Escape Sequence, ESC 2/4 4/0, is used to express
JIS X0208 1978.

JIS83kj
Select the translation type from JIS 1983 DBCS codes to Japanese
host codes. The Escape Sequence, ESC 2/4 4/2, is used to express
JIS X0208 1983.

Ksc5601
Select the translation type from IBM KS DBCS codes to Korean host
codes.

SChinese
Select the translation type from Simplified PC Chinese DBCS codes to
Simplified Chinese host codes.

SJiskanji
Select the translation type from Shift JIS DBCS codes to Japanese host
codes.

TChinese
Select the translation type from Traditional Chinese 5550 PC DBCS
codes to Traditional Chinese host codes.

SOSI
Shift-Out and Shift-In characters X’1E’ and X’1F’ are used in data to
delimit DBCS strings.

SOSI ASCII
Shift-Out and Shift-In characters X’1E’ and X’1F’ are used in data to
delimit DBCS strings.

SOSI EBCDIC
Shift-Out and Shift-In characters X’0E’ and X’0F’ are used in data to
delimit DBCS strings.

SOSI SPACE
Shift-Out and Shift-In characters X’20’ and X’20’ are used in data to
delimit DBCS strings.

ASCII (with JIS78KJ and JIS83KJ only)
The ASCII Escape Sequence, ESC 2/8 4/2, is used in data to express
SBCS strings.

JISROMAN (with JIS78KJ and JIS83KJ only)
The JISROMAN Escape Sequence, ESC 2/8 4/10, is used in data to
express SBCS strings.

Examples
v PRINTER and PUNCH definitions

Chapter 23. Remote print server (LPD) 799

The sample configuration data set SEZAINST(LPDDATA) provides examples of
SERVICE statements for LOCAL, REMOTE, and NJE printers and a LOCAL
punch.

v EXIT Parameter

To make the LPBANNER program print a page at the beginning of the printed
output, use the EXIT START parameter within a SERVICE statement.
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60
EXIT START LPBANNER

To make the LPBANNER program print a page at the end of the printed output,
use the EXIT END parameter within a SERVICE statement.
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60
EXIT END LPBANNER

Refer to RFC 1179 Section 7.5 Line Printer Daemon Protocol for more
information about the LPD user exit.

Usage notes
v For remote printers:

Remote printers do not require specifications for EXIT, FAILEDJOB, FILTERS,
LINESIZE, PAGESIZE, RACF, SMTP, and translation tables. These are defined
on the remote system.

The LPR command must be specified with the printer name as it is specified on
the SERVICE statement. The HOST parameter may be HOSTNAME or the IP
address of the host the LPD is running on, not the printer name and IP address
of the remote printer.
LPR fn (p pebprt h LPDSrvHostName

This is required if you want to send data to the remote printer using this LPD.

v With RACF:

In order to print data sets on a printer that has RACF specified, the user must
use the JOB option with a valid password on the LPR command.

If the RACF keyword is specified for the service and a valid password is not
supplied, the job sent to that service will fail.

If a printer is defined as RACF for a local service on one system and as an NJE
service on other systems, then you must specify the RACF keyword on the
SERVICE statement on each of the systems where this service is defined.

v For SMTP:

– SMTP is used in conjunction with the FAILEDJOB statement. If the MAIL
keyword is used on the FAILEDJOB statement, then the SMTP server_name
should be set to the name of the SMTP server and an optional CLASS and
Destination NJE node.

– When an attempted print job fails and the MAIL keyword is used on the
FAILEDJOB statement, then the LPD server sends a notice of the failure to
the SMTP server. This notice is then forwarded to the user ID that submitted
the print request.

800 z/OS V1R4.0 CS: IP Configuration Reference

v For FAILEDJOB:

If the MAIL parameter is specified for any service, then the SMTP statement
must be included in the LPD configuration data set.

v For EXIT:

– If the job name is not specified on the corresponding LPR operation, JOB is
the data set name that was printed by LPD.

– If CLASS is omitted on the LPR operation, it contains the sending system’s
host name.

– The following parameters are passed to the program but not defined in the
EXIT statement.

param1
A pointer to a full word return code.

param2
A Pascal string containing the DD name of the spool file, the data set
name of the control file, the printer name, and the total number of bytes in
the print job. The first two bytes of the Pascal string are the number of
bytes of character data starting at byte 3.

param3
A pointer to an open DCB for the JES spool file. The DCB is
(DSORG=PS, MACRF=PL, RECFM=UM) for SERVICE printer or
SERVICE PUNCH devices. THE DCB is (DSORG=PS, MACRF=PL,
RECFM=U) for SERVICE RECFMU devices.

Chapter 23. Remote print server (LPD) 801

STEPLIMIT statement
Use the STEPLIMIT statement to limit the number of data files and configuration
files allowed in a job received by LPD. Jobs that are too complex will be rejected
with a NACK and will not be printed.

Syntax

�� STEPLIMIT 1 limit �

Parameters
limit

An integer specifying the maximum number of data files and configuration files
allowed in a single job received by LPD. When a wildcard is used in the
’filename’ with LPR in some systems, the files are combined into one complex
job with many data files.

Usage notes
v Each data file and control file requires a temporary data set on MVS. Each

requires memory for control blocks and I/O buffers.

v STEPLIMIT defaults to the recommended value of 80 when the keyword is not
specified. Increasing this value may cause memory allocation problems with
certain system configurations.

v If LPD runs out of memory, reduce the value of either JOBPACING or
STEPLIMIT.

802 z/OS V1R4.0 CS: IP Configuration Reference

UNIT statement
Use the UNIT statement to specify the specific type of DASD where LPD will write
its temporary data sets while the transfer of data from an LPR client occurs.

Syntax

�� UNIT 1 dasdname �

Parameters
dasdname

The generic name of a group of DASD.

Chapter 23. Remote print server (LPD) 803

VOLUME statement
Use the VOLUME statement to specify the specific DASD volume where LPD writes
its temporary data sets while the transfer of data from an LPR client occurs.

Syntax

�� VOLUME dasdname �

Parameters
dasdname

The volume serial number. The value specified for name is case sensitive.

Examples
Set the volume name for new data set to WRKLB4:
VOLUME WRKLB4

804 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 24. PORTMAP

PORTMAP cataloged procedure (PORTPROC)

//PORTMAP PROC MODULE=PORTMAP,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: SEZAINST(PORTPROC)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//PMAP EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 30. PORTMAP cataloged procedure (PORTPROC)

© Copyright IBM Corp. 2000, 2002 805

806 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 25. UNIX PORTMAP

UNIX PORTMAP cataloged procedure (OPORTRPC)

//PORTMAP PROC
//*
//* TCP/IP for MVS
//* SMP/E distribution name: EZBOPORT
//*
//* 5645-001 5655-HAL (C) Copyright IBM Corp. 1997.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: OpenEdition MVS Portmapper Server main process
//*
//PORTMAP EXEC PGM=OPORTMAP,REGION=4096K,TIME=1440,
// PARM=’POSIX(ON),ALL31(ON)/’
//*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
// PEND

Figure 31. UNIX PORTMAP cataloged procedure (OPORTRPC)

© Copyright IBM Corp. 2000, 2002 807

808 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 26. NCS Interface

NRGLBD cataloged procedure (NRGLBD)
Update the NRGLBD cataloged procedure by copying the sample provided in
hlq.SEZAINST(NRGLBD) to your system or recognized PROCLIB and modifying it
to suit your local conditions.

Following is the sample NRGLBD cataloged procedure:

LLBD cataloged procedure (LLBD)
Update the LLBD cataloged procedure by copying the sample provided in
hlq.SEZAINST(LLBD) to your system or recognized PROCLIB and modifying it to
suit your local conditions.

//NRGLBD PROC MODULE=NRGLBD,PARMS=’’
//*
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB02D
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//NRGLBD EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 32. NRGLBD cataloged procedure

© Copyright IBM Corp. 2000, 2002 809

Following is the sample LLBD cataloged procedure:

//LLBD PROC MODULE=LLBD,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: SEZAINST(LLBD)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//LLBD EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//SYSIN DD DUMMY
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DISP=SHR,DSN=TCPIP.SEZAINST(TCPDATA)

Figure 33. LLBD cataloged procedure (LLBD)

810 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 27. Network database (NDB) system

NDB setup cataloged procedure (NDBSETUP)
The NDBSETUP sample contains statements that correspond with the other NDB
samples in this chapter.
//NDBSETUP JOB NDBSETUP,
// CLASS=A,
// NOTIFY=&SYSUID
//*
//* Communications Server for OS/390, Version 2, Release 6
//* SMP/E Distribution Name: EZAEB032
//*
//* Copyright: Licensed Materials - Property of IBM
//*
//* "Restricted Materials of IBM"
//*
//* 5647-A01
//*
//* (C) Copyright IBM Corp. 1977, 1998
//*
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV2R6
//*
//*
//*
//* This JCL causes the bind of the DBUTIL2 DBRM to the
//* specified DB2 subsystem and allows execution of the
//* EZAND320 plan by PUBLIC. **01C**
//*
//* This plan is used by the Network Database Server.
//*
//* Usage notes:
//*
//* 1. This job must be executed from a user ID that has
//* the authority to bind the plan used by NDB. **01C**
//*
//* 2. Change the STEPLIB DD statement in the NDBIND and
//* NDBGRANT steps to reflect the DB2 DSNLOAD data set
//* installed on your system.
//*
//* 3. Change the DB2 subsystem name in the NDBIND and
//* NDBGRANT steps from "SYSTEM(xxx)" to the
//* installation-defined DB2 subsystem name.
//*
//* 4. Change the high level qualifier of SEZADBRM in
//* the library parameter in the NDBIND step to
//* match your system installation.
//*
//* 5. Change the PLAN parameter defined in the RUN statement
//* in the NDBGRANT step to reflect the DB2 release level
//* installed on your system (e.g. DSNTIA31).
//*
//* 6. Change the LIBRARY parameter defined in the RUN statement
//* in the NDBGRANT step from "xxxxxx.RUNLIB.LOAD" to reflect
//* the library where the DSNTIAD program resides.
//*
//* Change-Activity:
//* CFD List:
//*
//* $01= PN89314 HTCP320 960924 LCARLOS: change plan name in PLAN parm

© Copyright IBM Corp. 2000, 2002 811

//* of BIND stmt, GRANT stmt, comments
//*
//* End CFD List:
//*
//NDBIND EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=’xxxxxx.DSNLOAD’,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
BIND ACQUIRE(USE) -

ACTION(REPLACE) -
CACHESIZE(1024) -
CURRENTDATA(NO) -
EXPLAIN(NO) -
ISOLATION(CS) -
LIBRARY(’TCPIP.SEZADBRM’) -
MEMBER(DBUTIL2) -
NODEFER(PREPARE) -
PLAN(EZAND320) -
QUALIFIER(SYSADM) -
RELEASE(COMMIT) -
VALIDATE(RUN) -
RETAIN

END
//*
//NDBGRANT EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=’xxxxxx.DSNLOAD’,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
RUN PROGRAM(DSNTIAD) -

PLAN(DSNTIAxx) -
LIBRARY(’xxxxxx.RUNLIB.LOAD’)

END
//SYSIN DD *
GRANT EXECUTE ON PLAN EZAND320 TO PUBLIC;
//*

PORTS cataloged procedure (PORTSPRC)

Note: You must start PORTS before you start PORTC.
//PORTS PROC DEBUG=’NOSTAE,NOSPIE/’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB003
//*
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*

Figure 34. NDB setupcataloged procedure (NDBSETUP)

812 z/OS V1R4.0 CS: IP Configuration Reference

//* Change Activity:
//*
//* $P1= PN62865 TCPV3R1 960322 LDC: Corrected options passed to C
//*
//PORTS EXEC PGM=NDBPS,PARM=’&DEBUG’,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

PORTC cataloged procedure (PORTCPRC)

Note: The NDB Port Client and NDB Servers that are started by PORTC cataloged
procedure do not support the STOP command. Use the CANCEL command
instead.

//PORTC PROC DEBUG=’NOSTAE,NOSPIE/’,
// HOMEID=’’,USERID=’’,DB2SSID=’’,NUMSRV=’’,TRACE=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB002
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//* Change Activity:
//*
//* $P1= PN62865 HTCP310 960322 LCARLOS: Corrected options passed to C
//* $P2= MV11990 HTCP320 960322 LCARLOS: Add REGION size to invocation
//* $P3= MV15846 HTCP340 971028 ZHANG : warning re. STEPLIB needed
//*
//PORTC EXEC PGM=PORTCLNT,
// PARM=’&DEBUG &HOMEID &USERID NDBSRV &DB2SSID &NUMSRV &TRACE’,
// REGION=7500K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The STEPLIB DD for SEZATCP MUST remain even if SEZATCP is
//* in the system’s link list. Any additional DDs, as described

Figure 35. PORTS cataloged procedure (PORTSPRC)

Chapter 27. Network database (NDB) system 813

//* below, should be concatenated.
//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//* To use NDB Services, the DB2 load library with the
//* suffix DSNLOAD must be in the system’s link list, or
//* added to the STEPLIB definition here.
//* If you add it to STEPLIB, it must be APF authorized.
//*
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 36. PORTC cataloged procedure (PORTCPRC)

814 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 28. SMTP server

SMTP cataloged procedure (SMTPPROC)
This procedure contains the data set name for the SMTP configuration data set.
SMTP does not support HFS files.
//SMTP PROC MODULE=SMTP,DEBUG=,PARMS=’NOSPIE/’,SYSERR=SYSERR
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB017
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R4
//*
//* Change Activity:
//* $P1=MV11439 HTCP310 RTPMCL: Added "NOSPIE" to PARMS list. @P1A
//*
//* Turn on SMSG support
//*
//SETSMSG EXEC PGM=SETSMSG,PARM=ON
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//SMTP EXEC PGM=MVPMAIN,
// PARM=’&MODULE,PARM=&DEBUG,ERRFILE(&SYERR),&PARMS’,
// REGION=6144K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSPRINT points to a data set used for the output from
//* internal calls to IDCAMS. It can be a temporary data set.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains runtime diagnostics from Pascal. It can be
//* a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* SYSDEBUG receives output that is generated when the DEBUG
//* configuration statement is specified in SMTP. It can be
//* a data set or SYSOUT.
//*
//SYSDEBUG DD SYSOUT=*
//*
//* OUTPUT contains the startup and shutdown messages from SMTP.
//* It can be a data set or SYSOUT.
//*
//OUTPUT DD SYSOUT=*
//*
//* LOGFILE receives output that is generated when the LOG
//* configuration statement is specified in SMTP. It can be
//* a data set or SYSOUT.

© Copyright IBM Corp. 2000, 2002 815

//*
//LOGFILE DD SYSOUT=*
//*
//* SMTPNJE is the output of the SMTPNJE command.
//* Before running SMTP you should use the SMTPNJE command
//* to create the data set and then you can remove the
//* "*" from the following line to activate SMTPNJE.
//*
//*SMTPNJE DD DSN=TCPIP.SMTPNJE.HOSTINFO,DISP=SHR
//*
//* CONFIG points to a sample configuration data set.
//* Before running SMTP you should modify this file to
//* include parameters suitable for your installation.
//*
//CONFIG DD DSN=TCPIP.SEZAINST(SMTPCONF),DISP=SHR
//*
//* SECTABLE points to your SMTP security table data set.
//* If you are running with the SECURE option, this data set
//* will contain a list of NJE users who are authorized to
//* use the gateway.
//* You must remove the "*" from the following line to allow
//* SMTP to find the data set.
//*
//*SECTABLE DD DSN=SMTP.SMTP.SECTABLE,DISP=SHR
//*
//* SMTPRULE points to the data set containing the rewrite rules
//* for the header addresses. You must specify REWRITE822HEADER
//* YES for this data set to be read.
//* You must remove the "*" from the following line to allow
//* SMTP to find the data set.
//*
//*SMTPRULE DD DSN=SMTP.SMTP.RULE,DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Summary of SMTP configuration statements
The SMTP configuration statements are summarized in Table 61.

Table 61. Summary of SMTP configuration statements

Statement Description Page

ALTNJEDOMAIN Specifies an alternative domain name of the NJE network, if
SMTP is running as a mail gateway.

824

ALTTCPHOSTNAME Specifies an additional host name for the local host. Mail received
for this host name is accepted and delivered locally.

825

ATSIGN Specifies that you want SMTP to use this character in the
addressing strings generated by SMTP.

826

BADSPOOLFILEID Specifies the user ID on the local system where SMTP transfers
unreadable spool files and looping mail.

827

Figure 37. SMTP cataloged procedure (SMTPPROC)

816 z/OS V1R4.0 CS: IP Configuration Reference

Table 61. Summary of SMTP configuration statements (continued)

Statement Description Page

CHECKSPOOLSIZE Enables SMTP to check the size of the JES spool file prior to
writing the data to the hlq.TEMP.NOTE file.

828

DBCS Specifies that DBCS code conversion be performed on the mail. 829

DEBUG Records all SMTP commands and replies. 832

FINISHOPEN Specifies the SMTP wait time for connection. 833

GATEWAY Specifies operation of SMTP as a gateway. 834

INACTIVE Specifies the SMTP wait time before closing an inactive
connection.

835

IPMAILERADDRESS Specifies the IP address of an SMTP server that can resolve
network addresses of unknown hosts.

836

LISTENONADDRESS Allows you to restrict which IP address is used to receive mail on
a multihomed system.

837

LOCALCLASS Specifies the spool data set class for local mail delivery. 838

LOCALFORMAT Specifies the spool data set format for local host mail delivery. 839

LOG Directs SMTP to log all SMTP traffic. 840

MAILER Specifies the address of the batch SMTP server that receives
mail.

841

MAILFILEDSPREFIX Specifies the prefix to add to mail data sets. 843

MAILFILESUNIT Specifies the unit where SMTP mail data sets reside. 844

MAILFILEVOLUME Specifies the volume where newly allocated SMTP data sets
reside.

845

MAXMAILBYTES Specifies the maximum size of mail that is accepted over a TCP
connection.

846

NJECLASS Specifies the spool data set class for mail delivered on an NJE
network.

847

NJEDOMAIN Specifies the domain name of the NJE network if SMTP functions
as a gateway.

848

NJEFORMAT Specifies the spool data set format for mail delivered on the NJE
network.

849

NJENODENAME Specifies the node name of the local JES2 or JES3 node for mail
delivered on the NJE network.

850

NOLOG Turns off the logging of mail transactions. 851

NOSOURCEROUTE Controls whether this SMTP generates and passes a source
routing string for the originator address (MAILCMD) or for the
recipient address (RCPTCMD).

852

OUTBOUNDOPENLIMIT Specifies a limit on the maximum number of simultaneous TCP
connections over which SMTP actively delivers mail.

854

PORT Specifies an alternative port number for the SMTP server during
testing.

855

POSTMASTER Specifies the address (or addresses) for mail addressed to the
postmaster at the local host.

856

RCPTRESPONSEDELAY Specifies how long the SMTP server delays responding to the
RCPT commands.

857

RESOLVERRETRYINT Specifies the number of minutes SMTP waits between attempts
to resolve domain names.

858

Chapter 28. SMTP server 817

Table 61. Summary of SMTP configuration statements (continued)

Statement Description Page

RESOLVERUSAGE Indicates whether SMTP should attempt to resolve non-local
domain names.

859

RESTRICT Specifies addresses of users who are not allowed to use SMTP
mail services.

860

RETRYAGE Specifies the number of days after which mail is returned as
undeliverable.

862

RETRYINT Specifies the number of minutes between attempts to send mail
to an inactive TCP host.

863

REWRITE822HEADER Prevents SMTP from rewriting RFC 822 headers with source
routing.

864

SECURE Specifies that SMTP operates as a secure mail gateway between
TCP network sites and NJE network sites.

865

SMSGAUTHLIST Specifies the addresses of users authorized to issue privileged
SMTP SMSG commands.

866

SPOOLPOLLINTERVAL Specifies the interval for SMTP to check the spool for incoming
batch data sets.

867

TEMPERRORRETRIES Specifies the number of times SMTP tries to redeliver mail to a
host with a temporary problem.

868

TIMEZONE Sets the printable name of the local time zone. 869

WARNINGAGE Specifies the number of days after which a copy of the mail is
returned to the sender, indicating that the mail has so far been
undeliverable and that SMTP will continue to retry delivery for
RETRYAGE days.

870

SMTP server exits
The SMTP server exit allows a user to control the influx of unwanted Internet mail
(commonly referred to as spam). When an installation determines that the volume
of spam entering the installation by way of SMTPPROC is a problem, writing this
exit should be considered. If a user exit is installed then message EZA5549I ’A
USER EXIT HAS BEEN ACTIVATED FOR THIS INVOCATION OF SMTP’ is
generated in the SMTP output data set specified in the OUTPUT statement in
hlq.SEZAINST(SMTPPROC). If the volume of spam is low and not problematic,
there is not much to be gained from writing this exit. The exit will be able to do
initialization and termination logic when SMTPPROC is itself initializing and
terminating (this might or might not occur during abnormal termination). If you want
to add an exit to a running SMTPPROC, an SMSG smtpprocname STARTEXIT
command must be issued to activate the new exit. This ensures that the
initialization call will occur and that only new connections will begin to use the exit.
The exit does not have to exist, and if it does not exist, processing will occur as in
previous releases. The SMTPPROC application will be able to determine if the exit
is available or not in a suitable link-library. The information in the remainder of this
section applies when the exit is found. Refer to z/OS Communications Server: IP
Configuration Guide for more information about how to install the SMTP server exit.

The exit should be written in Assembler Language. Standard z/OS Assembler entry
and exit linkage must be used. Refer to the z/OS MVS Programming: Authorized
Assembler Services Guide for these linkage conventions.

818 z/OS V1R4.0 CS: IP Configuration Reference

The exit will be invoked with the settings shown in Table 62.

Table 62. SMTP user exit settings

Authorization Problem state

Dispatchable Unit Mode Task

Cross memory mode PASN=HASN

Amode 31–bit

ASC mode Primary address space control (ASC) mode

Interrupt status Enabled for interrupts

Locks Unlocked

On entry to the exit, the register contents will be:

Register 0
Used as a work register by the system

Register 1
Address of the exit’s input parameter list (see Table 63)

Registers 2-12
Unassigned

Register 13
Address of an 18-word save area

Register 14
Return address

Register 15
Address of the exit routine

The exit’s input parameter list contains the following information. An assembler
macro is available to provide the user with a DSECT describing this area. The
name of the macro will be EZBZSMTP and will reside in hlq.SEZACMAC. It will
allow an optional label but has no operands. It provides symbolic names for the 3
return codes and 18 action codes. The labels are as shown in Table 63.

Table 63. SMTP server exit input parameter list

Label name Width/Value Description

Parameter list variables

EZBZSMTP DSECT Name

EZBPVERS (See note 1) 1 Fullword Version number

EZBPACTN (See note 2) 1 Fullword Action code

EZBPUSER (See note 3) 1 Fullword Returned Reg15 of
initialization call

EZBPCNID (See note 4) 1 Fullword Connection ID

(See note 5) 3 Fullwords Reserved for future use

EZBPIPV4 (See note 6) 1 Fullword IP addr of remote SMTP

EZBPDLEN (See note 7) 1 Fullword Length of data in buffer

EZBPBUFF (See note 8) 1 Fullword Buffer address

Constants

EZBRAGN 0 Return code to continue

Chapter 28. SMTP server 819

Table 63. SMTP server exit input parameter list (continued)

Label name Width/Value Description

Parameter list variables

EZBRACC 4 Return code to accept mail

EZBRREJ 8 Return code to reject mail

Action codes

EZBAINIT 1 Initialization call (See note 9)

EZBATERM 2 Termination call (See note
10)

EZBADATA 3 SMTP DATA command

EZBAEXPN 4 SMTP EXPN (expand)
command

EZBAHELO 5 SMTP HELO (hello)
command

EZBAHELP 6 SMTP HELP command

EZBAMAIL 7 SMTP MAIL command

EZBANOOP 8 SMTP NOOP command (See
note 11)

EZBAQUEU 9 IBM SMTP QUEU (queue)
command

EZBAQUIT 10 SMTP QUIT command (See
note 12)

EZBARCPT 11 SMTP RCPT (recipient)
command

EZBARSET 12 SMTP RSET (Reset)
command (See note 13)

EZBATICK 13 IBM SMTP TICK command

EZBAVERB 14 IBM SMTP VERB command

EZBAVRFY 15 SMTP VRFY (Verify)
command

EZBADBUF 16 Data buffer (See note 14)

EZBAEODB 17 End of data buffers (last
chance) (See note 15)

EZBACONN 18 End of connection (See note
16)

Notes:

1. A word containing a version number. The initial value for is one.

2. A word-aligned word containing an action code describing the buffer contents
(if any).

3. A word containing the user supplied token from the initialization call.

4. A word containing a connection identifier number to distinguish between
concurrent connections.

5. Three unused words (reserved space).

6. A word containing the IP address of the connection remote SMTP.

7. A word containing the actual length of data in the buffer. If the buffer length is
meaningless for the action code, the length is set to 0.

820 z/OS V1R4.0 CS: IP Configuration Reference

8. A word containing a 31–bit address that points to the actual buffer. If the buffer
length is 0, this parameter should not be used.

9. Buffer is empty, expect return token in R15.

10. Buffer is empty, application shutting down, exit return code will be ignored. This
call (and all others) might not occur during abnormal termination.

11. Exit return code will be ignored whenever this command is detected.

12. Exit return code will be ignored.

13. Exit return code will be ignored.

14. Data buffer (there is no command associated with this) approximately 1024
bytes of data or less. The data will be in EBCDIC but may be in an NLS mode
(non-English).

15. End of data marker (there is no command associated with this and the buffer
contents are meaningless). This is the last chance to reject this message.

16. Connection terminated (There is no command associated with this. It is the
final action code with this connection.) The exit return code will be ignored.

There are two control invocations of the SMTP user exit. One for initialization, and
the other for termination. On return from the initialization call, the contents of
register 15 will be treated as a 4-byte user token that will be returned on all other
exit invocations. (See Table 63 on page 819.) The user token will not be used by
SMTP, but only passed on subsequent calls to allow a reentrant exit to have static
data (using getmain or some other method). It is expected that certain data sets
might be read during the initialization call and that tables of known spamming
Internet addresses might be constructed at this time for later use. The termination
call allows report generation or any other clean-up activity that the exit might want
to do prior to the stopping of SMTPPROC under normal termination logic.

There are three supported return code values which the exit program may set. For
certain action codes such as initialization (EZBAINT), termination (EZBATERM) and
end of connection (EZBACONN) the return code value is ignored. The returned
value and expected meanings are as follows:

0 Call user-supplied exit program again.

4 Accept this message or command and do not call again for this message.

8 Reject message or command and do not call again for this message.

v During processing of SMTP commands the reply code of ″550 service
denied due to user supplied exit″ will be generated immediately.

v During note data processing (action code = 16) the reply code of ″550
service denied due to user supplied exit″ will be generated when the end
of data marker (action code = 17) is received.

Return codes that are not valid will be converted to a 0, and the exit will be called
again. It is highly recommended that certain commands are not to be rejected as
they might cause unpredictable results with the partner SMTP application.
Examples of commands that should always be accepted are NOOP, QUIT, and
RSET.

The connection identifier is a unique number during the life of the connection. It can
be used to distinguish between multiple concurrent connections that may be
present. Each will have its own state information in SMTPPROC and if the exit
wants to keep any state information, this field can be used to keep each message’s
state separate. Connection identifiers normally become available for reuse after a

Chapter 28. SMTP server 821

QUIT command or the end of connection (action code 18), or both, occur. They will
normally first appear with a HELO command.

The buffer contents for action codes 3 through 15 will contain the SMTP command.

The buffer will contain data that has been translated using the EBCDIC encoding
tables configured for the SMTPPROC. Data buffers might not be in English and
might contain NLS characters.

Unknown commands will be rejected by SMTPPROC and the exit will not be called.
The buffer will normally contain the SMTP command (see RFC 821 for exact
spellings and format).

Note: The SMTP command can appear in either upper, lower, or mixed case.

The initialization and termination calls do not have a connection number. The return
code from the initialization call is not checked but merely placed in the ezbpuser
field. The return code from the termination call is moot. These calls are always
active if the exit is active.

Interaction between SMTP and user exit program

During an active connection, SMTP will determine whether the user exit program
will be called again based on the return code passed back to SMTP from the
previous invocation of the exit.

The user exit will not be called again for the affected connection until the resetting
action codes are received, and only if the ezbracc or the ezbrrej return codes are
received from the exit from a connecton oriented call. The accept or reject state
might remain in effect for only the current call however.

In Table 64, the following will not be sent to the exit if the current state is accept or
reject and will not change the state.

Table 64. Exit action codes and values (Part 1)

Action code Value

3 DATA

4 EXPN

6 HELP

8 NOOP

9 QUEU

11 RCPT

13 TICK

14 VERB

15 VRFY

16 data buffers

In Table 65 on page 823, the following will not be sent to the exit but will ensure that
the next command (if any) will go to the exit as it will reset the next state to
ezbragn.

822 z/OS V1R4.0 CS: IP Configuration Reference

Table 65. Exit action codes and values (Part 2)

Action code Value

10 QUIT

12 RSET

17 End of data buffers (final chance)

In Table 66, the following will always be sent to the exit if it is active and the return
code received will determine the new state.

Table 66. Exit action codes and values (Part 3)

Action code Value

5 HELO

7 MAIL

18 Connection closed (termination of individual connection).
Connection number available for reuse and state is reset to
ezbragn.

SMTP configuration data set statements
These sections contain the data set statements for the SMTP configuration data
set.

Chapter 28. SMTP server 823

ALTNJEDOMAIN statement
Use the ALTNJEDOMAIN statement to specify an alternative domain name of the
NJE network when SMTP is running as a mail gateway.

Syntax

�� ALTNJEDOMAIN domain �

Parameters
domain

The alternative domain name of the NJE network. The alternative NJE domain
name is a string of 1 to 64 alphanumeric characters.

Examples
Using the ALTNJEDOMAIN statement is especially helpful when the NJE network is
known by multiple domain names, such as VNET and VNET.IBM.COM.
ALTNJEDOMAIN VNET

Usage notes
The ALTNJEDOMAIN statement can be specified only once.

824 z/OS V1R4.0 CS: IP Configuration Reference

ALTTCPHOSTNAME statement
Use the ALTTCPHOSTNAME statement to specify an alternative, fully qualified host
name by which SMTP recognizes the local host. Mail sent to users at host_name
are treated as if they were local users. You can use the ALTTCPHOSTNAME
statement to specify up to 16 alternative host names.

Syntax

�� ALTTCPHOSTNAME host_name �

Parameters
host_name

The name of the destination host.

Examples
In this example, mail sent to users at PALACE are treated as if they were local
users.
ALTTCPHOSTNAME PALACE

Chapter 28. SMTP server 825

ATSIGN statement
Use the ATSIGN statement to specify that you want SMTP to use this character in
the addressing strings generated by SMTP. This might affect operability between
sites using different code pages.

Syntax

�� ATSIGN symbol �

Parameters
symbol

The input symbol, which is a single-byte representation of the @ symbol in their
national language code page.

Usage notes
v If this statement is not specified, SMTP defaults to using the @ symbol (defined

as a value ’7C’). For details about EBCDIC character set definitions, refer to
3174 Character Set Reference.

v The ATSIGN statement cannot be used in combination with the
REWRITE822HEADER statement. REWRITE822HEADER defaults to YES, and
you must set this to NO in your SMTP configuration file if you want to use
ATSIGN. The REWRITE822HEADER statement must be coded before the
ATSIGN statement.

v If the ATSIGN statement was used previously, and you are assigning a new
symbol for that statement, you need to ensure that all the mail has been sent. If
old mail exists that is using the old symbol, then problems could occur.

826 z/OS V1R4.0 CS: IP Configuration Reference

BADSPOOLFILEID statement
Use the BADSPOOLFILEID statement to specify the user ID on the local system
where SMTP transfers unreadable spool files and looping mail.

Syntax

��
BADSPOOLFILEID TCPMAINT

BADSPOOLFILEID user_id
�

Parameters
user_id

The user ID on the local system where bad spool files and looping mail are
delivered. The user ID should be a maximum of eight characters. The default is
TCPMAINT. If RACF is active, then a RACF profile must be defined for this user
ID.

Examples
In this example, unreadable spool files and looping mail are transferred to the user
ID, DBARTON.
BADSPOOLFILEID DBARTON

Usage notes
The BADSPOOLFILEID statement can be specified only once.

Chapter 28. SMTP server 827

CHECKSPOOLSIZE statement
Use the CHECKSPOOLSIZE statement to specify that you want SMTP to check the
size of JES spool file. If the JES spool file is larger than the primary allocation for
the hlq.TEMP.NOTE data set, the resulting SMTP note will be truncated. When the
SMTP note is truncated, an informational message EZA5340I or EZA5342I will be
generated in the SMTP OUTPUT file. The choice of which message is used
depends on the format of the JES spool file (NETDATA or batch) being read. The
truncated SMTP note will also have the corresponding message appended to the
bottom of the note. This is so the system administrator can correlate the SMTP note
with the SMTP mailer doing the truncation and increase the MAXMAILBYTES if it is
appropriate to do so. The SMTP mailer will continue to process mail. The default for
this parameter is disabled.

Syntax

�� CHECKSPOOLSIZE �

Parameters
There are no parameters for this statement.

Usage notes
If this parameter is not specified, SMTP will work as originally designed. Secondary
allocations will be requested for continuing growth of the hlq.TEMP.NOTE data set.
Abend B37 can occur if 16 extents are exceeded and more storage is needed.

Related topics
“MAXMAILBYTES statement” on page 846

828 z/OS V1R4.0 CS: IP Configuration Reference

DBCS statement
Use the DBCS statement to specify that SMTP should perform DBCS code
conversion on the mail. The parameters of the DBCS statement determine which
translation table should be used in the conversion.

Syntax

�� DBCS JIS78KJ ASCII
JIS83KJ JISROMAN

BIG5
EUCKANJI
IBMKANJI
HANGEUL
KSC5601
SCHINESE
SJISKANJI
TCHINESE

�

Parameters
JIS78KJ

Specify JIS78KJ if the conversion between IBM Kanji and JIS 1978 DBCS
codes is to be performed. The Escape Sequence for JIS X0208 1978 is
ESC 2/4 4/0. SMTP will load the JIS78KJ DBCS translation table from the
TCPKJBIN binary translate table data set.

Note: When JIS78KJ and JIS83KJ are used, either ASCII or JISROMAN must
be used or an error will occur and SMTP will end; SMTP configuration
will read the next parameter in the configuration file as the third DBCS
statement entry.

JIS83KJ
Specify JIS83KJ if the conversion between IBM Kanji and JIS 1983 DBCS
codes is to be performed. The Escape Sequence for JIS X0208 1983 is
ESC 2/4 4/2. SMTP will load the JIS83KJ DBCS translation table from the
TCPKJBIN binary translate table data set.

Note: When JIS78KJ and JIS83KJ are used, either ASCII or JISROMAN must
be used or an error will occur and SMTP will end; SMTP configuration
will read the next parameter in the configuration file as the third DBCS
statement entry.

ASCII
Specify ASCII for JIS78KJ or JIS83KJ if the mail is shifted in ASCII code from
JIS Kanji code. The Escape Sequence for ASCII is ESC 2/8 4/2.

JISROMAN
Specify JISROMAN for JIS78KJ or JIS83KJ if the mail is shifted in JISRoman
code from JIS Kanji code. The Escape Sequence for JISRoman is
ESC 2/8 4/10.

BIG5
Specify BIG5 if the conversion between IBM Traditional Chinese host DBCS
codes and Big-5 PC DBCS codes is to be performed. SMTP will load the BIG5
DBCS translation table from the TCPCHBIN binary translate table data set.

Chapter 28. SMTP server 829

EUCKANJI
Specify EUCKANJI if the conversion between IBM Kanji and Japanese EUC
DBCS codes is to be performed. SMTP will load the EUCKANJI DBCS
translation table from the TCPKJBIN binary translate table data set.

IBMKANJI
Specify IBMKANJI if IBM (EBCDIC) Kanji conversion is to be used. This option
actually causes no conversion to be performed on the body of the mail. This
may be used for the sending and receiving of mail in EBCDIC. If this option is
selected, other SMTP servers on the same network should all be configured
with IBMKANJI. If IBMKANJI is specified, and LOCALFORMAT or
RSCSFORMAT is set to PUNCH, then mail received in ASCII may be folded to
inconsistent record lengths. LOCALFORMAT and RSCSFORMAT should be set
to NETDATA in this case.

The IBMKANJI transfer type does not require any translate table to be loaded.

HANGEUL
Specify HANGEUL if the conversion between IBM Korean host DBCS codes
and Korean PC DBCS codes is to be performed. SMTP will load the HANGEUL
DBCS translation table from the TCPHGBIN binary translate table data set.

KSC5601
Specify KSC5601 if the conversion between IBM Korean host DBCS codes and
IBM KS DBCS codes is to be performed. SMTP will load the KSC5601 DBCS
translation table from the TCPHGBIN binary translate table data set.

SCHINESE
Specify SCHINESE if the conversion between IBM Simplified Chinese host
DBCS codes and Simplified Chinese PC DBCS codes is to be performed.
SMTP will load the SCHINESE DBCS translation table from the TCPSCBIN
binary translate table data set.

SJISKANJI
Specify SJISKANJI if the conversion between IBM Kanji and Shift JIS DBCS
codes is to be performed. SMTP will load the SJISKANJI DBCS translation
table from the TCPKJBIN binary translate table data set.

TCHINESE
Specify TCHINESE if the conversion between IBM Traditional Chinese host
DBCS codes and Traditional Chinese 5550 PC DBCS codes is to be performed.
SMTP will load the TCHINESE (5550) DBCS translation table from the
TCPCHBIN binary translate table data set.

Examples
In this example, IBM Traditional-Chinese-to Traditional-Chinese 5550 PC code
conversion will be used.
DBCS TCHINESE

Usage notes
v The transmission of DBCS mail by SMTP actually uses two different translation

tables, one SBCS and one DBCS. SBCS characters in the mail headers and in
the mail body are converted using either hlq.STANDARD.TCPKJBIN, TCPHGBIN,
TCPSCBIN, or TCPCHBIN.

v DBCS conversion is only performed on outgoing and incoming mail to and from
other hosts. Mail spooled to SMTP (for example, using SMTPNOTE) for the local
host is delivered directly, without any DBCS code conversion.

830 z/OS V1R4.0 CS: IP Configuration Reference

Related topics
Appendix B, “Using translation tables” on page 907

Chapter 28. SMTP server 831

DEBUG statement
Use the DEBUG statement to record SMTP commands and replies in the SMTP
debug data set (which is pointed to by the SYSDEBUG DD statement).

Syntax

�� DEBUG �

Parameters
There are no parameters for this statement.

Usage notes
The SMTP connection number is recorded along with each SMTP command or
reply.

v Connection numbers 0 through MAXnumCONNECTIONS − 1 are used for
SMTP connections over a TCP network.

v Connection number MAXnumCONNECTIONS + 1 is used for the batch SMTP
connection.

v MAXnumCONNECTIONS has a default number of 256.

832 z/OS V1R4.0 CS: IP Configuration Reference

FINISHOPEN statement
Use the FINISHOPEN statement to specify the number of seconds that SMTP waits
while trying to establish a connection to a foreign site. After the specified number of
seconds, SMTP ends the connection.

Syntax

��
FINISHOPEN 120

FINISHOPEN seconds
�

Parameters
seconds

An integer in the range of 1 through 86400 indicating the number of seconds to
wait for a connection to open. The default FINISHOPEN timeout is 120
seconds.

Examples
Set the timeout period to 90 seconds:
FINISHOPEN 90

Chapter 28. SMTP server 833

GATEWAY statement
Use the GATEWAY statement to have SMTP operate as a mail gateway between
TCP network sites and NJE network sites (if the host system is connected to both a
TCP network and an NJE network).

If you include the GATEWAY statement in the SMTP configuration data set, SMTP
will accept mail addressed to users on NJE hosts defined in the data set pointed to
by the //SMTPNJE DD statement in the SMTP cataloged procedure. If you do not
specify GATEWAY, SMTP rejects all mail that arrives from the NJE network or host.

Syntax

�� GATEWAY �

Parameters
There are no parameters for this statement.

Examples
You can configure the SMTP server with the GATEWAY statement to run as a mail
gateway between TCP network users and users located on an NJE network
attached to the local host. Figure 38 illustrates this configuration.

In Figure 38:
v Host A is the local MVS host, running both TCP/IP and NJE.
v Hosts B and C are attached to host A through an NJE network.
v Hosts D and E are attached to host A through a TCP network.

Users on hosts A, B, and C can send mail or data sets to users on TCP hosts D
and E using SMTPNOTE.

Usage notes
If you do not include the GATEWAY statement in the SMTP configuration data set,
SMTP will reject all mail that arrives from NJE.

Related topics
v “LOCALCLASS statement” on page 838

v “LOCALFORMAT statement” on page 839

v “NJECLASS statement” on page 847

v “NJEDOMAIN statement” on page 848

v “NJEFORMAT statement” on page 849

TCP/IP NetworkA

B D

EC

NJE

NJE

Figure 38. Example of a TCP-to-NJE mail gateway

834 z/OS V1R4.0 CS: IP Configuration Reference

INACTIVE statement
Use the INACTIVE statement to specify the number of seconds of inactivity before
SMTP will consider a connection to be inactive and close the connection.

Syntax

��
INACTIVE 180

INACTIVE seconds
�

Parameters
seconds

An integer in the range of 1 through 86400 that specifies the number of
seconds after which SMTP considers the connection to be inactive. The default
inactivity timeout is 180 seconds.

Examples
Set the seconds of inactivity allowable to 90 seconds:
INACTIVE 90

Chapter 28. SMTP server 835

IPMAILERADDRESS statement
Use the IPMAILERADDRESS statement to reroute mail that was sent to an
unknown host and direct it to an SMTP server on an IP network rather than to a
user on a local or NJE network. The specified server should have network
connectivity and be able to perform name resolution. The way this statement works
depends on whether the RESOLVERUSAGE statement is coded. If
RESOLVERUSAGE is Yes, then this statement will only take effect if the host name
cannot be resolved (unknown host) using a domain name server specified in the
hlq.TCPIP.DATA file or using search of the local hosts file. If RESOLVERUSAGE is
No, all non-local mail is forwarded to this IP address.

Syntax

�� IPMAILERADDRESS ip_address �

Parameters
ip_address

The dotted decimal address of an SMTP server on an IP network.

Examples
In this example, 7.89.256.72 is the address of the SMTP server on an IP network.
IPMAILERADDRESS 7.89.256.72

Usage notes
IPMAILERADDRESS and MAILER... UNKNOWN provide the same function and
should not be used together.

Related topics
v See NSINTERADDR statement in the hlq.TCPIP.DATA file “MAILER statement”

on page 841. Also refer to z/OS Communications Server: IP Configuration Guide
for information on sending messages to SMTP users and users on an IP
Network.

v z/OS Communications Server: IP Configuration Guide

v “RESOLVERUSAGE statement” on page 859

836 z/OS V1R4.0 CS: IP Configuration Reference

LISTENONADDRESS statement
Use the LISTENONADDRESS statement to restrict which IP address will receive
mail on a multihomed system.

Syntax

�� LISTENONADDRESS ip_address �

Parameters
ip_address

The dotted decimal address of an SMTP server on an IP network.

Examples
In this example, 7.89.256.72 is the address of the SMTP server on an IP network
that will be the home address for mail.
LISTENONADDRESS 7.89.256.72

Related topics
“MAILER statement” on page 841

Chapter 28. SMTP server 837

LOCALCLASS statement
Use the LOCALCLASS statement to specify the spool class for local mail delivered
by SMTP.

Syntax

��
LOCALCLASS B

LOCALCLASS class
�

Parameters
class

The default is B (normally a punch class).

Examples
Set the spool class for local mail delivered by SMTP:
LOCALCLASS B

Usage notes
The value used in this statement is site dependent. Before setting this class, check
with your system administrator for the site-dependent information. We recommend
using the punch class of your system.

Related topics
v “GATEWAY statement” on page 834

v “LOCALFORMAT statement” on page 839

v “NJECLASS statement” on page 847

v “NJEDOMAIN statement” on page 848

v “NJEFORMAT statement” on page 849

838 z/OS V1R4.0 CS: IP Configuration Reference

LOCALFORMAT statement
Use the LOCALFORMAT statement to specify the spool data set format for mail
delivered to users on the local host.

Syntax

��
LOCALFORMAT NETDATA

LOCALFORMAT PUNCH
�

Parameters
NETDATA

For NETDATA format, records can be longer than 80 characters and arrive as
message-type records. The data set name is the first eight characters of the
sender’s user ID.

NETDATA is the default format.

PUNCH
For PUNCH format, records are folded up to 80 characters in length or less.
The spool data set is in NATIVE PUNCH format. The data set name is the first
eight characters of the sender’s user ID.

Examples
Set the spool format for local mail delivered by SMTP:
LOCALFORMAT NETDATA

Usage notes
It is recommended that you use the default value of NETDATA since the TSO
RECEIVE command will indicate that it has a file that is not valid with PUNCH
format output.

Related topics
v “GATEWAY statement” on page 834

v “LOCALCLASS statement” on page 838

v “NJECLASS statement” on page 847

v “NJEDOMAIN statement” on page 848

v “NJEFORMAT statement” on page 849

Chapter 28. SMTP server 839

LOG statement
Use the LOG statement to log all SMTP traffic. The origin, sender, and recipients of
each piece of mail are written to a log.

Syntax

�� LOG �

Parameters
There are no parameters for this statement.

Usage notes
The log information goes to the data set specified on the //LOGFILE DD statement
of the SMTP cataloged procedure. If no //LOGFILE DD statement is included in the
cataloged procedure, information is not logged.

If neither LOG or NOLOG is specified in the SMTP configuration data set, the
default is LOG.

Related topics
“NOLOG statement” on page 851

840 z/OS V1R4.0 CS: IP Configuration Reference

MAILER statement
Use the MAILER statement to specify the address of a batch SMTP server to which
SMTP delivers mail destined for various classes of recipients.

Syntax

�� MAILER user_id
user_id@node_id

PUNCH
NETDATA

SOURCEROUTES
NOSOURCEROUTES

LOCAL
NOLOCAL

�

� NJE
NONJE

UNKNOWN
NOUNKNOWN

�

Parameters
user_id

Specifies the user ID of the local MAILER server.

user_id@node_id
Specifies the NJE address of the MAILER server.

PUNCH
Specifies that the MAILER server can only accept punch format spool data sets.
Batch SMTP header records longer than 80 characters are split and an
EBCDIC new-line character (hex 15) is placed in column 80 to indicate that the
record is continued. Records within the body of the mail that are longer than 80
characters are split across multiple punch records.

NETDATA
Specifies that the MAILER server accepts NETDATA format spool data sets.
The NETDATA protocol automatically handles records longer than 80
characters.

SOURCEROUTES
Specifies that the MAILER server accepts BSMTP header addresses with
source routes.

A source route contains routing information as well as the mailbox information.
An example of a source route address is:
@host1,@host2:userid@host3.

The mailbox information in this example is userid@host3.

NOSOURCEROUTES
Specifies that the MAILER server does not accept source routes in the BSMTP
header addresses.

Specifying NOSOURCEROUTES indicates that the address strings must be
mailbox information only.

LOCAL
Specifies that mail for local recipients is spooled to the MAILER server.

NOLOCAL
Specifies that mail for local recipients is spooled directly to the recipients.

NJE
Specifies that mail for recipients on the NJE network is spooled to the MAILER
server.

Chapter 28. SMTP server 841

NONJE
Specifies that mail for recipients on the NJE network is spooled directly to the
recipients.

UNKNOWN
Specifies that mail for recipients on an unknown host is spooled to the MAILER
server. This option will be affected if the RESOLVERUSAGE statement is coded
as No.

NOUNKNOWN
Specifies that mail for recipients on unknown hosts is returned to the sender as
undeliverable.

Examples
Use the MAILER option if you run with the Columbia Mailer.
MAILER MUSER@MNODE PUNCH NOSOURCEROUTES LOCAL NJE UNKNOWN

Usage notes
v The MAILER server must either have a local address or be on the associated

NJE network. The MAILER statement has no defaults; you must specify the
parameters you want to use.

v IPMAILERADDRESS and MAILER... UNKNOWN provide the same function and
should not be used together.

v All MAILER statement parameters must be specified or an error will occur and
SMTP will terminate; eliminating a parameter will cause SMTP configuration to
read the next statement in SMTPCONF as part of the mailer statement.

Related topics
v “IPMAILERADDRESS statement” on page 836

v “RESOLVERUSAGE statement” on page 859

842 z/OS V1R4.0 CS: IP Configuration Reference

MAILFILEDSPREFIX statement
Use the MAILFILEDSPREFIX statement to specify the prefix that is added to the
SMTP mail data sets. If multiple MVS systems share the same volume for SMTP
mail data sets, specify a unique prefix qualifier for each SMTP server on
MAILFILEDSPREFIX.

Data sets created with this prefix contain mail that is in the process of being
received or delivered. Each piece of mail queued for delivery occupies a minimum
of 2 tracks.

Syntax

�� MAILFILEDSPREFIX prefix �

Parameters
prefix

The prefix to add to the mail data sets. The prefix can be up to 20 characters in
length, and a trailing period need not be specified. The default is the name of
the job running SMTP.

Examples
Set the prefix name for where incoming mail is stored while it is being queued for
delivery:
MAILFILEDSPREFIX SMTP

Usage notes
All data sets are cataloged.

Related topics
v “MAILFILEUNIT statement” on page 844

v “MAILFILEVOLUME statement” on page 845

Chapter 28. SMTP server 843

MAILFILEUNIT statement
Use the MAILFILEUNIT statement to specify the unit where the newly created
SMTP mail data sets reside.

Syntax

��
MAILFILEUNIT SYSDA

MAILFILEUNIT unit_name
�

Parameters
unit_name

The unit name where the data sets reside. The default is SYSDA.

Examples
Set the unit name for where incoming mail is stored while it is being queued for
delivery:
MAILFILEUNIT SYSDA

Related topics
v “MAILFILEDSPREFIX statement” on page 843

v “MAILFILEVOLUME statement” on page 845

844 z/OS V1R4.0 CS: IP Configuration Reference

MAILFILEVOLUME statement
Use the MAILFILEVOLUME statement to specify the volume where newly allocated
SMTP mail data sets reside.

Syntax

�� MAILFILEVOLUME volume_name �

Parameters
volume_name

The volume name where the data sets reside. There is no default.

Examples
Set the volume name for where incoming mail is stored while it is being queued for
delivery:
MAILFILEVOLUME volume6

Usage notes
v The SMTP volume selected must be able to accommodate the largest piece of

mail (see “MAXMAILBYTES statement” on page 846). In addition, the VTOC
indices need to be able to accommodate the number of mail pieces being
processed.

v If the volume name is not specified, SMTP allocates a storage volume.

v If your system does not have storage volumes, you must specify a volume name.

Related topics
v “MAILFILEDSPREFIX statement” on page 843

v “MAILFILEUNIT statement” on page 844

v “MAXMAILBYTES statement” on page 846

Chapter 28. SMTP server 845

MAXMAILBYTES statement
Use the MAXMAILBYTES statement to specify the maximum size in bytes of mail
that is accepted over a TCP connection. Reply code of ’552 Mail file too large’ is
sent to the remote SMTP client if the number of mail bytes arriving exceeds this
value. This value is also used to determine the space allocation requirements for
the data sets which hold the mail during processing (see Usage Notes). These data
sets names are &mailfiledsprefix.*..NOTE and occupy a minimum of 2 tracks per
data set.

Syntax

��
MAXMAILBYTES 524288

MAXMAILBYTES bytes
�

Parameters
bytes

The maximum number of bytes for incoming or outgoing mail. Mail arriving that
is larger than this size, over a TCP connection, is rejected. The limits for this
statement are 1 to 2 147 483 647. The default size is 524 288 (512KB) bytes.

Examples
Set the maximum size for mail to 32KB:
MAXMAILBYTES 32768

Usage notes
v Note that the spool volume must be able to accommodate the number of bytes

set in MAXMAILBYTES.

v The value used for bytes in the MAXMAILBYTES statement determines the
space allocations for data sets allocated to hold the mail while it is being
processed and is waiting for delivery. Be careful not to use too large a value or
the data sets allocated will be too large.

Related topics
v “CHECKSPOOLSIZE statement” on page 828

v “MAILFILEDSPREFIX statement” on page 843

v “MAILFILEVOLUME statement” on page 845

846 z/OS V1R4.0 CS: IP Configuration Reference

NJECLASS statement
Use the NJECLASS statement to specify the spool class for mail delivered by
SMTP to the NJE network.

Syntax

��
NJECLASS B

NJECLASS class
�

Parameters
class

The spool class for mail delivered by SMTP. The default is B (which is normally
a punch class).

Examples
Set the spool class for mail delivered to B:
NJECLASS B

Usage notes
This statement is site-dependent. Before setting the class, check with your JES
system administrator for site-dependent information. The recommended setting is
the punch class of your system.

Related topics
v “GATEWAY statement” on page 834

v “LOCALCLASS statement” on page 838

v “LOCALFORMAT statement” on page 839

v “NJEDOMAIN statement” on page 848

v “NJEFORMAT statement” on page 849

Chapter 28. SMTP server 847

NJEDOMAIN statement
Use the NJEDOMAIN statement to specify the domain name of the NJE network (if
SMTP is running as a mail gateway). The NJE domain name is used to rewrite the
header fields of mail passing from NJE network senders to TCP/IP network
recipients.

Syntax

�� NJEDOMAIN njedomain_name �

Parameters
njedomain_name

The NJE domain name. The default is a null string.

Examples
Set the NJE domain to BITNET:
NJEDOMAIN BITNET

Usage notes
SMTP considers the NJE domain name BITNET to be a synonym for the European
Academic Research Network (EARN and EARNET). This statement can affect the
local processing of mail regardless of whether the GATEWAY statement is coded or
not.

Related topics
v “GATEWAY statement” on page 834

v “LOCALCLASS statement” on page 838

v “LOCALFORMAT statement” on page 839

v “NJECLASS statement” on page 847

v “NJEFORMAT statement” on page 849

848 z/OS V1R4.0 CS: IP Configuration Reference

NJEFORMAT statement
Use the NJEFORMAT statement to specify the spool data set format for mail
delivered to recipients on the NJE network.

Syntax

��
NJEFORMAT NETDATA

NJEFORMAT PUNCH
NETDATA

�

Parameters
PUNCH

Specifies that records are folded to 80 characters in length or fewer.

NETDATA
Specifies that records can be longer than 80 characters and that they arrive as
MESSAGE-type records. The default format is NETDATA.

Examples
Set the format in which mail is sent to NJE recipients to PUNCH:
NJEFORMAT PUNCH

Usage notes
This statement is valid only in GATEWAY mode.

Related topics
v “GATEWAY statement” on page 834

v “LOCALCLASS statement” on page 838

v “LOCALFORMAT statement” on page 839

v “NJECLASS statement” on page 847

v “NJEDOMAIN statement” on page 848

Chapter 28. SMTP server 849

NJENODENAME statement
Use the NJENODENAME statement to specify the NJE node name of the local
JES2 or JES3 node for SMTP. This statement overrides the value in the IEFSSN
member and is an alternative to forcing the users to specify their real NJE node
name in the IEFSSN member. It also allows the users to easily correct the name for
SMTP’s use, in case it was spelled wrong. Previously, users were required re-IPL to
change the member because it was the only place from which SMTP would get the
NJE node name. This value is not used in the place of the IEFSSN value as a
selector in TCPIP.DATA.

Syntax

�� NJENODENAME njenode_name �

Parameters
njenode_name

The NJE node name of the local JES2 or JES3 node. The default is a null
string.

Examples
Set the NJE node name to ALMADEN:
NJENODENAME ALMADEN

Related topics
v “NJECLASS statement” on page 847

v “NJEDOMAIN statement” on page 848

v “NJEFORMAT statement” on page 849

850 z/OS V1R4.0 CS: IP Configuration Reference

NOLOG statement
Use the NOLOG statement to turn off logging information that indicates that mail
has been received and delivered.

Syntax

�� NOLOG �

Parameters
There are no parameters for this statement.

Usage notes
If neither LOG or NOLOG is specified in the SMTP configuration data set, the
default is LOG.

Related topics
“LOG statement” on page 840

Chapter 28. SMTP server 851

NOSOURCEROUTE statement
Use the NOSOURCEROUTE statement to control whether this SMTP generates
and passes a source routing string for the originator address (MAILCMD) or for the
recipient address (RCPTCMD). Setting the parameter to ENABLED causes no
source routing addresses to be generated for both the MAIL FROM: and RCPT TO:
SMTP commands. A source route is a path that contains a source routing list of
hosts and a destination mailbox. The list of hosts is the route information. It
describes how the mail is to arrive at its final destination. The mail is passed from
one host in the list to the next until it is delivered to the intended recipient.

Source routing addressing string has the following format:
@host1,@host2,@host3:myuserid@myhost

where myuserid@myhost is considered the mailbox information.

NOSOURCEROUTE DISABLED is the default and indicates that source route on
the MAIL FROM: and RCPT TO: commands will be honored.

Syntax

�� NOSOURCEROUTE
DISABLED

MAILCMD
RCPTCMD
ENABLED

�

Parameters
DISABLED

Source routing address strings are generated for both the MAIL FROM: and the
RCPT TO: SMTP commands based on the source routing rules documented in
RFC 821. This is the default if nothing is specified, or if what is specified is not
a valid parameter.

MAILCMD
Source routing address strings are not generated for the MAIL FROM: SMTP
command. This means that the return path only contains the mailbox
information. However, the RCPT TO: SMTP command maintains source routing
addressing based on the source routing rules documented in RFC 821.

RCPTCMD
Source routing address strings are not generated for the RCPT TO: SMTP
command. This means that the send path only contains the mailbox information.
However, the MAIL FROM: SMTP command maintains source routing
addressing based on the source routing rules documented in RFC 821.

ENABLED
Source routing address strings are not generated for both the MAIL FROM: and
the RCPT TO: SMTP commands. Only the mailbox information is provided.

Examples
To stop SMTP from adding its host identifier in front of the mailbox information on
the return path passed on the MAIL FROM: SMTP command, code the following
statement:
NOSOURCEROUTE MAILCMD

852 z/OS V1R4.0 CS: IP Configuration Reference

|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|||||||||||||||||||||||

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

|

Usage notes
v The removal of these source routes might make the return path unusable. This is

a potential problem when the originating host is not directly accessible to any
mail transfer agent that must generate error mail to the originating host.

v The removal of these source routes might make understanding of which route is
used to deliver the mail difficult for debugging situations. However, if the
delivered piece of mail can be viewed, then receive lines can be used instead.

v Only one NOSOURCEROUTE statement should be coded. If there is more than
one NOSOURCEROUTE statement in the SMTPCONF data set, then only the
last statement is used.

Chapter 28. SMTP server 853

|

|
|
|

|
|
|

|
|
|

OUTBOUNDOPENLIMIT statement
Use the OUTBOUNDOPENLIMIT statement to specify a limit on the maximum
number of simultaneous TCP connections over which SMTP can actively deliver
mail. The OUTBOUNDOPENLIMIT statement should only be used if there are
limited TCP resources on the system and SMTP is using too many of these
resources.

SMTP can operate with no limits and open as many TCP connections as necessary
to ensure the fastest delivery of mail with one exception. That exception involves
PASCAL API. SMTP is a PASCAL application and is limited to 256 simultaneous
connections.

Syntax

�� OUTBOUNDOPENLIMIT number_of_connections �

Parameters
number_of_connections

A number in the range of 1 to the maximum number of TCP connections as
defined for the user’s system. The maximum number of simultaneous
connections for SMTP which are PASCAL application is 256. If
number_of_connections is out of range, the default, which is to impose no
limits, is assumed.

Examples
Set the maximum number of simultaneous TCP connections to which mail is sent to
100.
OUTBOUNDOPENLIMIT 100

854 z/OS V1R4.0 CS: IP Configuration Reference

PORT statement
Use the PORT statement to change the port reserved for SMTP. The port number
25 is normally reserved (in hlq.PROFILE.TCPIP) for the SMTP server to accept
incoming mail requests.

Syntax

��
PORT 25

PORT port_num
�

Parameters
port_num

An integer in the range of 1 through 65535 that specifies the port number to
which SMTP listens. The default is 25.

Examples
Set the port for incoming mail to 1000:
PORT 1000

Usage notes
v You can only specify a port_number if it has not already been reserved for some

other server in hlq.PROFILE.TCPIP.

v This statement is recommended for system testing only.

Chapter 28. SMTP server 855

POSTMASTER statement
Use the POSTMASTER statement to specify the user ID to which SMTP will deliver
all mail addressed to POSTMASTER.

Syntax

��
POSTMASTER TCPMAINT

POSTMASTER user_id
user_id@node_id

�

Parameters
user_id

The user ID on the local system to which mail addressed to POSTMASTER
should be delivered. The default ID is TCPMAINT.

user_id@node_id
The NJE or SMTP address to which mail addressed to POSTMASTER should
be delivered.

Examples
Set the user ID to receive the POSTMASTER mail to MAILGUY at POSTOFC:
POSTMASTER MAILGUY@POSTOFC

Usage notes
v To specify multiple recipients to receive mail addressed to POSTMASTER, code

a separate POSTMASTER statement for each recipient. There is no limit on the
number of POSTMASTER statements that you can coded.

v In SECURE mode, you can only specify the POSTMASTER statement once for a
local user ID as the single recipient of mail addressed to POSTMASTER.

Related topics
“SECURE statement” on page 865

856 z/OS V1R4.0 CS: IP Configuration Reference

RCPTRESPONSEDELAY statement
Use the RCPTRESPONSEDELAY statement to specify how long the SMTP server
delays responding to the RCPT commands from the sender SMTP, while it is
waiting for domain name resolution.

Syntax

��
RCPTRESPONSEDELAY 60

RCPTRESPONSEDELAY seconds
�

Parameters
seconds

A number in the range of 0 through 86400 specifying the number of seconds
SMTP waits before responding to the RCPT TO command. The default is 60
seconds.

Examples
Set the RCPT TO: response time to 90 seconds:
RCPTRESPONSEDELAY 90

Usage notes
If resolution does not complete before the specified period, the SMTP server
assumes name resolution is successful and does the following:
v Sends the following message to the sender SMTP: 250 ok.
v Queues the recipient address for asynchronous resolution.

If SMTP later determines that the recipient address cannot be resolved, the mail is
returned to the sender.

Related topics
“RESOLVERRETRYINT statement” on page 858

Chapter 28. SMTP server 857

RESOLVERRETRYINT statement
Use the RESOLVERRETRYINT statement to specify the number of minutes SMTP
waits between attempts to resolve domain names.

Syntax

��
RESOLVERRETRYINT 20

RESOLVERRETRYINT minutes
�

Parameters
minutes

A number in the range of 1 through 1439 specifying the number of minutes
between each attempt to resolve a domain name if the name server is causing
delays. The default is to retry resolution every 20 minutes.

Examples
Set the waiting time between attempts to resolve domain names to 30 minutes.
RESOLVERRETRYINT 30

858 z/OS V1R4.0 CS: IP Configuration Reference

RESOLVERUSAGE statement
Use the RESOLVERUSAGE statement to indicate whether SMTP should attempt to
resolve non-local domain names.

Syntax

��
RESOLVERUSAGE YES

RESOLVERUSAGE NO
�

Parameters
YES

Specifies that SMTP should attempt normal domain name resolution. This is the
default setting.

NO
Specifies that SMTP should not attempt to resolve any non-local domain names
using the DNS or local host tables. Any mail received by SMTP that is
addressed to non-local domain names will be unknown.

Examples
In this example, the IPMAILERADDRESS statement is being used in conjunction
with the RESOLVERUSAGE statement to forward all non-local mail to IP address
1.2.3.4, where another SMTP server resides.
IPMAILERADDRESS 1.2.3.4
RESOLVERUSAGE NO

Usage notes
v This statement should only be specified when you want to configure SMTP to

send all non-local mail to a specified mail server, or mail relay. You might need to
do this if you have installed a FIREWALL. As a result, if you specify NO on this
statement, you should specify a target mail server using the
IPMAILERADDRESS or MAILER...UNKNOWN statement.

Note: You can only specify one of these statements.

v If you specify RESOLVERUSAGE NO and do not specify an
IPMAILERADDRESS or MAILER ... UNKNOWN statement, a warning message
will be issued during SMTP initialization and all non-local mail will be returned to
the sender as undeliverable.

Related topics
v “IPMAILERADDRESS statement” on page 836

v “MAILER statement” on page 841

Chapter 28. SMTP server 859

RESTRICT statement
Use the RESTRICT statement to specify addresses of users who cannot utilize
SMTP services.

Note: This includes sending and receiving mail.

Syntax

�� 1RESTRICT PURGE userid ENDRESTRICT
RETURN
TRANSFERTO

�

Parameters
PURGE

Specifies that the spool data set is to be purged.

RETURN
Specifies that the spool data set is to be returned to the originator.

TRANSFERTO
Specifies that the spool data set is to be forwarded to the specified userid.

userid
Specifies the address of the user.

Examples
In this example, mail from restricted users is returned, no mail is accepted from
KNIGHT at 2 different nodes, and no mail is accepted from anyone on the host
CASTLE.
RESTRICT RETURN

KNIGHT@CAMPTENT
KNIGHT@TOURNMNT
*@CASTLE

ENDRESTRICT

Usage notes
v You can use a wildcard character (*) in the user identifier string, or the

host/domain identifier string, or both. These two strings are separated by the @
character (for example, userid@hostid). It can be used to replace the entire
string. For example, *@castle will restrict all the users at castle. You can use it to
replace a portion of the string when it is appended to the end of the string. For
example, mary*@castle will restrict all the user IDs beginning with the character
string mary at castle. However, the wildcard character cannot be used as a prefix
to a string or embedded within the string.

v Specifying *@* causes no mail to be sent or accepted, and results in
″undeliverable mail″ messages to be issued.

v The ENDRESTRICT statement ends the RESTRICT statement.

v If SMTP receives a spool data set from a restricted user, the spool data set is:
– Purged, if PURGE is specified
– Returned to the originator, if RETURN is specified
– Forwarded to a specific user ID, if TRANSFERTO is specified

860 z/OS V1R4.0 CS: IP Configuration Reference

|

|
|
|

|
|
|
|
|

|
|

In addition, SMTP rejects any MAIL FROM or RCPT TO commands whose
destinations are restricted users.

v The TCPIP and NJE address must be included in the RESTRICT statement list in
order to restrict a user from sending and receiving mail. SMTP rejects only
addresses that are in the restrict list; it does not check for aliases. For example,
you can restrict user@host1. If host2 is an alias for host1, mail for user@host2 is
not rejected unless user@host2 is also in the restrict list.

v When the RESTRICT statement is used, incoming mail must be in NETDATA
format.

v The RESTRICT statement cannot be used if the SMTP server is running as a
secure gateway. Either remove or comment out the RESTRICT statements from
the SMTP configuration data set.

v The RESTRICT statement cannot be used in combination with the SECURE
statement.

Related topics
v “LOCALFORMAT statement” on page 839

v “MAILER statement” on page 841

v “NJEFORMAT statement” on page 849

v “SECURE statement” on page 865

Chapter 28. SMTP server 861

RETRYAGE statement
Use the RETRYAGE statement to specify the number of days after which SMTP
returns mail as undeliverable. SMTP tries to deliver mail to an inactive site. After the
number of days specified on this statement, SMTP returns the mail to the sender
with a note listing any recipients to which the mail could not be delivered.

Syntax

��
RETRYAGE 3

RETRYAGE days
�

Parameters
days

A number in the range of 1 through 365 specifying the number of days to try to
deliver the mail. The default is for SMTP to try to deliver a piece of mail for 3
days before returning it.

Examples
Keep trying to deliver mail for 2 days:
RETRYAGE 2

Related topics
“WARNINGAGE statement” on page 870

862 z/OS V1R4.0 CS: IP Configuration Reference

RETRYINT statement
Use the RETRYINT statement to specify the number of minutes SMTP should wait
between attempts to deliver mail to an inactive host.

Syntax

��
RETRYINT 20

RETRYINT minutes
�

Parameters
minutes

A number in the range of 1 through 1439 specifying the number of minutes
between each attempt to deliver the mail. The default is to try to establish a
connection to these sites every 20 minutes.

Examples
Try to redeliver mail every 30 minutes:
RETRYINT 30

Chapter 28. SMTP server 863

REWRITE822HEADER statement
Use the REWRITE822HEADER statement to specify whether SMTP should rewrite
or print the RFC 822 headers of mail arriving from the NJE side of the mail
gateway.

Syntax

��
REWRITE822HEADER YES NOPRINT

REWRITE822HEADER NO
NOPRINT

YES
PRINT

�

Parameters
NO

Specifies that SMTP should not rewrite the RFC 822 mail headers. This is not
recommended unless all mail user agents sending mail to SMTP create RFC
822 mail headers with fully qualified domain addresses that are valid on the
Internet.

NOPRINT
Specifies that SMTP should not print the RFC 822 header rewriting rules to the
console when SMTP starts.

PRINT
Specifies that SMTP should print the RFC 822 header rewriting rules to the
console when SMTP starts.

YES
Specifies that SMTP should rewrite the RFC 822 mail headers. The YES
parameter with NOPRINT is the default. SMTP uses a set of default header
rewriting rules.

Examples
Rewrite the RFC 822 headers on all mail passing from NJE to TCP through the mail
gateway and print the rules to the SMTP output when SMTP starts.
REWRITE822HEADER YES PRINT

Usage notes
The SMTP.RULES data set specifies how the server is to rewrite the headers.

Related topics
v “GATEWAY statement” on page 834

864 z/OS V1R4.0 CS: IP Configuration Reference

SECURE statement
Use the SECURE statement to specify that SMTP operates as a secure mail
gateway between TCP network sites and NJE network sites.

Syntax

�� SECURE �

Parameters
There are no parameters for this statement.

Usage notes
v The SECURE statement cannot be used in combination with the RESTRICT

statement.

v Mail will be accepted through the secure gateway only if the NJE user IDs and
node IDs are included in the SMTP security table (SMTP security data set).

v When the SECURE statement is used, mail must be in NETDATA format.

v If you specify the SECURE statement, then source routing will be disabled to
prevent the gateway from relaying mail to unauthorized users.

The data set pointed to by the //SECMEMO DD statement in the SECTABLE data
set will be sent to NJE users that are not authorized to use the gateway.

Related topics
v “LOCALFORMAT statement” on page 839

v “MAILER statement” on page 841

v “NJEFORMAT statement” on page 849

v “RESTRICT statement” on page 860

Chapter 28. SMTP server 865

SMSGAUTHLIST statement
Use the SMSGAUTHLIST statement to specify the local users authorized to issue
privileged SMTP SMSG commands. Any TSO user can issue the general usage
SMTP SMSG commands, but only those users specified in the SMSGAUTHLIST
statement can issue the privileged commands.

Privileged SMTP SMSG commands allow the shutting down of SMTP and the
enabling or disabling of various SMTP trace and debug options.

Syntax

�� 1SMSGAUTHLIST user_id ENDSMSGAUTHLIST �

Parameters
user_id

Specifies the address of a local user ID authorized to issue privileged SMTP
SMSG commands. The user_id parameter can be repeated.

Examples
Specify the local users authorized to issue privileged SMTP SMSG commands:
SMSGAUTHLIST

TCPMAINT
OPERATOR CHANCE

ENDSMSGAUTHLIST

Usage notes
The ENDSMSGAUTHLIST statement ends the SMSGAUTHLIST statement.

Related topics
Refer to z/OS Communications Server: IP User’s Guide and Commands for more
information.

866 z/OS V1R4.0 CS: IP Configuration Reference

SPOOLPOLLINTERVAL statement
Use the SPOOLPOLLINTERVAL statement to specify the interval (in seconds) for
SMTP to check the spool for incoming batch data sets.

Syntax

�� SPOOLPOLLINTERVAL seconds �

Parameters
seconds

The number of seconds between each check. The range is from 5 to 3600
seconds (3600 seconds equals one hour).

Examples
Set the time between spool polling to 30 seconds:
SPOOLPOLLINTERVAL 30

Usage notes
If the value for seconds is too low, system overhead is increased; if the value is too
high, incoming mail must wait to be processed.

Chapter 28. SMTP server 867

TEMPERRORRETRIES statement
Use the TEMPERRORRETRIES statement to specify the number of times SMTP
tries to redeliver mail to a host with a temporary problem. Temporary problems
include network congestion, network connectivity, or a broken remote mail server.

Syntax

��
TEMPERRORRETRIES 0

TEMPERRORRETRIES retries
�

Parameters
retries

The number of times mail delivery to a host with a temporary problem is retried.
The default is 0.

Examples
Try to redeliver 5 times when there is a temporary problem with the host to which
mail is addressed:
TEMPERRORRETRIES 5

Usage notes
v If delivery is still unsuccessful, the mail is returned to the sender.

v Change the number of retries from the default of 0 only when remote mail
servers repeatedly terminate abnormally or hang SMTP mail transactions.

v If retries is 0 and there is a problem with the remote mail server, then SMTP will
continue retrying to deliver the same piece of mail until it times out. The other
mail sitting behind it in the queue will wait for delivery until SMTP times out.

868 z/OS V1R4.0 CS: IP Configuration Reference

TIMEZONE statement
Use the TIMEZONE statement to specify the printable name of the local time zone.

Syntax

��
TIMEZONE EST

TIMEZONE time_zone
�

Parameters
time_zone

The name of the local time zone. This parameter must be a continuous
character string in the range of 1 to 5 characters. Refer to RFC 822 for the valid
character formats for this parameter. The default name is EST.

Examples
Set the time zone to pacific standard time (PST):
TIMEZONE PST

Set the time zone to local differential hours and minutes HHMM.
TIMEZONE +1200

Chapter 28. SMTP server 869

WARNINGAGE statement
Use the WARNINGAGE statement to specify the number of days after which a copy
of the mail is returned to the sender with a warning. The warning is included in the
header in the copy of the mail. It says the following:
v SMTP has been unable to deliver the mail so far
v How many days it has been undeliverable
v How many days that SMTP will continue to try to deliver the mail (taken from the

RETRYAGE statement)

Syntax

��
WARNINGAGE 3

WARNINGAGE days
�

Parameters
days

A number from 0 through 365 specifying the number of days to attempt delivery
of the mail before sending a nondelivery warning to the sender. The default is 3
(the same as the default for the RETRYAGE statement).

Examples
Warn the sender that mail has been undeliverable for one day, but that SMTP will
try to deliver the mail for another two days:
RETRYAGE 3
WARNINGAGE 1

Usage notes
SMTP will only send a warning if the number of days specified on the
WARNINGAGE statement is less than the number of days specified on the
RETRYAGE statement. When the number of days specified by the WARNINGAGE
statement is greater than or equal to the number of days specified on the
RETRYAGE statement, no warning is issued to the sender.

Related topics
“RETRYAGE statement” on page 862

870 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 29. TIMED daemon

You can start TIMED from the z/OS shell or as a started procedure. Each of these
methods is described below.

Note: TIMED is different from the TIME daemon available as an internal daemon of
INETD. INETD cannot be used to start and perform as a listener for TIMED.

Starting TIMED from z/OS
TIMED is installed in the /usr/lpp/tcpip/sbin/ directory.

To start the TIMED server from the command line, type the timed command.

timed [-l] [-p port]

Following are the parameters used for the timed command:

-l Logs all the incoming requests and responses to the system log. Logged
information includes the IP address of the requestor.

-p port
Uses the specified port. You can specify the port in which requests are to
be received.

Starting TIMED as a procedure
The following sample shows how to start TIMED as a procedure.

//TIMED PROC
//*
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2002
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Time server start procedure
//* SMP/E distribution name: EZATTMDP
//*
//TIMED EXEC PGM=TIMED,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

Figure 39. Starting TIMED as a procedure

© Copyright IBM Corp. 2000, 2002 871

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

872 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 30. SNTP daemon

You can start the SNTP daemon (SNTPD) from the z/OS shell or as a started
procedure. Each of these methods is described below. TCP/IP must be started prior
to starting SNTPD. When restricting low port usage, the port used by SNTPD
(default value 123) should either be reserved for the name of the SNTPD start
procedure or the PORT statements SERVAUTH Security Access Facility(SAF)
parameter.

Note: SNTPD cannot be started from INETD.

Starting SNTPD from z/OS
SNTPD is installed in the /usr/lpp/tcpip/sbin/ directory.

To start the SNTPD server from the z/OS shell command line, type sntpd & on the
command line. This will start sntpd and send it to the background.

Following are the optional parameters used for the sntpd command:

-d Enables debugging and activity logging. Debugging and activity logging
messages go to syslogd daemon.

-df pathname
Enables debugging and activity logging. Debugging and activity logging
messages go to specified file location.

-pf pathname
Specifies HFS path for process ID file.

-b nnnnn
Acts in broadcast mode. This parameter sends local broadcasts on all
interfaces every nnnnn seconds. It also specifies to listen to broadcast
requests and responds with unicast replies. The valid range for -b is 1 to
16284.

-m nnnnn
Acts in multicast mode. Sends multicast updates (TTL=1) on all interfaces
every nnnnn seconds. Listens to multicast requests and responds with
unicast replies. The valid range for -m is 1 to 16284.

Starting SNTPD as a procedure
The following sample [shipped as hlq.SEZAINST(SNTPD)] shows how to start
SNTPD as a procedure:
//SNTPD PROC
//*
//* Communications Server IP
//* SMP/E DISTRIBUTION NAME: EZASNPRO
//*
//* 5694-A01 (C) COPYRIGHT IBM CORP. 2002.
//* LICENSED MATERIALS - PROPERTY OF IBM
//* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
//* ALL RIGHTS RESERVED.
//* US GOVERNMENT USERS RESTRICTED RIGHTS -
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
//* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
//* SEE IBM COPYRIGHT INSTRUCTIONS.
//*

© Copyright IBM Corp. 2000, 2002 873

|

|

|
|
|
|
|
|

|

|
|

|

|
|

|

||
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* FUNCTION: SNTP DAEMON START PROCEDURE
//*
//SNTPD EXEC PGM=SNTPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/ -d’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//*

Figure 40. Starting SNTPD as a procedure

874 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

Chapter 31. Remote execution server

This chapter discusses the TSO Remote Execution Server. The TSO remote
execution server enables TSO commands to be submitted from a remote host and
executed on z/OS.

Remote execution server cataloged procedure (RXPROC)
//RXSERVE PROC MODULE=’RSHD’,
// EXIT=,
// TSOPROC=IKJACCNT,
// MSGCLASS=H,
// TSCLASS=A,
// MAXCONN=512,
// PREFIX=,
// PURGE=Y,
// TRACE=
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB02V
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1991, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* Status = CSV1R2
//*
//* Change Activity =
//* CFD List:
//* $01=PN64129 TCPV3R2 941207 JRC: Change defaults and descriptions
//* for MSGCLASS and TSCLASS.
//* $02=PN73459 TCPV3R2 950831 JB: Correct descriptions and defaults
//* for MSGCLASS and TSCLASS.
//*
//* Flag Reason Release Date Origin Description
//* ---- -------- -------- ------ -------- -----------------------
//* $J1= D310.37 CSV2R10 990818 IT97HEIN: REXEC enhancemants:
//* added the PREFIX and
//* PURGE option
//* $J2= MV20462 CSV2R10 991209 DINAKAR : Allow JOB parm
//* abbreviations
//* End CFD List:
//*
//* Supported PARMS (separated by commas - ’,’) are:
//* EXIT=exitmod - Name of an exit routine to alter JOB and
//* EX=exitmod EXEC parameters for submission of TSO batch
//* jobs submitted for remote commands.
//* EXIT=NOEXIT can be specified when no exit
//* is required.
//* TSOPROC=proc - The name of the TSO batch procedure. The
//* TSO=proc default is IKJACCNT, and it can be modified
//* in the exit routine specified with the EXIT
//* parameter.
//* MSGCLASS=c - The MSGCLASS parameter for TSO batch jobs
//* MSG=c submitted to execute remote commands.
//* Specify a HELD class for this parameter.@02A
//* The default is H. The parameter is not @02C
//* to be altered by the exit routine. @01A
//* TSCLASS=c - The SYSOUT class for the SYSTSPRT DD for
//* TSC=c submitted jobs. Specify a different @02C
//* class than the MSGCLASS parameter. The

© Copyright IBM Corp. 2000, 2002 875

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* default is A. @01A
//* PURGE=c - The values for purge are Y or N. Y @J1A
//* PUR=c indicates the job output from the jobs @J1A
//* submitted by the server should be @J1A
//* purged immediately after the job @J1A
//* execution and N indicates that the job @J1A
//* outout will be held in the output queue.
//* TRACE=options - The following options are supported:
//* TR=options LOG | NOLOG: controls writing trace records
//* on SYSPRINT. NOLOG may be abbreviated as
//* NOL.
//* SEND | NOSEND: controls sending trace
//* records to the client. SEND may be
//* abbreviated as SEN and NOSEND as NOS.
//* CLIENT=client | ALLCLIENTS: selects a client
//* host for which trace records are produced,
//* or ALLCLIENTS to trace all clients. CLIENT
//* may be abbreviated as CLI and ALLCLIENTS as
//* ALLC.
//* RESET: sets the options to NOLOG,NOSEND,
//* ALLCLIENTS. RESET may be abbreviated as RE.
//* If more than one option is specified,
//* enclose the options in parentheses.
//* These parameters can also be changed with a MODIFY command.
//*
//* The following parameters may not be changed after START. @J1A
//* MAXCONN=n - The maximum number of open sockets at @J1A
//* MAX=n any one time. Usually each client @J1M
//* requires 2 sockets while @J1M
//* the command is being processed @J1M
//* and the output is being returned. The @J1M
//* default and minimum value is 512. If a @J1M
//* value of less than 512 is specified, the @J1M
//* default will be used. @J1M
//* PREFIX=xxxx - A four-character value to be used as the @J1A
//* PRE=xxxx first four characters in the jobname of @J1A
//* the jobs that are submitted by the server.@J1A
//* The remaining characters of the jobname @J1A
//* will be a sequential number between 1 and @J1A
//* MAXCONN.
//*
//RXSERVE EXEC PGM=&MODULE,PARM=(’EX=&EXIT,TSO=&TSOPROC’,
// ’MSG=&MSGCLASS,TSC=&TSCLASS’,
// ’MAX=&MAXCONN,PRE=&PREFIX,TR=&TRACE’,
// ’PUR=&PURGE’),
// REGION=7500K,TIME=1440//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* SYSPRINT contains runtime diagnostics from RSHD. It can be
//* a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.

876 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Remote execution server parameters
The system parameters required by the Remote Execution server are passed by
the PARM operand of the EXEC statement in the Remote Execution cataloged
procedure. Update the following parameters as required by your installation:

EX= or EXIT=
Name of a user exit routine to inspect and alter JOB and EXEC parameters
prior to submission of TSO batch jobs initiated by remote commands.

PRE= or PREFIX=
A four-character value used as the first four characters in the job name of jobs
that are submitted. The remaining characters of the job name will be a
sequential number between 1 and the value of MAXCONN.

PUR= or PURGE=
Y or N, indicating whether a job submitted by the server should be purged
immediately after execution or held in the output queue.

TSO= or TSOPROC=
The name of the TSO batch procedure. The default is IKJACCNT. The name
IKJACCNT can be modified in the exit routine specified with the EXIT
parameter.

MSG= or MSGCLASS=
The MSGCLASS parameter for TSO batch jobs submitted to execute remote
commands. The default is H, which points to a HELD output class. This
parameter must not be altered by the exit routine.

Note: For JES3 users, the HELD output class needs to be defined as a HELD
output class for external writer.

TSC= or TSCLASS=
The SYSOUT class for the SYSTSPRT DD statement for submitted jobs. The
default is A.

MAX= or MAXCONN=
The maximum number of open sockets at any one time. Usually, each client
requires 2 sockets while the command is being processed and the output is
being returned. The minimum acceptable value is 512. This is also the default.

TR= or TRACE=
The trace options that are to be in effect for the Remote Execution server.

Note: If more than one trace parameter is specified, enclose the parameters in
parentheses.

LOG
Specifies trace records written to SYSPRINT.

NOL= or NOLOG
Specifies no trace records written to SYSPRINT.

Figure 41. Remote execution cataloged procedure (RXPROC)

Chapter 31. Remote execution server 877

|
|
|

|
|
|
|

|

SEN= or SEND
Specifies trace records sent to the client.

NOS= or NOSEND
Specifies no trace records sent to the client.

CLI= or CLIENT=client
Specifies a specific client host for which trace records are to be produced.

ALLC= or ALLCLIENTS
Specifies that trace records are to be produced for all clients.

RE= or RESET
Sets the trace options to NOLOG, NOSEND, ALLCLIENTS.

All but the MAXCONN and PREFIX parameters can be changed dynamically with
the MODIFY command.

All parameters can now be abbreviated. For example, EXIT can be abbreviated to
EX. The abbreviated form is shown in Chapter 31, “Remote execution server” on
page 875.

RXUEXIT user exit sample
The following user exit is shipped as a sample in the RXUEXIT member of the
SEZAINST data set.
**
*
* Communications Server IP
*
* Name: RXUEXIT
*
* SMP/E Distribution Name: EZAEBRXU
*
* Function: This exit will add a CLASS parameter to the JOB
* statement submitted by the REXECD server in MVS
* TCP/IP.
*
* Copyright: Licensed Materials - Property of IBM
* This product contains "Restricted Materials of IBM"
* 5694-A01 (C) Copyright IBM Corp. 2002.
* All rights reserved.
* US Government Users Restricted Rights -
* Use, duplication or disclosure restricted by
* GSA ADP Schedule Contract with IBM Corp.
* See IBM Copyright Instructions.
*
* Interface: R1 -> input parameter list:
* +0 -> AF-INET Socket address structure of
* REXEC Client
* +4 -> JOB statement buffer
* +8 -> EXEC statement buffer
* +12 -> JES control statement buffer
*
* Logic: The typical contents of the JOB statement buffer
* are; userid,USER=userid,PASSWORD=password,
* MSGCLASS=H
*
* The JOB statement buffer is 1024 bytes in length.
* The contents of the buffer are null terminated.
* If the buffer contents are altered, the user must
* ensure they are null terminated (one byte x’00’)
* and that the total length including termination
* byte does not exceed the buffer length.

878 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*
* The JES control statement buffer is 256 bytes in
* length and the contents are null terminated.
*
* Abends: - none -
*
* Returncode: RC = 0
*
**
PARMS DSECT
PTRINET DC F’0’ *-> AF-INET socket address
PTRJOBP DC F’0’ *-> Job statement parameters
PTREXECP DC F’0’ *-> EXEC statement parameters
PTRJES DC F’0’ *-> EXEC statement parameters
*
BUFSIZE EQU 1024 *JOB statement buffer size
*
.* RXUEXIT INIT ’REXECD add class parameter to JOB statement’
.* *
RXUEXIT CSECT Establish the RXUEXIT csect
RXUEXIT AMODE 31
RXUEXIT RMODE ANY

USING RXUEXIT,12 Establish code addressability
STM 14,12,12(13) Save the caller’s registers
LR 12,15 Setup the local base register
LR 2,1 *Parm pointer
USING PARMS,2 *Parameter addressability
L 4,PTRJOBP *-> Job card parameters
LR 5,4 *-> Start of buffer
LA 6,1 *Scan 1 byte at a time
LA 7,BUFSIZE(5) *-> First byte after buffer
BCTR 7,0 *-> Last byte to scan

SCANLOOP EQU *
CLI 0(5),0 *Is this string termination ?
BE GOTEND *- Yes
BXLE 5,6,SCANLOOP *Continue scan for term

* --
* If string is not null terminated, return without altering
* --

B RETURN *Should not happen.
GOTEND EQU *

LA 5,1(5) *incl. x’00’ terminator
LR 6,5 *address of null byte
SR 5,4 *L’job parameter statements
LA 5,L’CLASS(5) *New parameter length
CH 5,=AL2(BUFSIZE) *Do we exceed buffer size?
BNH LENOK *- No, there is room enough

* --
* String length would exceed buf size so return without altering
* --

B RETURN *Return without modification
*
LENOK EQU *

MVC 0(L_CLASS,6),CLASS *Move class statement to buff
L 6,PTRJES *Get address of JES buffer
MVC 0(L_JES2,6),JES2CNTL *Move JES2 control to buffer

RETURN EQU *
LM 14,12,12(13) Restore the registers
LA 15,0(0,0) Load the return code
BR 14 Return

*
LTORG

*
CLASS DC C’,CLASS=A’ *Class statement

DC X’00’ *null termination byte
L_CLASS EQU *-CLASS
*

Chapter 31. Remote execution server 879

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

JES2CNTL DC C’/*JOBPARM SYSAFF=SYSA’ *JES2 system affinity
DC X’00’ *null termination byte

L_JES2 EQU *-JES2CNTL
*
JES3CNTL DC C’//*MAIN SYSTEM=(MAIN1)’ *JES3 main assignment

DC X’00’ *null termination byte
L_JES3 EQU *-JES3CNTL
*

END

z/OS remote execution server
The z/OS UNIX System Services remote execution servers, orexecd and orshd,
allow UNIX commands to be submitted from a remote host and executed on z/OS.

z/OS UNIX System Services REXECD command (orexecd)
The following syntax is used in the /etc/inetd.conf file to define the arguments used
to invoke orexecd:

Following is the syntax for the orexecd command:

�� orexecd
-d -l -v -c -s

�

Following is a description of the supported options:

Option Description

-d Print debug information to syslogd.

-l Write each successful login to syslogd with the remote user, remote system,
local user, and the command executed.

-v Write the title and ptf level to syslogd.

-c Write all messages in uppercase.

-s Invoke the remote shell as a login shell (that is, run /etc/profile and
$HOME/.profile).

z/OS UNIX System Services RSHD command (orshd)
The following is used in the /etc/inetd.conf file to define the arguments used to
invoke orshd:

�� orshd
-a -d -l -v -c -r -s

�

Following is a description of the supported options:

Option Description

-a Look up host name and check that the address and host name correspond.

-d Print debug information to syslogd.

Figure 42. RXUEXIT user exit (RXUEXIT)

880 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|

-l Write each successful login to syslogd with the remote user, remote system,
local user, and the command executed.

-v Write the title and ptf level to syslogd.

-c Write all messages in uppercase.

-r If a client passes a null password, invoke the /usr/sbin/ruserok user exit to
authenticate the user ID.

-s Invoke the remote shell as a login shell (that is, run /etc/profile and
$HOME/.profile).

Chapter 31. Remote execution server 881

882 z/OS V1R4.0 CS: IP Configuration Reference

Chapter 32. Miscellaneous (MISC) server

Miscellaneous (MISC) server cataloged procedure (MISCSERV)
//MISCSERV PROC MODULE=MISCSRV,PARMS=’’
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: SEZAINST(MISCSERV)
//*
//* Licensed Materials - Program Property of IBM.
//* "Restricted Materials of IBM"
//* 5694-A01 (C) COPYRIGHT IBM CORP. 1994, 2001
//* Status = CSV1R2
//* Distribution library SEZAINST(MISCSERV)
//*
//MISCSERV EXEC PGM=&MODULE,
// REGION=4096K,TIME=1440,
// PARM=’&PARMS’
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSMDUMP DD SYSOUT=*
//*
//* MSMISCSR identifies an optional data set for NLS support.
//* It specifies the MISC server message repository.
//*
//*MSMISCSR DD DSN=TCPIP.SEZAINST(MSMISCSR),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Specifying the MISC server parameters
The MISC server generates periodic messages whenever a client sends data to
ports 7, 9, or 19. If this server runs continually for a long period of time,
considerable amounts of spool space can be consumed. Therefore, the MISC
server has all tracing turned off by default.

You can enable the trace options for any of the three MISC server protocols using
the PARMS= parameter on the PROC statement of the cataloged procedure. These
options will be in effect when the server starts.

TRACE
Turns on tracing for any of the specified protocols and must be followed by one
or more of these three keywords:

Figure 43. MISC server cataloged procedure (MISCSERV)

© Copyright IBM Corp. 2000, 2002 883

ECho Specifies tracing for the echo protocol on port 7.
DIscard

Specifies tracing for the discard protocol on port 9.
CHargen

Specifies tracing for the character generator protocol on port 19.
DEbug

Specifies tracing for problem determination.

For example, the following statement turns tracing on for the echo and discard
protocols.
//MISCSERV PROC MODULE=MISCSRV,PARMS=’TRACE ECHO DISCARD’

884 z/OS V1R4.0 CS: IP Configuration Reference

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2002 885

886 z/OS V1R4.0 CS: IP Configuration Reference

Appendix A. OROUTED server

OROUTED cataloged procedure

Note: IPv6 support is not provided for OROUTED at this time.
A data set or file can be used to set the environment variables for an invocation of
OROUTED. This file is specified on the STDENV statement. An example of its
contents is included in the OROUTED cataloged procedure sample. For more
information about STDENV, refer to z/OS UNIX System Services User’s Guide. See
SEZAINST(EZARACF) for SAF considerations for started tasks.
//*
//* SMP/E Distribution Name: EZBRDORP
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5694-A01 (C) Copyright IBM Corp. 1996, 2001
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* OROUTED can be started with a variety of parameters.
//* In this example, the "-ep" parameter enables displaying
//* program output to standard out, and the "-t -t" parameter
//* enables 2 levels of tracing.
//*
//* If you are starting PGM=OROUTED, "-ep" option is required.
//* If you are starting OROUTED from PGM=BPXBATCH,
//* "-ep" is optional.
//*
//OROUTED PROC PARMS=’-ep -t -t’
//OROUTED EXEC PGM=OROUTED,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON)’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")’,
// ’/&PARMS’)
//*
//* The stdout stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stdout file
//* every time OROUTED is started. If you want to retain
//* previous stdout information, change it to OAPPEND.
//*
//SYSPRINT DD SYSOUT=*
//*SYSPRINT DD PATH=’/tmp/orouted.stdout’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* The stderr stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stderr file
//* every time OROUTED is started. If you want to retain
//* previous stderr information, change it to OAPPEND.
//*
//SYSOUT DD SYSOUT=*
//*SYSOUT DD PATH=’/tmp/orouted.stderr’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* OROUTED can use certain environmental variables, such
//* as NLSPATH (to determine the location of the message
//* catalog), RESOLVER_CONFIG (to determine the location
//* of the file that contains parameters TCPIPjobname and
//* DATASETPrefix), ROUTED_PROFILE (to determine the

© Copyright IBM Corp. 2000, 2002 887

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* location of the optional OROUTED profile), and
//* GATEWAYS_FILE (to determine the location of the
//* optional gateways file). Examples of the contents of
//* this file are as follows:
//*
//* RESOLVER_CONFIG=/etc/resolv.conf
//* ROUTED_PROFILE=//’SAMPLE.ROUTED.PROFILE’
//*
//* Define STDENV with the name of the file that contains
//* the environmental variables to be used for this
//* invocation of OROUTED.
//*
//*STDENV DD PATH=’/etc/orouted.env’
//*STDENV DD DSN=SAMPLE.OROUTED.ENV,DISP=SHR
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Note: When using _CEE_ENVFILE with an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because
RECFM=F enables padding with blanks for the environment variables.

Starting OROUTED from the z/OS shell
The following syntax illustrates how to start OROUTD from the z/OS shell:

�� orouted parameters �

For valid parameters, see “OROUTED parameters”.

OROUTED parameters
OROUTED accepts the command line parameters in the following list. These
parameters are valid when starting the program from either an MVS procedure or
the z/OS shell.

-c <filename.filetype>
OROUTED configuration files are processed, and a file that can be used as an
OMPROUTE configuration file is created. If start parameters include -c,
OROUTED will terminate after the conversion file has been created. If modify
parameters include -c, OROUTED will remain active. Filename.filetype is an
option for this parameter. If -c is specified with a file name as a parameter for
modify of OROUTED, the resulting file name is automatically made uppercase
regardless of the original input. The default output file is cnvrouted.profile in the
/tmp directory. You must put this file in the appropriate directory or data set for
use by OMPROUTE. The converted profile should be analyzed to determine if
comments direct changes to the TCP/IP profile. If suggested by comments, you
should take appropriate action to update TCP/IP profile. Refer to z/OS
Communications Server: IP Configuration Guide for more information about the
OMPROUTE configuration process.

If the file name already exists, OROUTED will not create a conversion file and
you must specify -c again with a new output file name or erase the existing file.
When starting OROUTED, this parameter is allowed with all other start
parameters.

Figure 44. OROUTED cataloged procedure

888 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

-del
All dynamic routes are deleted from the routing table upon initialization of
OROUTED. By default, OROUTED deletes only RIP routes at startup.

-d Enables printing internal debug information to standard output (STDOUT). This
option should only be used to debug problems. When this option is specified,
the -ep parameter is set internally.

-dp
Traces packets to and from adjacent routers and received and sent RIP
packets. Packets are displayed in data format. Output is written to standard
output (STDOUT).

-ep
Enables display of program print statements to standard output (STDOUT) and
standard error (STDERR). Information can be saved to a file by redirecting
STDOUT to a file using the > operator. If this option is specified, and the
program is started in the background from a z/OS shell, the user ID will not be
able to exit the shell until the program has ended. This parameter is required if
you start OROUTED with a procedure and PGM=OROUTED. It is not required
if you start OROUTED with a proc and PGM=BPXBATCH.

-g Enables the default router. When this option is specified, OROUTED will add a
default route to its routing information and propagate it over all local interfaces.
If the adjacent routers add the default route to their routing tables, OROUTED
will receive all unknown packets from them and funnel them to a destination
router, provided that a default route is defined. If you use this option, it is
recommended that you define a default route to a destination router in the
gateways file or data set. Refer to z/OS Communications Server: IP
Configuration Guide for more information.

Note: Do not use this option if default routes are to be learned dynamically
from adjacent routers.

-h Include host routes in addition to network routes for the RIP responses.
Adjacent routers must be able to receive host routes to prevent NETWORK
UNREACHABLE problems from occurring.

-hv
Include only VIPA host routes in addition to network routes for the RIP
responses. Adjacent routers must be able to receive host routes; otherwise,
network or subnetwork portions of VIPA addresses must be unique for each
z/OS TCP/IP stack.

-q Suppresses supplying routing information.

-sd
Supply default route only. When this option is specified, the -g parameter is set
internally. This option is provided as an RIP output filter.

-sdv (or -svd)
Supply network-specific VIPA routes and default routes only. See parameter
descriptions for -sv and -sd. This option is provided as an RIP output filter.

-sl Supply local (directly-connected) routes only. This option is provided as an RIP
output filter.

-st Supply triggered updates only. Similar to the -q parameter except that
OROUTED will supply network unreachable routing information during interface

Appendix A. OROUTED server 889

outages so that adjacent routers can recover by switching to different routes
rather than relying on three-minute timeouts. This option is provided as an RIP
output filter.

-sv
Supply network-specific VIPA routes only. Recommended usage is when
multiple network adapters in a z/OS TCP/IP stack are in the same network;
otherwise, network connectivity problems will occur. This option is provided as
an RIP output filter.

-svd
Similar to -sdv parameter.

-svh (or -shv)
Supply VIPA (network-specific and host) routes only. This option is provided as
an RIP output filter.

-t Activates tracing of actions by the OROUTED server.

-t -t
Activates tracing of actions and packets sent or received.

-t -t -t
Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced and are displayed whenever an interface becomes inactive.

-t -t -t -t
Activates tracing of actions, packets sent or received, packet history, and packet
contents. The packet displays the RIP network routing information.

Table 67 shows how selected parameters affect the advertising algorithm for routes
in RIP responses to adjacent routers. The parameters can be used as router-wide
RIP output filters. To configure interface-wide RIP input and output filters, see the
OPTIONS statement in the GATEWAYS configuration data set or file.

Table 67. ORouteD parameters

Parameter VIPA
host
routes

Host
routes
(direct
and
indirect)

VIPA
network
routes

Direct
(local)
network
routes

Indirect
network
routes

Default
routes

Un-reachable
routes

-g No No Yes Yes Yes Yes Yes

-h Yes Yes Yes Yes Yes No Yes

-hv Yes No Yes Yes Yes No Yes

-s No No Yes Yes Yes No Yes

-sd No No No No No Yes Yes

-sl No No Yes Yes No No Yes

-sq or -q No No No No No No No

-st No No No No No No Yes

-sv No No Yes No No No Yes

-svd No No Yes No No Yes Yes

-svh Yes No Yes No No No Yes

None No No Yes Yes Yes No Yes

890 z/OS V1R4.0 CS: IP Configuration Reference

OROUTED profile
OROUTED supports sending and receiving both RIP version 1 and RIP version 2
packets. A configuration file, the OROUTED profile, determines the mode of
operation. The following is the search order used to locate the OROUTED
configuration data set or file:

1. If the environment variable ROUTED_PROFILE has been defined, OROUTED
uses this value as the name of an MVS data set (//’mvs.dataset.name’) or HFS
file (/dir/subdir/file.name) to access the profile.

2. /etc/routed.profile

3. hlq.ROUTED.PROFILE

The following are the syntax rules for the OROUTED profile:

v Keywords can be specified in mixed case.

v Blanks and comments are supported in the OROUTED profile. Comments are
identified by a semicolon (;) in any column.

v Profile statements can start in any column; however, wrapping to the next record
for continuation is not allowed.

v There should be no sequence numbers in the data set or file.

A sample profile is provided in hlq.SEZAINST(EZARTPRF).

The following are the options that can be included in the OROUTED profile:

�� 1 RIP2_AUTHENTICATION_KEY:

″authentication_key″
RIP_SUPPLY_CONTROL:

RIP1
RIP2
RIP2B
RIP2M
NONE

RIP RECEIVE CONTROL:
RIP1
RIP2
ANY
NONE

�

RIP2_AUTHENTICATION_KEY:
A constant. The value that follows is the authentication key.

“authentication key”
Specifies a plain text password containing up to 16 characters. The
authentication key must be enclosed in double quotation marks. The key is
used on a server-wide basis and can contain mixed case and blank characters.
The key will be used to authenticate RIP Version 2 packets and be included in
the RIP responses for authentication by adjacent routers running RIP Version 2.
A null key (either no key is specified, or ″″ is specified) indicates that
authentication is disabled. For maximum security, set RIP_SUPPLY_CONTROL
and RIP RECEIVE CONTROL to RIP2. This will discard RIP1 and
unauthenticated RIP2 packets.

Appendix A. OROUTED server 891

RIP_SUPPLY_CONTROL:
A constant. Specifies that the keyword following is to be used as the RIP supply
control for all interfaces. Possible supply controls are as follows:

RIP1 Unicast/Broadcast RIP Version 1 packets (Default)

RIP2 Unicast/Multicast RIP Version 2 packets

RIP2B Unicast/Broadcast RIP Version 2 packets (Not Recommended)

RIP2M
Unicast/Multicast/Broadcast RIP packets (Migration)

NONE Disable sending RIP packets

RIP RECEIVE CONTROL:
A constant. Specifies that the keyword following is to be used as the RIP
receive control for all interfaces. Possible receive controls are as follows:

RIP1 Receive RIP Version 1 packets

RIP2 Receive RIP Version 2 packets

ANY Receive any RIP Version 1 and 2 packets (Default)

NONE Disable receiving RIP packets

Gateways file or data set syntax rules
The gateways file or data set is used to configure the routing table of the
OROUTED server beyond the network information transmitted by other routers that
are directly connected to the network. The OROUTED server uses the following
search order to locate the GATEWAYS configuration data set or file:

1. If the environment variable GATEWAYS_FILE has been defined, OROUTED
uses this value as the name of an MVS data set (//’mvs.dataset.name’) or HFS
file (/dir/subdir/file.name) to access the gateway file.

2. /etc/gateways

3. hlq.ETC.GATEWAYS

A passive entry in the gateways file or data set is used to add a route to a part of
the network that does not support RIP. An external entry in the gateways file or data
set indicates a route that should never be added to the routing tables. If another
RIP server offers this route to your host, the route is discarded and not added to the
routing tables. An active entry indicates a gateway that can only be reached through
a network that does not allow or support link-level broadcasting or multicasting.

v The maximum LRECL allowed for the ETC.GATEWAY data set is 999.

v Keywords can be specified in mixed case.

v Blanks and comments are supported in the gateways file or data set. Comments
are identified by a semicolon (;) in column 1.

v There should be no sequence numbers in the data set.

The syntax for the gateways file or data set is:

�� net
host
active

name1 gateway name2 metric value gateway options �

892 z/OS V1R4.0 CS: IP Configuration Reference

gateway options:

passive
external
active

mask subnetmask

net
Indicates the route goes to a network.

host
Indicates the route goes to a specific host.

active
Indicates that the route to the gateway will be treated as a network interface.
Active gateways are routers that are running RIP, but can only be reached
through a network that does not allow link-level broadcasting or multicasting
and is not point-to-point.

name1
Can be either a symbolic name or the IP address of the destination network or
host. If an IP address is specified, it must be in the standard dotted decimal
notation. All numbers will be interpreted as decimal values only. No
hexadecimal nor octal notation will be accepted.

name1 must be specified as active if this is for an active gateway. The last
entry in the data set must specify an active gateway.

gateway
A constant. The parameters that follow this keyword identify the gateway or
router for this destination.

name2
Can be either a symbolic name or the IP address of the gateway or router for
this destination. If an IP address is specified, it must be in the standard dotted
decimal notation. All numbers will be interpreted as decimal values only. No
hexadecimal or octal notation will be accepted.

metric
A constant. The value that follows this keyword is the hop count to the
destination host or network.

value
The hop count to this destination. This number is an integer in the range of 0
through 16, where 16 (infinity) indicates the network cannot be reached.

passive
A passive gateway does not exchange routing information. Information about
the passive gateway is maintained in the local routing tables indefinitely and is
only local to this OROUTED server. Passive gateway entries for indirect routes
are not included in any routing information that is transmitted. Directly
connected passive routes are included.

external
An external gateway parameter indicates that entries for this destination should
never be added to the routing table. The OROUTED server discards any routes
for this destination that it receives from other routers. Only the destination field
is significant. The gateway parameter is ignored but you must specify a routing
interface in the nextwork. The metric field is ignored.

active
Active gateways are treated as network interfaces. Active gateways are routers

Appendix A. OROUTED server 893

that are running RIP, but can only be reached through a network that does not
allow link-level broadcasting or multicasting and is not point-to-point.

mask
A constant. The value that follows this keyword is the subnet mask for the
route.

subnetmask
A bit mask (expressed in dotted-decimal form) defining the subnetwork mask for
a network route. The bits must be contiguous in the network portion of the
subnetmask. If the subnetmask is not specified, OROUTED will default the
subnetwork mask to an interface subnetwork mask that matches the route’s
network. If there is no interface match, then the network class mask for the
route is used.

Note: For more information on passive, external, and active gateways, refer to
z/OS Communications Server: IP Configuration Guide.

The following example shows the contents of a gateways file or data set containing
multiple entries:
net acmenet gateway gateway.acme.com metric 5 passive
host vm3.ibm.com gateway 9.67.43.126 metric 6 passive
host bad.host gateway 9.67.113.1 metric 1 external
active active gateway 9.3.1.110 metric 3 active
net 0.0.0.0 gateway 9.67.112.1 metric 1 passive

In the first entry, the route indicates that acmenet can be reached through the
gateway gateway.acme.com, and that it is 5 hops away.

In the second entry, the route indicates that vm3.ibm.com can be reached through
the gateway 9.67.43.126, and that it is 6 hops away.

In the third entry, the external gateway parameter indicates that routes for the host
bad.host should not be added to the routing tables, and that routes received from
other OROUTED servers for bad.host should not be accepted.

The fourth entry shows an active gateway.

The fifth entry shows a default route to the destination gateway 9.67.112.1.

The syntax for the OPTIONS statement for the gateways file or data set is:

894 z/OS V1R4.0 CS: IP Configuration Reference

�� 1 OPTIONS gateway ip_addr
block
noreceive
none

interface.poll.interval timer_value
interface.scan.interval timer_value
interface name ip_addr block destination
interface name ip_addr forward destination fmask fmask
interface name ip_addr forward.cond destination fmask fmask
interface name ip_addr noforward destination fmask fmask
interface name ip_addr none
interface name ip_addr noreceive destination fmask fmask
interface name ip_addr passive
interface name ip_addr ripon
interface name ip_addr ripoff
interface name ip_addr receive destination fmask fmask
interface name ip_addr receive.cond destination fmask fmask
interface name ip_addr supply off
interface name ip_addr supply on
interface name ip_addr key

″authentication_key″
interface name ip_addr nokey
interface name ip_addr supply.control

RIP1
RIP2B
RIP2M
RIP2
NONE

interface name ip_addr receive.control
RIP1
RIP2
ANY
NONE

�

Parameters

gateway
A constant. The value that follows this keyword identifies the gateway or router.

ip_addr
Specifies the Internet address of the interface associated with the interface
name. A specification of an asterisk (*) can only be used with the NONE
parameter option to indicate all Internet addresses of the interfaces.

block
For the interface option, specifies that the destination route in the received
broadcasts for this interface is to be ignored. For the gateway option, specifies
that routing table RIP responses from this gateway are to be ignored. This
option is provided as an RIP input filter.

noreceive
See description for block.

none
For the interface option, specifies that any RIP filter options for this interface are
to be turned off or reset. If an asterisk (*) is specified for the interface name and
ip_addr, all options will be cleared from all interfaces. For the gateway option,
specifies that any RIP filter options for this gateway are to be turned off or
reset. If an asterisk (*) is specified for the Internet address, all gateway entries
with gateway options will be cleared.

interface.poll.interval
Specifies the time interval in seconds for the interface poll interval. OROUTED
uses this timer value to check existing interfaces for up/down status only.

Appendix A. OROUTED server 895

Triggered updates are issued during interface outages to inform adjacent
routers of unreachable routes so that alternative routes can be discovered.

timer_value
The range is from 15 to 180 seconds in multiples of 15 seconds. The
default is 30 seconds.

interface.scan.interval
Specifies the time interval in seconds for the interface scan interval. OROUTED
uses this timer value to rescan existing interfaces for up/down status, new
interfaces, and new HOME lists. New interfaces and HOME lists are
dynamically added using VARY TCPIP,,CMD=OBEYFILE commands.
timer_value

The range is from 30 to 180 seconds in multiples of 30 seconds. The
default is 60 seconds.

interface
A constant

name
Specifies the name of the interface as used in the HOME list. A specification of
an asterisk (*) can only be used with the NONE parameter option to indicate all
interface names. The name must be defined in the HOME list at the time the
gateways file or data set is processed.

destination
Specifies the destination route in network, subnetwork, or host format. A
specification of an asterisk (*) indicates that all destination routes are to be
used with the noforward and noreceive options. This serves as a blackhole filter
option that can be used to filter out all routes from RIP packets to be sent or
received over an interface and to allow routes with specified forward and
receive filters to be used.

fmask
Specifies the optional route filter mask.

forward
Specifies that the destination route in the RIP responses is to be forwarded to
this interface only. This option is provided as an RIP output filter and can be
used for inbound and outbound traffic splitting.

forward.cond
Specifies that the destination route is to be forwarded to this interface only
when the interface is active. In case of an interface outage, OROUTED will
include the destination route in the RIP responses to other active interfaces.
After recovery of an interface outage, ORouteD will resume to sending the
destination route over this interface only. This option is provided as an RIP
output filter and can be used for inbound and outbound traffic splitting.

noforward
Specifies that the destination route in the RIP responses is not to be forwarded.
This option is provided as an RIP output filter.

passive
Same as ripoff.

receive
Specifies that the destination route is to be received over this interface only. If it
is received over any other interface, the route is discarded. This option is
provided as an RIP input filter.

896 z/OS V1R4.0 CS: IP Configuration Reference

receive.cond
Specifies that the destination route is to be received over this interface only
when the interface is active. In case of an interface outage, OROUTED will
allow the destination route in the RIP responses to be received over other
active interfaces. This option is provided as an RIP input filter and can be used
for inbound and outbound traffic splitting.

ripoff
Specifies that RIP is disabled for this interface. OROUTED will not send or
receive RIP updates. This option is provided as an RIP input and output filter.

ripon
Specifies that RIP is enabled for the interface. This is the default for all
interfaces. This option should be used when RIP has been previously disabled
for an interface with the ripoff option, but is now required to be enabled for that
interface.

supply off
Specifies that supplying RIP responses is disabled for this interface. OROUTED
will not send, but continues to receive RIP responses. This option is provided
as an RIP output filter.

supply on
Specifies that supplying RIP responses is enabled for this interface. This option
is provided as an RIP output filter.

key
Specifies a plain text password containing up to 16 characters for the
authentication key to be used for this interface and is used to override the
router-wide setting defined in the OROUTED profile data set. The key must be
enclosed in double quotation marks for the delimiters and can contain mixed
case and blank characters. A no key or null key (″″) specification indicates that
the router-wide key will be used as the default.

″authentication_key″
An authentication key containing up to 16 characters to be used for this
interface. The key is used to override the OROUTED profile setting and must
be enclosed in double quotation marks. The key will start with the first character
past the first quotation mark and end at the last character before the last
quotation mark on the line.

nokey
Specifies that authentication is disabled for this interface even though the
router-wide specification from the OROUTED profile is defined.

supply.control
A constant. Specifies that the keyword following is to be used as the RIP supply
control for this interface and is used to override the OROUTED profile setting.
Possible supply controls are as follows:

RIP1 Unicast/Broadcast RIP Version 1 packets (Default)

RIP2B Unicast/Broadcast RIP Version 2 packets (Not Recommended)

RIP2M
Unicast/Multicast/Broadcast RIP packets (Migration)

RIP2 Unicast/Multicast RIP Version 2 packets

NONE Disable sending RIP packets

Appendix A. OROUTED server 897

receive.control
A constant. Specifies that the variable following is to be used as the RIP receive
control for this interface and is used to override the OROUTED profile setting.
Possible receive controls are as follows:

RIP1 Receive RIP Version 1 packets

RIP2 Receive RIP Version 2 packets

ANY Receive any RIP Version 1 and 2 packets (Default)

NONE Disable receiving RIP packets

The following example shows the options entries of a gateways file or data set:
options interface.scan.interval 90
options interface.poll.interval 15
options interface ETH1 10.1.1.1 passive
options interface ETH1 10.1.1.1 supply off
options interface TR1 9.67.112.25 forward 11.0.0.0
options interface TR1 9.67.112.25 forward.cond 12.0.0.0
options interface TR1 9.67.112.25 block 9.1.0.0
options interface TR1 9.67.112.25 supply.control rip1
options interface ETH1 10.1.1.1 receive.control rip2
options interface ETH1 10.1.1.1 key
options interface CTC0 9.67.114.22 key "shredder"
options interface ETH1 10.1.1.1 none
options interface * * none
options gateway 9.2.1.4 noreceive
options gateway 9.2.1.4 none
options gateway * none

OROUTED to OMPROUTE migration
An OROUTED start parameter is available to assist with migration from OROUTED
to OMPROUTE. This function is invoked by specifying ’-c’ on the OROUTED startup
parameters or with the MODIFY command. The ’-c’ parameter uses OROUTED
configuration files and OROUTED’s current environment (including start parameters
and MTU information) to create a file which can be used as the profile to start
OMPROUTE. The file, cnvrouted.profile (default name) or the name you specify, is
put in the /tmp directory for HFS (an MVS data set is not an option). The file
generated by the -c parameter can direct the customer to change certain files. For
example, a BEGINROUTES statement might need to be added to TCPIP.PROFILE.
For point-to-point RIP interfaces using RIP1, a nonzero destination address must be
specified on the RIP interface statement. The customer is also asked to verify
PORT UDP 520 reservation in TCPIP.PROFILE.

Both routing daemons use syslogd, resolver configuration files (for
DATASETPREFIX and TCPIPJOBNAME), the services file (route 520/udp router
routed), and have optional cataloged procedures.

Table 68. OROUTED RACF to OMPROUTE RACF

OROUTED RACF OMPROUTE RACF

RDEFINE OPERCMDS
(MVS.ROUTEMGR.OROUTED)
UACC(NONE)

RDEFINE OPERCMDS
(MVS.ROUTEMGR.OMPROUTE)
UACC(NONE)

PERMIT MVS.ROUTEMGR.OROUTED
ACCESS(CONTROL) CLASS(OPERCMDS)
ID(userid)

PERMIT MVS.ROUTEMGR.OMPROUTE
ACCESS(CONTROL) CLASS(OPERCMDS)
ID(userid)

898 z/OS V1R4.0 CS: IP Configuration Reference

Table 68. OROUTED RACF to OMPROUTE RACF (continued)

OROUTED RACF OMPROUTE RACF

SETROPTS RACLIST(OPERCMDS)
REFRESH

SETROPTS RACLIST(OPERCMDS)
REFRESH

Table 69. OROUTED PROFILE.TCPIP to OMPROUTE PROFILE.TCPIP

OROUTED PROFILE.TCPIP OMPROUTE PROFILE.TCPIP

PORT UDP 520 OROUTED PORT UDP 520 OMPROUTE

IPCONFIG IGNOREREDIRECT or IPCONFIG
VARSUBNETTING

OMPROUTE automatically enables
IPCONFIG IGNOREREDIRECT and
VARSUBNETTING during its initialization.

IPCONFIG DATAGRAMFWD (optional) IPCONFIG DATAGRAMFWD (optional)

IPCONFIG SOURCEVIPA (optional) IPCONFIG SOURCEVIPA (optional)

Table 70. BSDROUTINGPARMS to OMPROUTE configuration file

BSDROUTINGPARMS OMPROUTE configuration file

TRUE — Specifies that the maximum packet
size for the interface is always used,
regardless of the final destination host.

Not needed due to MTU specification in
″RIP_Interface″ which offers better control
and is more granular.

FALSE — Specifies that the default maximum
packet size of 576 is used when sending to
networks that are not locally attached.

Not needed due to MTU specification in
″RIP_Interface″ which offers better control
and is more meaningful and granular.

link_name RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask;

mtu (DEFAULTSIZE) RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
MTU = size;
(MTU = 576)

cost_metric RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
Out_Metric = metric;

subnet_mask (can be supernet mask)

If advertising by way of RIP-2, both the
subnet route and the natural class network
route are sent.

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask;
(can be supernet mask)

If advertising by way of RIP-2, only the
subnet route is sent.

Appendix A. OROUTED server 899

Table 70. BSDROUTINGPARMS to OMPROUTE configuration file (continued)

BSDROUTINGPARMS OMPROUTE configuration file

dest_addr (can be 0) RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
Destination_Addr = address;
(cannot be 0 for RIP-1, but can be 0 for
RIP-2)

OMPROUTE requires a destination address
for point-to-point interfaces.

Table 71. OROUTED profile to OMPROUTE configuration file

OROUTED profile OMPROUTE configuration file

RIP2_AUTHENTICATION:
″authentication_key″ (16 characters)

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Authentication_Key = ″key″;
(16 characters)

RIP_SUPPLY_CONTROL: RIP1 (default
configuration)

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>;
(default configuration)

RIP_SUPPLY_CONTROL: RIP2

RIP-2 multicast over multicast-capable
interfaces only; no RIP messages are sent
over multicast-incapable interfaces

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
RIPV2 = YES;
(RIP-1 is disabled)

RIP_SUPPLY_CONTROL: RIP2B (broadcast)
Not Recommended

RFC recommends that RIP-2 messages
are multicast.

RIP_SUPPLY_CONTROL: RIP2M (migration)
RIP-2 multicast over multicast-capable
interfaces; RIP-1 broadcast over
multicast-incapable interfaces

Configure each individual interface for
RIP-1 or RIP-2.

RIP_SUPPLY_CONTROL: NONE RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_RIP = NO;

RIP_RECEIVE_CONTROL: RIP1 (receive
RIP-1 only)

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>;
(default configuration). However, cannot
send RIP-2 since RIP-1 routers cannot
receive RIP-2 multicasts; this option was
used for OROUTED.
RIP_SUPPLY_CONTROL: RIP2B, which is
now obsolete.

900 z/OS V1R4.0 CS: IP Configuration Reference

Table 71. OROUTED profile to OMPROUTE configuration file (continued)

OROUTED profile OMPROUTE configuration file

RIP_RECEIVE_CONTROL: RIP2 (receive
RIP-2 only)

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
RIPV2 = YES;
RIP-1 is disabled. However, cannot send
RIP-1 since RIP-2 routers are expecting
RIP-2 multicasts; this option was used for
OROUTED RIP_SUPPLY_CONTROL:
RIP2B, which is now obsolete.

RIP_RECEIVE_CONTROL: ANY (default
configuration)

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Receive_RIP = ANY

RIP_RECEIVE_CONTROL: NONE RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Receive_RIP = NO;

Note: The OROUTED profile specifies the global settings for OROUTED (for
example, ″RIP_SUPPLY_CONTROL: RIP2″ means all interfaces send RIP-2
messages). Individual interfaces can be configured in the gateways file,
which override the profile settings.

OMPROUTE generally requires that individual interfaces be configured.
However, OMPROUTE has more granular control over OROUTED in
specifying interface metrics and RIP input/output filters.

Table 72. OROUTED gateways file to OMPROUTE configuration file

OROUTED gateways file OMPROUTE configuration file

net/host name1 gateway name2
metric value external mask
subnetmask

An external gateway parameter
indicates that entries for this
destination should never be added
to the routing table. The
OROUTED server discards any
routes for this destination that it
receives from other routers. Only
the destination field is significant.
The gateway and metric fields are
ignored.

filter = (noreceive, dest_route, filter_mask);

filter = (nosend, dest_route,filter_mask);

Appendix A. OROUTED server 901

Table 72. OROUTED gateways file to OMPROUTE configuration file (continued)

OROUTED gateways file OMPROUTE configuration file

net/host name1 gateway name2
metric value passive mask
subnetmask

A passive gateway does not
exchange routing information.
Information about the passive
gateway is maintained in the local
routing tables indefinitely and is
only local to this OROUTED
server. Passive gateway entries
are not included in any routing
information that is transmitted.
Directly connected passive routes
are included. Only one default
route can be defined through
OROUTED.

Define static route using BEGINROUTES/GATEWAY
statement in the TCP/IP profile. The
BEGINROUTES/GATEWAY statement supports
multiple default routes.
RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_Static_Routes = YES;
Advertise static and direct routes.

active active gateway name2
metric value active mask
subnetmask

Indicates that the route to the
gateway will be treated as a
network interface. Active gateways
are routers that are running RIP,
but can only be reached through a
network that does not allow
broadcasting and is not
point-to-point. (for example,
HYPERchannel interface)

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
Neighbor = value;
The value of the neighbor parameter corresponds to
the name2 IP address on the OROUTED active
gateway statement. Multiple neighbor statements can
be coded on an RIP_Interface to indicate adjacent RIP
routers. This should be used when the interface is not
point-to-point, does not support broadcast, and does
not support multicast.

options gateway ip_addr block
noreceive none

Specifies that routing table
broadcasts from this gateway are
to be ignored.

IGNORE_RIP_NEIGHBOR IP_address = address″

options interface.poll.interval
timer_value

options interface.scan.interval
timer_value

Not needed because OMPROUTE is immediately
notified of interface changes by the TCP/IP stack.

options interface name ip_addr
forward destination fmask fmask

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
filter = (send, dest_route, filter_mask);

options interface name ip_addr
forward.cond destination fmask
fmask

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
filter = (send_cond, dest_route, filter_mask);

902 z/OS V1R4.0 CS: IP Configuration Reference

Table 72. OROUTED gateways file to OMPROUTE configuration file (continued)

OROUTED gateways file OMPROUTE configuration file

options interface name ip_addr
noforward destination fmask fmask

(an asterisk (*) can be specified on
the destination as a blackhole
filter)

filter = (nosend, dest_route, filter_mask);

(an asterisk (*) can be specified on the dest_route as a
blackhole filter)

options interface name ip_addr
receive destination fmask fmask

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
filter = (receive , dest_route, filter_mask);

options interface name ip_addr
receive.cond destination fmask
fmask

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
filter = (receive_cond , dest_route, filter_mask);

options interface name ip_addr
noreceive destination fmask fmask
block

(an asterisk (*) can be specified on
the destination as a blackhole
filter)

filter = (noreceive, dest_route, filter_mask);

(an asterisk (*) can be specified on the dest_route as a
blackhole filter)

options interface name ip_addr
none

Not applicable

options interface name ip_addr
ripon

Configure as a ″RIP_Interface″.

options interface name ip_addr
ripoff passive

Do not configure as a ″RIP_Interface″. You might need
to configure as an ″Interface″ though (known to
OMPROUTE but not participating in OSPF or RIP).

options interface name ip_addr
supply on

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask;
(default configuration)

options interface name ip_addr
supply off

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
Send_RIP = NO;

options interface name ip_addr
nokey

RIP_Interface
IP_address = address
Name = interface_name
Subnet_mask = subnet_mask
Authentication_Key = nulls;

options interface name ip_addr key
″authentication_key″

(16 characters)

See the ″OROUTED profile″ comparison.

Appendix A. OROUTED server 903

Table 72. OROUTED gateways file to OMPROUTE configuration file (continued)

OROUTED gateways file OMPROUTE configuration file

options interface name ip_addr
supply.control
RIP1
RIP2
RIP2B
RIP2M
NONE
options interface name ip_addr
receive.control
RIP1
RIP2
ANY
NONE

See the ″OROUTED profile″ comparison

Table 73. OROUTED start parameters to OMPROUTE start parameters and configuration
file

OROUTED start parameters OMPROUTE start parameters and
configuration file

—ep Not applicable

—del

All dynamic routes are deleted from the
routing table upon initialization of OROUTED.
By default, OROUTED deletes only RIP
routes at startup.

All dynamic routes are deleted from the
routing table upon initialization of
OMPROUTE

—t —t —t —t —tn

—c Not applicable

—d —dn

—dp —d2 (or higher)

—g Originate_RIP_Default
Cost = cost;
RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_Default_Routes = YES;

—h

Include host routes in addition to network
routes.

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_Host_Routes = YES;

—hv

Include only virtual host routes in addition to
network routes.

RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_Host_Routes = YES;

filter = (nosend, dest_route, filter_mask);
Use the filter to not advertise the ’Real″ host
routes.

904 z/OS V1R4.0 CS: IP Configuration Reference

Table 73. OROUTED start parameters to OMPROUTE start parameters and configuration
file (continued)

OROUTED start parameters OMPROUTE start parameters and
configuration file

—sd

Supply default route only.

Send_Only = (DEFAULT);

—sl

Supply local (directly-connected) routes only.

Send_Only = (DIRECT);

—st

Supply triggered updates only.

Send_Only = (TRIGGERED);

—sv

Supply virtual routes only.

Send_Only = (VIRTUAL);

—svd (or —sdv)

Supply virtual routes and default route only.

Send_Only = (DEFAULT, VIRTUAL);

—svh (or —shr)

Supply virtual (network and host) routes.

Send_Only = (VIRTUAL);
RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_Host_Routes = YES;

—q RIP_Interface
IP_address = ALL
Name = <ignored>
Subnet_mask = <default class mask>
Send_RIP = No;

Table 74. MODIFY OROUTED to OMPROUTE

MODIFY OROUTED OMPROUTE

PARMS=-c
PARMS=-g
PARMS=-gq
PARMS=-h
PARMS=-hq
PARMS=-hv
PARMS=-hqv
PARMS=-sd
PARMS=-sdq
PARMS=-sl
PARMS=-slq
PARMS=-st
PARMS=-stq
PARMS=-sv
PARMS=-svq
PARMS=-svd (or —sdv)
PARMS=-svdq (or —sdvq)
PARMS=-svh (or —shv)
PARMS=-svhq (or —shvq)
PARMS=-s
PARMS=-sq (or —q)

*** No functional equivalent ***

These ″MODIFY OROUTED,PARMS=″ commands have
the same function as the start parameters. See Table 73
on page 904 for a comparison.

PARMS= –t —t —t —t MODIFY OMPROUTE,TRACE=n

Appendix A. OROUTED server 905

Table 74. MODIFY OROUTED to OMPROUTE (continued)

MODIFY OROUTED OMPROUTE

PARMS= –tq MODIFY OMPROUTE,TRACE=0

PARMS= –d MODIFY OMPROUTE,DEBUG=n

PARMS= –dp MODIFY OMPROUTE,DEBUG=2 (or higher)

PARMS= –dq MODIFY OMPROUTE,DEBUG=0

PARMS= –k

(Kill OROUTED)

MODIFY OMPROUTE,KILL

PARMS= –kdr (Kill OROUTED
and delete the routing table in
TCP/IP)

PARMS= –f Flush all indirect
routes from TCP/IP routing
table.

PARMS= –fh Flush all indirect
host routes from TCP/IP routing
table.

Not applicable — Not needed because OMPROUTE is
immediately notified of route table changes by the TCP/IP
stack; in addition, dynamic routes are cleared
automatically upon startup.

GATEWAYS Not applicable

GATEWAYS ,DELETE Not applicable

PROFILE MODIFY OMPROUTE,RECONFIG

This command ignores all statements in the configuration
file except new OSPF_Interface, RIP_Interface, and
Interface statements. These new configuration statements
must be re-read from the configuration file through this
command prior to the interface being configured to the
TCP/IP stack.

RECONFIG Not applicable

TABLES

Display internal routing,
interface, and gateway options
tables

DISPLAY TCPIP,tcpipjobname,OMPROUTE,RTTABLE
DISPLAY TCPIP,tcpipjobname,OMPROUTE,RIP,FILTERS
DISPLAY
TCPIP,tcpipjobname,OMPROUTE,RIP,INTERFACE
DISPLAY TCPIP,tcpipjobname,OMPROUTE,RIP,LIST,ALL
DISPLAY
TCPIP,tcpipjobname,OMPROUTE,RIP,LIST,INTERFACES

906 z/OS V1R4.0 CS: IP Configuration Reference

Appendix B. Using translation tables

TCP/IP Services uses translation tables to convert transmitted data from EBCDIC to
ASCII. Because these tables do not always include all the desired characters,
TCP/IP allows you to create and customize tables without having to recompile
source code. Translation tables are stored in binary form on disk. TCP/IP provides
standard tables that are used as the default if you do not customize your own.

Two types of translation tables are used by TCP/IP Services.

v SBCS translation tables are used for single-byte characters.

v DBCS translation tables are used for converting double-byte characters. DBCS
translation tables are required for character sets such as Japanese Kanji, which
contains too many characters to represent using single-byte codes. SBCS
translation tables provide mappings for a maximum of 256 characters. DBCS
translation tables can provide up to a theoretical maximum of 65 535 character
mappings; however, DBCS character sets usually contain less than this number.

The following sections describe how to create and customize both SBCS and DBCS
translation tables and explain how they are used by the programs in TCP/IP
Services.

SBCS translation table hierarchy
Different programs look for special translation tables to use. The program chooses
one of the customized tables, as described in Table 75. The program first searches
for a customized table that you have built. If the program fails to find one of the
customized tables, it uses the default table supplied in hlq.STANDARD.TCPXLBIN.
Table 75 provides the customized translation tables and default table names for the
programs.

Note: FTP server and FTP client will optionally use iconv instead of the external
tables for single-byte conversion. The use of iconv is specified in FTP.DATA
or by SITE/LOCSITE commands.

Table 75. SBCS translation table hierarchy

Program Customized translation tables Default translation table

FTP Client 1. FTP.DATA keywords CTRLCONN, SBDATACONN,
and EXTENSIONS UTF8 (control connection only)

2. user_id.FTP.TCPXLBIN

3. hlq.FTP.TCPXLBIN

4. user_id.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

FTP Client
(TRANSLATE) 2

1. user_id.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

None. Program Halts

FTP Server 1. DD:SYSFTSX in FTP start procedure

2. EXTENSIONS UTF8 (control connection only)

3. FTP.DATA keywords CTRLCONN (or CCXLATE) and
SBDATACONN (or XLATE)

4. jobname.SRVRFTP.TCPXLBIN

5. hlq.SRVRFTP.TCPXLBIN

6. jobname.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

© Copyright IBM Corp. 2000, 2002 907

Table 75. SBCS translation table hierarchy (continued)

Program Customized translation tables Default translation table

LPR Client 1. user_id.LPR.TCPXLBIN

2. hlq.LPR.TCPXLBIN

3. user_id.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

LPR Client
(TRANSLATE)

1. user_id.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

3. user_id.LPR.TCPXLBIN

4. hlq.LPR.TCPXLBIN

5. user_id.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

LPD Server jobname.data.STANDARD.TCPXLBIN hlq.STANDARD.TCPXLBIN

LPD Server
(TRANSLATE)

1. jobname.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

None. Printer services cannot be
used.

PORTMAP 1. user_id.STANDARD.TCPXLBIN

2. jobname.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

REXEC user_id.STANDARD.TCPXLBIN hlq.STANDARD.TCPXLBIN

SMTP 1. jobname.SMTP.TCPXLBIN

2. hlq.SMTP.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

Telnet Client 1. user_id.TELNET.TCPXLBIN

2. hlq.TELNET.TCPXLBIN

3. user_id.STANDARD.TCPXLBIN

hlq.TELNET.TCPXLBIN

Telnet Client
(TRANSLATE)

1. user_id.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

None. Program Halts.

Notes:

1. jobname is the name specified either on the PROC or JOB statement.

2. user_id is the ID of the user who issued the command.

3. data_set is the name entered on the TRANSLATE parameter for the program. See z/OS Communications Server:
IP User’s Guide and Commands for information on specifying the TRANSLATE parameter for the required
program.

The Telnet client requires translation tables that are different from the default table
hlq.STANDARD.TCPXLBIN. Customized translation tables for Telnet clients are
provided in the install libraries as hlq.TELNET.TCPXLBIN and
hlq.TELNETSE.TCPXLBIN. If these data sets are not found, however, the Telnet
client will use the default table.

The Telnet server (for Linemode) uses iconv services with the CODEPAGE
statement in the TELNETPARMS block to specify country/region translation tables.
TCPXLBIN translation tables are not used. If CODEPAGE is in error or not
specified, refer to the CODEPAGE statement for default values used. If custom

2. Do not use the TRANSLATE option for the FTP client if the SBCS table you need for data transfer does not support standard
encodings for the portable character set. Such a translation table can adversely affect the EBCDIC to ASCII conversion of
commands sent over the control connection.

908 z/OS V1R4.0 CS: IP Configuration Reference

|||

|
|
|

|

|
|

code pages are required, refer to the information about internationalization in the
z/OS C/C++ Programming Guide for details about how to create your own
conversions.

Customizing SBCS translation tables
All SBCS translation table members contain two tables. The first table is used to
translate from ASCII to EBCDIC. The second table is used to translate from
EBCDIC to ASCII.

To read the translation tables, find the row for the first hex digit (�1�) and the
column for the second hex digit (�2�). The point where the row and column
intersect is the translation value.

For example, to find the EBCDIC translation for the ASCII character A7, find row A0
(�3�) and column 07 (�4�) in “ASCII-to-EBCDIC table”. The point where row A0 and
column 07 intersect shows a value of X'7D', so the ASCII character X'A7' will be
translated to X'7D' in EBCDIC.

To customize the translation table, alter the translate value where the row and
column intersect to the new value.

You can edit and modify translation table members in the hlq.SEZATCPX data set.

ASCII-to-EBCDIC table
;
; ASCII-to-EBCDIC table
; �4� �2�
; 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
; �1�

00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F ; 10 ;
40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 ; 20 ;
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F ; 30 ;
7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 ; 40 ;
D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D ; 50 ;
79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 ; 60 ;
97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07 ; 70 ;
00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F ; 80 ;
10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F ; 90 ;
40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 ; A0 ; ←�3�
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F ; B0 ;
7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 ; C0 ;
D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D ; D0 ;
79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 ; E0 ;
97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07 ; F0 ;

EBCDIC-to-ASCII table
;
; EBCDIC-to-ASCII table
; 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
;

00 01 02 03 1A 09 1A 7F 1A 1A 1A 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 1A 0A 08 1A 18 19 1A 1A 1C 1D 1E 1F ; 10 ;
1A 1A 1C 1A 1A 0A 17 1B 1A 1A 1A 1A 1A 05 06 07 ; 20 ;
1A 1A 16 1A 1A 1E 1A 04 1A 1A 1A 1A 14 15 1A 1A ; 30 ;
20 A6 E1 80 EB 90 9F E2 AB 8B 9B 2E 3C 28 2B 7C ; 40 ;
26 A9 AA 9C DB A5 99 E3 A8 9E 21 24 2A 29 3B 5E ; 50 ;
2D 2F DF DC 9A DD DE 98 9D AC BA 2C 25 5F 3E 3F ; 60 ;
D7 88 94 B0 B1 B2 FC D6 FB 60 3A 23 40 27 3D 22 ; 70 ;
F8 61 62 63 64 65 66 67 68 69 96 A4 F3 AF AE C5 ; 80 ;
8C 6A 6B 6C 6D 6E 6F 70 71 72 97 87 CE 93 F1 FE ; 90 ;

Appendix B. Using translation tables 909

C8 7E 73 74 75 76 77 78 79 7A EF C0 DA 5B F2 F9 ; A0 ;
B5 B6 FD B7 B8 B9 E6 BB BC BD 8D D9 BF 5D D8 C4 ; B0 ;
7B 41 42 43 44 45 46 47 48 49 CB CA BE E8 EC ED ; C0 ;
7D 4A 4B 4C 4D 4E 4F 50 51 52 A1 AD F5 F4 A3 8F ; D0 ;
5C E7 53 54 55 56 57 58 59 5A A0 85 8E E9 E4 D1 ; E0 ;
30 31 32 33 34 35 36 37 38 39 B3 F7 F0 FA A7 FF ; F0 ;

Syntax rules for SBCS translation tables
The following syntax rules apply to SBCS translation tables:

v Blanks are used only as delimiters for readability purposes.

v Information to the right of a semicolon (;) is a comment.

SBCS country/region translation tables
Rather than customize the table in hlq.SEZATCPX(STANDARD), you can use the
following translation table members, which are included with the code.

These translation table members are in the same format as that used in
hlq.SEZATCPX(STANDARD). To use these table members, you must convert them
to binary format using CONVXLAT and store the resulting binary tables in an
appropriate data set within the SBCS translation table hierarchy. (See “SBCS
translation table hierarchy” on page 907.) For more information about using the TSO
CONVXLAT command, see “Converting translation tables to binary” on page 917.

The editable translation tables used by the Telnet client application are members of
the hlq.SEZATELX data set and are derived from the identified code pages. The
editable tables used by other applications, such as FTP, are members of the
hlq.SEZATCPX data set.

The following members can be used by both Telnet client and non-Telnet SBCS
applications such as FTP, SMTP, and so on. They will be found in both
hlq.SEZATELX and hlq.SEZATCPX.

Note: Identically named members in the two data sets are not the same.

Table 76. Translation table members for Telnet client and non-Telnet SBCS applications

Member name Description Code page

AUSGER * Austrian-German code page 850<->1141

BELGIAN * Belgian code page 850<->1148

CANADIAN * Canadian code page 850<->1140

CUSTOM * Code page 819<->1047

DANNOR * Danish-Norwegian code page 850<->1142

DUTCH * Dutch code page 850<->1140

EAUSGER Austrian-German 858<->1141

EBELGIAN Belgian 858<->1148

ECANADIA Canadian 858<->1140

EDANNOR Danish-Norwegian 858<->1142

EDUTCH Dutch 858<->1140

EFINSWED Finish-Swedish 858<->1143

EFRENCH French 858<->1147

EITIALIAN Italian 858<->1144

910 z/OS V1R4.0 CS: IP Configuration Reference

|||

|||

|||

|||

|||

|||

|||

|||

Table 76. Translation table members for Telnet client and non-Telnet SBCS
applications (continued)

Member name Description Code page

EPORTUGU Portuguese 858<->1140

ESPANISH Spanish 858<->1145

ESWISFRE Swiss-French 858<->1148

ESWISGER Swiss-German 858<->1148

EUK United Kingdom 858<->1146

EUS United States 858<->1140

FINSWED * Finnish-Swedish code page 850<->1143

FRENCH * French code page 850<->1147

ITALIAN * Italian code page 850<->1144

JAPANESE * Japanese code page 850<->281

JPNALPHA Japanese Code code page 1041<->1027

JPNKANA Japanese Code code page 1041<->0290

KOR0891 Korean Code code page 0891<->0833

KOR1088 Korean Code code page 1088<->0833

PORTUGUE * Portuguese code page 850<->1140

PRC1115 P.R.China code page 1115<->0836

SPANISH * Spanish code page 850<->1145

SWISFREN * Swiss-French code page 850<->1148

SWISGERM * Swiss-German code page 850<->1148

TAI0904 Taiwan code page 0904<->0037

TAI1114 Taiwan code page 1114<->0037

UK * United Kingdom code page 850<->1146

US * United States code page 850<->1140

Note: Refer to “ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points” on
page 912.

The following SBCS translation table members are only used by Telnet 3270 DBCS
Transform support. These will be found only in hlq.SEZATELX.

Table 77. SBCS translation table members for Telnet 3270 DBCS transform support

Member name Description Code page

A8E Japanese 8-bit English 0819<->1027

A8K Japanese 8-bit Katakana 0819<->0290

J8E Japanese JIS 8-bit English Unassigned

J8K Japanese JIS 8-bit Katakana Unassigend

SJDCE Japanese DEC English Unassigned

SJDCK Japanese DEC Katakana Unassigned

SJECE Japanese Extended Unix English JIS X0201<->1027

SJECK Japanese Extended Unix Katakana JIS X0201<->0290

KOR0891 Korean code page 0891<->0833

Appendix B. Using translation tables 911

|||

|||

|||

|||

|||

|||

Table 77. SBCS translation table members for Telnet 3270 DBCS transform
support (continued)

Member name Description Code page

KOR1088 Korean code page 1088<->0833

PRC1115 P.R. China code page 1115<->0836

TAI0904 Taiwan code page 0904<->0037

TAI1114 Taiwan code page 1114<->0037

ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points
The tables in the hlq.SEZATCPX data set use the ISO-8 interpretations for certain
ASCII code points. These code points are mapped to EBCDIC code points, as
shown in the following table.

Table 78. ISO-8 interpretations for certain ASCII and EBCDIC code points

ASCII code point EBCDIC code point ISO-8 interpretation

X'1A' X'3F' SUB (substitution character)

X'1C' X'1C' IFS (interchange file
separator)

X'7F' X'07' DEL (delete character)

If you want to use IBM PC interpretations for these code points, you can modify
your table, as shown:

Table 79. IBM PC interpretations for certain ASCII and EBCDIC code points

ASCII code point EBCDIC code point IBM PC interpretation

X'1A' X'1C' IFS (interchange file
separator)

X'1C' X'07' DEL (delete character)

X'7F' X'3F' SUB (substitution character)

DBCS translation table hierarchy
Table 80 describes the search order used by certain programs when they are
configured to load one or more DBCS translation tables.

If the customized DBCS translation tables are not found, then the default table data
sets provided with the install libraries are used. If the default tables cannot be read,
then error messages are issued, and the required DBCS conversion will be
unavailable for the program.

Table 80. DBCS translation table hierarchy

Program Option Customized translation tables Default translation table

FTP Client Hangeul 1. user_id.FTP.TCPHGBIN

2. hlq.FTP.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

912 z/OS V1R4.0 CS: IP Configuration Reference

Table 80. DBCS translation table hierarchy (continued)

Program Option Customized translation tables Default translation table

FTP Client Kanji 1. user_id.FTP.TCPKJBIN

2. hlq.FTP.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP Client SChinese 1. user_id.FTP.TCPSCBIN

2. hlq.FTP.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP Client TChinese 1. user_id.FTP.TCPCHBIN

2. hlq.FTP.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

FTP Client Hangeul and
TRANSLATE *

1. user_id.data_set.TCPHGBIN

2. hlq.data_set.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

FTP Client Kanji and
TRANSLATE *

1. user_id.data_set.TCPKJBIN

2. hlq.data_set.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP Client SChinese and
TRANSLATE *

1. user_id.data_set.TCPSCBIN

2. hlq.data_set.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP Client TChinese and
TRANSLATE *

1. user_id.data_set.TCPCHBIN

2. hlq.data_set.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

FTP Server Hangeul 1. jobname.SRVRFTP.TCPHGBIN

2. hlq.SRVRFTP.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

FTP Server Kanji 1. jobname.SRVRFTP.TCPKJBIN

2. hlq.SRVRFTP.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP Server SChinese 1. jobname.SRVRFTP.TCPSCBIN

2. hlq.SRVRFTP.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP Server TChinese 1. jobname.SRVRFTP.TCPCHBIN

2. hlq.SRVRFTP.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

LPR Client Hangeul 1. user_id.LPR.TCPHGBIN

2. hlq.LPR.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

LPR Client Kanji 1. user_id.LPR.TCPKJBIN

2. hlq.LPR.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

Appendix B. Using translation tables 913

Table 80. DBCS translation table hierarchy (continued)

Program Option Customized translation tables Default translation table

LPR Client SChinese 1. user_id.LPR.TCPSCBIN

2. hlq.LPR.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

LPR Client TChinese 1. user_id.LPR.TCPCHBIN

2. hlq.LPR.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

LPD Server Hangeul 1. jobname.LPD.TCPHGBIN

2. hlq.LPD.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

LPD Server Kanji 1. jobname.LPD.TCPKJBIN

2. hlq.LPD.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

LPD Server SChinese 1. jobname.LPD.TCPSCBIN

2. hlq.LPD.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

LPD Server TChinese 1. jobname.LPD.TCPCHBIN

2. hlq.LPD.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

SMTP
Server

Hangeul 1. jobname.SMTP.TCPHGBIN

2. hlq.SMTP.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

SMTP
Server

Kanji 1. jobname.SMTP.TCPKJBIN

2. hlq.SMTP.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

SMTP
Server

SChinese 1. jobname.SMTP.TCPSCBIN

2. hlq.SMTP.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

SMTP
Server

TChinese 1. jobname.SMTP.TCPCHBIN

2. hlq.SMTP.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

*: Refer to “Usage notes for the TRANSLATE option for the FTP client”

Notes:

1. jobname is the name specified either on the PROC or JOB statement.

2. user_id is the ID of the user who issued the command.

3. data_set is the name entered on the TRANSLATE parameter for the program. See the z/OS Communications
Server: IP User’s Guide and Commands for information on specifying the TRANSLATE parameter for the required
program.

Usage notes for the TRANSLATE option for the FTP client
Observe the following when using the TRANSLATE option for the FTP client:

914 z/OS V1R4.0 CS: IP Configuration Reference

v To use the TRANSLATE option to load and use a customized DBCS translation
table for the FTP client, an SBCS table data set must also exist for the
data_set_name chosen with the TRANSLATE option.

If the SBCS table data set does not exist, the FTP request will fail even if a valid
DBCS table data set using that name exists.

v ATTENTION: Do not use the TRANSLATE option for the FTP client if the SBCS
table you need for data transfer does not support standard encodings for the
portable character set. Such a translation table can adversely affect the EBCDIC
to ASCII conversion of commands sent over the control connection.

For information about using FTP.DATA to specify different SBCS tables for control
and data connections, refer to z/OS Communications Server: IP User’s Guide
and Commands.

If you require a local DBCS translation table, you must name it in correlation with
the standard client search order. For example, if you had a custom Kanji table
you could name it user_id.FTP.TCPKJBIN.

Telnet 3270 DBCS transform mode codefiles
The binary translation table code files used by Telnet 3270 DBCS transform mode
do not use a search order hierarchy. The codefile members must reside in a data
set pointed to by the TNDBCSXL DD statement in the TCPIPROC cataloged
procedure. If the DD statement is not specified, or the codefiles are not present,
3270 DBCS transform mode will be disabled.

Customizing DBCS translation tables

Steps to customize a DBCS translation table:
Before you begin:

You can find the DBCS translation tables in the installation libraries in both editable
source and binary form. The Kanji, Hanguel, Traditional Chinese and Simplified
Chinese DBCS editable source members reside in the hlq.SEZADBCX data set.
The standard binary members reside in the hlq.STANDARD.TCPKJBIN for Kanji,
the hlq.STANDARD.TCPHGBIN for Hangeul, the hlq.STANDARD.TCPCHBIN for
Traditional Chinese, and the hlq.STANDARD.TCPSCBIN for Simplified Chinese.
These data sets contain binary tables that are used by the FTP server, SMTP
server, FTP client, LPR client, and LPD server programs. The binary codefiles used
by Telnet 3270 DBCS transform mode reside in the hlq.SEZAXLD2 data set. The
binary tables and codefiles may be created from the same editable source, using
the CONVXLAT program.

Perform the following steps to customize a DBCS translation table.

1. Make a copy of the editable source data set.

2. Modify the editable source as required.

3. Run the CONVXLAT program with the modified editable source as input.

4. Install the resulting customized binary table or codefiles in the DBCS translation
table hierarchy for the required program.

The following sections show examples of the standard editable source for the Kanji,
Hangeul, Simplified Chinese, and Traditional Chinese DBCS translation tables.

The editable source data sets contain two column pairs for each code page. The
first column pair specifies double-byte EBCDIC-to-ASCII code point mappings for

Appendix B. Using translation tables 915

|
|
|

the indicated code page. The second column pair specifies double-byte
ASCII-to-EBCDIC code point mappings for the indicated code page.

Existing code-point mappings can be changed by simply overwriting the existing
hexadecimal code. Code points that are not defined in the target code page and are
within the valid range for the code page are mapped to the default substitution
character in the target code page. The default substitution characters are shown as
(sub: xxxx) in the source tables on the following pages.

The editable source format specifies EBCDIC-to-ASCII and ASCII-to-EBCDIC
mappings separately. When adding or changing a code-point mapping, care should
be taken to modify both mappings for the code point. If, for example, a new
mapping is added for EBCDIC-to-ASCII only, the ASCII-to-EBCDIC mapping for that
code-point will be the default substitution character.

DBCS country/region translation tables
The following translation table source members are in the hlq.SEZADBCX data set.
They are used by all applications that support DBCS. If you modify these table
members, you must convert them to binary format using CONVXLAT and store the
modified binary data set in an appropriate data set within the DBCS translation
table hierarchy. See “Converting translation tables to binary” on page 917 for more
information about using the TSO CONVXLAT command.

Table 81. Translation table members for DBCS applications

Member name Description Code page

EZACHLAT (Taiwan DBCS) TChinese Big5 0927<->0835
0947<->0835

EZAHGLAT (Korea DBCS) Hangeul KSC5601 0926<->0834
0951<->0834

EZAKJLAT (Japan DBCS) PC to host code page
SJISKANJI 0941 at 1978

PC<->0300

EZAKJ941 (Japan DBCS) PC to host code page
SJISKANJI at 0941 at 1995
level

PC<->0300

EZASCLAT(P.R.China DBCS) Schinese 1380<->0837

Syntax rules for DBCS translation tables
Rules:

v Comments can be included in the editable data set, either on a separate line or
at the end of a line. Comments must start with a semicolon (;).

v Code-point mappings in the data set are position dependent. The first
non-comment line for the DBCS tables in the data set will be used to establish
the column position of the code point mappings, and must contain a conversion
pair for each code page. Any conversion pairs on following lines must use the
same column positions.

v It is permissible to leave blanks for code-point mappings after the first line in the
DBCS area. For example, if a line contains only one conversion pair, the column
position will be used to determine which code page it refers to.

v The first column of each code page column pair (that is, the code index), must
be in ascending numeric order. Any gaps in the ascending order will be filled with
the default substitution character in the binary table created by CONVXLAT.

916 z/OS V1R4.0 CS: IP Configuration Reference

Converting translation tables to binary
The TSO CONVXLAT command converts a table from editable text to binary.
CONVXLAT can be used to convert both SBCS and DBCS table source data sets.

The syntax of the CONVXLAT command is:

�� CONVXLAT input_data_set output_data_set (
CODEFILE

KANJI
HANGEUL
SCHINESE
TCHINESE

CODEFILE(member)

�

The parameters of the CONVXLAT command are:

input_data_set
Specifies the source data set name to be converted. The data set name
must be enclosed in quotation marks if fully qualified; otherwise the TSO
user ID is appended as a prefix.

output_data_set
Specifies the destination data set name created by the conversion. The
data set name must be enclosed in quotation marks if fully qualified;
otherwise the TSO user ID is appended as a prefix.

If CODEFILE is also specified, then output_data_set must specify a
previously allocated partitioned data set. Multiple codefile members will be
placed in the partitioned data set. The data set should be allocated using
the following parameters:
Organization: PO
Record format: VB
Record length: 5124
Block size: 8800
1st extent blocks: 156
Secondary blocks: 10

KANJI Specifies that the tables being converted are the Japanese DBCS
translation tables.

HANGEUL
Specifies that the tables being converted are the Korean Standard DBCS
translation tables.

SCHINESE
Specifies that the table being converted is the Simplified Chinese DBCS
translation table.

TCHINESE
Specifies that the table being converted is the Traditional Chinese DBCS
translation table.

CODEFILE
Specifies that the selected table is converted to multiple codefiles for use in
Telnet 3270 DBCS transform mode. The selected table must be DBCS
translation table.

CODEFILE(member)
Specifies that the selected SBCS table is converted to two codefiles:

Appendix B. Using translation tables 917

ASCII_To_EBCDIC and EBCDIC_To_ASCII. The member names in the
output PDS are memberATE and memberETA. The possible member
names are:

J8E JIS 8 Bit English

J8K JIS 8 Bit Katakana

A8E 8 Bit English

A8K 8 Bit Katakana

SJDCE
DEC English SBCS

SJDCK
DEC Katakana SBCS

SJECE
Japanese EUC English SBCS

SJECK
Japanese EUC Katakana SBCS

SKSH Korean KSC 5601 SBCS

SHAN Hangeul SBCS

STCH Traditional Chinese SBCS

SBG5 Big-5 SBCS

SSCH Simplified Chinese SBCS

If no optional parameters are specified, then the input data set is assumed to
contain an SBCS translation table.

CONVXLAT examples

Running CONVXLAT in BATCH: The following is an example of running
CONVXLAT in batch:

SBCS binary table: The following example shows the creation of an SBCS binary
table from user-provided editable text.

French Telnet client SBCS: The following example shows the creation of a
French Telnet Client SBCS binary table for user ID user30 from the product
provided editable text.

//S00100 EXEC PGM=CONVXLAT,
// PARM=’’’TCPIP.V3R1.SEZATCPX(STANDARD)’’ STANDARD.TCPXLBIN’
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY,BLKSIZE=80

convxlat sbcs.source standard.tcpxlbin
READY

convxlat ’tcpip.v3r2.sezatelx(french)’ ’user30.telnet.tcpxlbin’
READY

918 z/OS V1R4.0 CS: IP Configuration Reference

Korean KSC5601 SBCS and DBCS: The following example shows the creation of
a Korean KSC5601 SBCS and DBCS binary table from the product-provided
editable text. These tables can be used by FTP, LPR, LPD and SMTP.

Big-5 and traditional Chinese: The following example shows the creation of
Big-5 and Traditional Chinese SBCS and DBCS codefiles for use by the Telnet
3270 DBCS Transform facility.

Japanese SBCS (CP 1041) and DBCS: The following example shows the
creation of a Japanese SBCS (CP 1041) and DBCS binary table from the product
provided editable text. These tables can be used by FTP, LPR, LPD and SMTP.

Japanese SBCS and DBCS codefiles: The following example shows the creation
of Japanese SBCS and DBCS codefiles for use by the Telnet 3270 DBCS
Transform facility.

convxlat ’tcpip.v3r2.sezatcpx(kor1088)’ ’tcpip.v3r2.standard.tcpxlbin’
READY
convxlat ’tcpip.v3r2.sezadbcx(ezahglat)’ ’tcpip.v3r2.standard.tcphgbin’
(hangeul
READY

convxlat ’tcpip.v3r2.sezatelx(TAI1114)’ ’tcpip.v3r2.sezaxld2’ (codefile(sbg5)
READY
convxlat ’tcpip.v3r2.sezatelx(TAI0904)’ ’tcpip.v3r2.sezaxld2’ (codefile(stch)
READY
convxlat ’tcpip.v3r2.sezadbcx(ezachlat)’ ’tcpip.v3r2.sezaxld2’ (tchinese
codefile
EZA0652I Current code set is "TCHETA"
EZA0652I Current code set is "TCHATE"
EZA0652I Current code set is "BG5ETA"
EZA0652I Current code set is "BG5ATE"
READY

convxlat ’tcpip.v3r2.sezatcpx(JPNKANA)’ ’tcpip.v3r2.standard.tcpxlbin’
READY
convxlat ’tcpip.v3r2.sezadbcx(ezakjlat)’ ’tcpip.v3r2.standard.tcpkjbin’
(kanji
READY

Appendix B. Using translation tables 919

convxlat ’tcpip.v3r2.sezatelx(J8E)’ ’tcpip.v3r2.sezaxld2’ (codefile(j8e)
READY
convxlat ’tcpip.v3r2.sezatelx(J8K)’ ’tcpip.v3r2.sezaxld2’ (codefile(j8k)
READY
convxlat ’tcpip.v3r2.sezatelx(A8E)’ ’tcpip.v3r2.sezaxld2’ (codefile(a8e)
READY
convxlat ’tcpip.v3r2.sezatelx(A8K)’ ’tcpip.v3r2.sezaxld2’ (codefile(a8k)
READY
convxlat ’tcpip.v3r2.sezatelx(SJECE)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjece)
READY
convxlat ’tcpip.v3r2.sezatelx(SJECK)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjeck)
READY
convxlat ’tcpip.v3r2.sezatelx(SJDCE)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjdce)
READY
convxlat ’tcpip.v3r2.sezatelx(SJDCK)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjdck)
READY
convxlat ’tcpip.v3r2.sezadbcx(ezakjlat)’ ’tcpip.v3r2.sezaxld2’ (kanji
codefile
EZA0652I Current code set is "JIS78ETA"
EZA0652I Current code set is "JIS78ATE"
EZA0652I Current code set is "JIS83ETA"
EZA0652I Current code set is "JIS83ATE"
EZA0652I Current code set is "JEUCETA"
EZA0652I Current code set is "JEUCATE"
EZA0652I Current code set is "JDECETA"
EZA0652I Current code set is "JDECATE"
READY

920 z/OS V1R4.0 CS: IP Configuration Reference

Appendix C. SMF type 118 records

Note: See Appendix D, “SMF type 119 records” on page 931 for a description of
the preferred SMF Type 119 records.

This appendix describes the Type 118 SMF records for the Telnet and FTP servers,
API calls, FTP and Telnet client calls, and syslogd. The EZASMF76 macro can be
used to map the TCP/IP SMF records. EZASMF76 produces assembler level
DSECTs for the Telnet (Server and Client), FTP (Server and Client), and API SMF
records.

To create the Telnet SMF Record layout, code the following in an assembler
program:
EZASMF76 TELNET=YES

To create the FTP SMF Record layout, code:
EZASMF76 FTP=YES

To create the API SMF Record layout, code:
EZASMF76 API=YES

Standard subtype record numbers
TCP/IP logging of SMF records can be activated through the use of the
SMFCONFIG and SMFPARMS statements in the TCP/IP profile. The TCP/IP SMF
records written using record type 118 (x’76’) and their standard subtypes are
described in this section.

Note: If you use the SMFPARMS statement, you can specify that records be
written with nonstandard subtype records. However, it is recommended that
you use the standard subtype records shown in Table 82.

Table 82. Standard subtype record numbers

Record number Description

1 TCP API initialization

2 TCP API termination

3 FTP client

4 TN3270 client

5 TCP/IP statistics

6-19 Reserved

20 TN3270 server initialization

21 TN3270 server termination

22-69 Reserved

70 FTP server append subcommand

71 FTP server delete subcommand

72 FTP server logon failures

73 FTP server rename

74 FTP server retrieve

75 FTP server store

© Copyright IBM Corp. 2000, 2002 921

|
|
|
|

|
|
|

Table 82. Standard subtype record numbers (continued)

Record number Description

76–255 Reserved

Telnet server SMF record layout
The SMF record written by the Telnet server has the following format:

Table 83. Telnet server SMF record format

Byte Subfield (offset) Description

0–23 Standard SMF header

SMFxFLG (4) A system indicator that is set to 66 (X'42')

SMFxRTY (5) A record type that is set to 118 (X'76') for all TCP/IP records

SMFxSTY (22) The record subtype obtained from the SMF keywords on the TCP/IP
TELNETPARMS parameter. The subtype value is in the range X'0' –X'FF'.

24–27 LOGN or LOGF for session initiation/termination

28–35 8-character LU name

36–43 8-character application name

44–47 Internal logical device address (same for logon or logoff records)

48–51 Fullword remote IP address

52–55 Fullword local IP address

56–63 Started task qualifier name, for example, TCPIP

64–71 TCP/IP host name

72–73 Reserved

74–77 IN byte count

78–81 OUT byte count

82–85 Time specified in hundredths of a second on LOGF record

86–89 Julian date specified in packed decimal format on LOGF record. The date is
in the form of 0CYYDDDF, where C is 0 for 19yy and 1 for 20yy, DDD is the
day of the year (1–365), and F is the sign.

90–91 Remote port number

92–93 Local port number

FTP server type 118 SMF record layout
The type 118 SMF record written by the FTP server has the following format:

Table 84. FTP server type 118 SMF record format

Byte Subfield (offset) Description

0–23 Standard SMF header

SMFxFLG (4) A system indicator. If the first bit is ON, record subtypes are valid.

SMFxRTY (5) A record type that is set to 118 (X'76') for all TCP/IP records of this format

SMFxSTY (22) The record subtype obtained from the SMF statements in the FTP.DATA
data set. The subtype value is in the range X'0' – X'FF'.

24–27 4-byte FTP subcommand (for example, STOR, REN, DELE)

922 z/OS V1R4.0 CS: IP Configuration Reference

Table 84. FTP server type 118 SMF record format (continued)

Byte Subfield (offset) Description

28–31 4-byte FTP file type (SEQ, JES, SQL)

32–35 Client IP address (IPv4) or -1

36–39 Client IP address (IPv4) or -1

40–47 Reserved

48–55 Local user ID

56 Data format [A—ASCII, E—EBCDIC, I—Image (binary), B—Double-byte,
and U—UCS-2)]

57 Mode (S—stream , B—block, C—compressed)

58 Structure (F-file, R-record)

59 Data set type (P—partitioned, S—sequential, H—HFS)

60–63 Start time of transmission (1)

64–67 End time of transmission

68–71 Byte count of transmission

72 FTP ID (S—server)

73–75 Last reply sent to this client (FTP server)

76–119 For LOGIN records, this is the user ID of the failed login attempt. Otherwise,
this is the data set name or up to the first 44 bytes of the HFS file name.

120–127 Member name for PDS

128–135 Reserved for abnormal end information

136–179 Second data set name, if needed (for example, Rename). For HFS, up to
the first 44 bytes of the HFS file name.

180–187 Second member name, if needed (for example, Rename)

188–195 Started task qualifier

196–203 TCP/IP host name

204–205 Remote port number

206–207 Local port number

208–209 Offset to the first HFS file name field

210–211 Offset to the second HFS file name field

212–219 Bytes transferred from counter in double, The leftmost byte is an exponent,
and the 7 bytes after are significant bytes.

220–223 4-gigabyte counter. Increments with every 4-gigabytes of data transfer,
starting from 0.

Notes:

1. The start time of the transmission might be greater than the end time when the transmission began on the
previous day.

Two variable-length fields at the end of the record contain HFS file names. The
variable-length HFS name fields have the following format:

Byte Description

0–1 Length of the HFS file name

3–x HFS file name

Appendix C. SMF type 118 records 923

|

|

|||

|||

The value in the length field is the length of the HFS file name only; it does not
include the two bytes for the length field itself. The maximum size of this variable
field is 1025 bytes; the maximum value in the length subfield is 1023.

Note: The start time of the transmission might be greater than the end time when
the transmission began on the previous day.

SMF record layout for API calls
The SMF record written by API calls for sockets has the following format:

Table 85. API call SMF record format

Byte Description

0–23 Standard SMF header with subtypes

24–27 Status of the connection, INIT, or TERM

28–31 Local IP address

32–35 Foreign IP address

36–37 Local port number

38–39 Foreign port number

40–43 Bytes in. This is valid only for termination.

44–47 Bytes out. This is valid only for termination.

48–49 User area offset. Start of an area available for user exit storage.

50–51 User area length. Maximum length of user data, which is 52 bytes, for TCP/IP V3R2 for MVS. This
size might increase between TCP/IP releases.

52–59 Job name:

v For interactive TSO API usage: the user’s TSO user ID

v For batch-submitted jobs: the name of the JOB card

v For started procedures: the name of the procedure.

60–67 Job identification.

The JES job identifier.

68–71 Job start time.

Time in hundredths of seconds that the job was started by JES.

72–75 Job date.

Date job was started by JES. The date is in the form of 0CYYDDDF where C is 0 for 19yy and 1
for 20yy, DDD is the day of the year (1-365), and F is the sign.

For TSO/E, it is the logon enqueue date.

76–127 User area. Available for user exit usage.
Note: The actual displacement of this area might change between TCP/IP releases. Use the
values of the user area offset and the user area length fields to access this area.

SMF record layout for FTP client calls
The SMF record written by FTP client calls has the following format:

Table 86. FTP client SMF record format

Byte Description

0–23 Standard SMF header with subtypes

924 z/OS V1R4.0 CS: IP Configuration Reference

Table 86. FTP client SMF record format (continued)

Byte Description

24–27 FTP subcommand (RETR, STOR, or APPE)

28–31 Value of the reply to the FTP command

32–35 Client IP address (IPv4) or -1

36–39 Client IP address (IPv4) or -1

40–41 Local port

42–43 Foreign port

44–47 Reserved

48–55 Remote user ID

56 Data format (A—ASCII, E—EBCDIC, I—Image (binary), B—Double-byte, and U—UCS-2))

57 Transfer, S indicates stream data, and B indicates block data.

58 Structure (F-file, R-record)

59 Data set type (P—partitioned, S—sequential, H—HFS)

60–63 Start time of transmission, if applicable, in hundredths of seconds

64–67 End time of transmission

68–71 Byte count if applicable

72 FTP ID (C-client)

73–75 Reserved

76–119 Local data set name or PDS name. HFS data set names longer than 44 characters are truncated.

120–127 Member name for PDS

128–187 Reserved

188–195 User ID of the user of FTP

196–203 Host ID

204–205 Offset to the first HFS file name field

206–207 Offset to the second HFS file name field

208–215 Bytes transferred from counter in double. The leftmost byte is an exponent and the 7 bytes after
are significant bytes.

216–219 Four-gigabyte counter. Increments with every 4-gigabytes of data transfer, starting from 0.

Two variable-length fields at the end of the record contain HFS file names. The
variable-length HFS name fields have the following format:

Byte Description

0–1 Length of the HFS file name

3–x HFS file name

The value in the length field is the length of the HFS file name only; it does not
include the 2 bytes for the length field itself. The maximum size of this variable field
is 1025 bytes; the maximum value in the length subfield is 1023.

SMF record layout for Telnet client calls
The SMF record written by Telnet client calls has the following format:

Appendix C. SMF type 118 records 925

|

|

||

||

||

||

||

||

Table 87. Telnet client SMF record format

Byte Description

0–23 Standard SMF header with subtypes

24–27 LGON or LGOF

28–47 Reserved

48–51 Remote IP address

52–55 Local IP address

56–63 Started task qualifier name

64–71 8-character NJE node name

72–89 Reserved

90–91 Remote port address

92–93 Local port address

SMF record layout for TCPIPSTATISTICS
Table 88. SMF record layout for TCPIPSTATISTICS

Off Len Name Description

Standard SMF Header

00 1 SMFHDLEN Record Length

02 2 SMFHDSEG Segment descriptor

04 1 SMFHDFLG Header flag byte

05 1 SMFHDTYP Record type 118 (0x76)

06 4 SMFHDTME Time when record was written

10 4 SMFHDDTE Date when record was written

14 4 SMFHDSID System identification

18 4 SMFHDSSI Subsystem identification

20 2 SMFHDSUB Record subtype (0x05)

22 2 Reserved

24 2 SMFHDSDL Length of self-defining section

Self-defining section

26 4 Offset of subsystem section

30 2 Length of subsystem section

32 2 Number of subsystem sections (01)

34 4 Offset of IP section

38 2 Length of IP section

40 2 Number of IP sections (01)

42 4 Offset of TCP section

46 2 Length of TCP section

926 z/OS V1R4.0 CS: IP Configuration Reference

Table 88. SMF record layout for TCPIPSTATISTICS (continued)

Off Len Name Description

48 2 Number of TCP sections (01)

50 4 Offset of UDP section

54 2 Length of UDP section

56 2 Number of UDP sections (01)

Subsystem Identification section

0 8 TCP/IP Procname

08 4 TCP/IP Asid

0C 8 TCP/IP Startup TOD

14 4 TCP/IP SMF Reason

14 1 v x10 Last SMF record/Shutdown

v x20 Last SMF record/End stats

v x40 SMF Interval record

v x80 First SMF record

IP Section

00 4 imirecv Total Received Datagrams

04 4 imihdrer Total Discarded Datagrams

08 4 imiadrer Total Discarded: Addr Errs

12 4 imifwddg Total Attempt to Fwd Datagrams

16 4 imiunprt Total Discarded: Unknown Prot

20 4 imidisc Total Discarded: Other

24 4 imidelvr Total Delivered Datagrams

28 4 imoreqst Total Sent Datagrams

32 4 imodisc Total Sent Discarded: Other

36 4 imonorte Total Send Discarded: No Route

40 4 imrsmtos Total Reassembly Timeouts

44 4 imrsmreq Total Received: Reassem.Required

48 4 imrsmok Total Datagrams Reassembled

52 4 imrsmfld Total Reassembly Failed

56 4 imfragok Total Datagrams Fragmented

60 4 imfrgfld Total Discarded: Frag. Failed

64 4 imfrgcre Total Fragments Generated

68 4 imrtdisc Total Routing Discards

72 4 imrsmmax Max active Reassemblies

76 4 imrsmact Num active Reassemblies

80 4 imrsmful Discarding Reass fragments

Appendix C. SMF type 118 records 927

Table 88. SMF record layout for TCPIPSTATISTICS (continued)

Off Len Name Description

TCP Section

0 4 RtoAlgorithm Retransmit Algorithm

4 4 RtoMin Min Retransmit Time (ms)

8 4 RtoMax Max Retransmit Time (ms)

12 4 MaxConn Max connections

16 4 ActiveOpens Active Opens

20 4 PassiveOpens Passive Opens

24 4 AttemptFails Open failures

28 4 EstabResets Number of resets

32 4 CurrEstab Num currently estabs

36 4 InSegs Input Segments

40 4 OutSegs Output Segments

44 4 RetransSegs Retransmitted Segments

48 4 InErrs Input Errors

52 4 OutRsts Number of resets

UDP Section

0 4 usindgrm Received UDP datagrams

4 4 usnoprts UDP datagrams with no ports

8 4 usinerrs Other UDP datagrams not received

12 4 usotdgrm UDP datagrams sent

SMF record 109 layout
The following table shows the format of syslogd messages as written to SMF.

Table 89. SMF record 109 layout

Offsets Name Length Format Description

0(x’0’) SMF109LEN 2 Binary Record length (maximum size 32 756). This
field and the next field (total of 4 bytes) form
the record descriptor word (RDW). The first 2
bytes (this field) must contain the logical
record length including the RDW. The second
2 bytes (the following filed) are used for
variable block spanned records. If the record
is spanned, set these 2 bytes to hexadecimal
zeros. These fields must be filled in before
writing the record to the SMF data set.

0(x’2’) SMF109SEG 2 Binary Segment descriptor (see Record Length field
above).

928 z/OS V1R4.0 CS: IP Configuration Reference

Table 89. SMF record 109 layout (continued)

Offsets Name Length Format Description

0(x’4’) SMF109FLG 1 Binary System indicators (bits and meaning when
set):

0-2 Reserved

3 MVS/SP™ Version 4 and above. Bits
3, 4, 5, and 6 are on (*).

4 MVS/SP Version 3 and above. Bits
4,5, and 6 are on.

5 MVS/SP Version 2 and above. Bits 5
and 6 are on.

6 VS2. Bit 6 is on.

7 Reserved.
*IBM recommends that you use information
located elsewhere in this record to determine
the MVS product level.

5(X’5’) SMF109RTY 1 Binary Record type: 109 (X’6D’)

6(X’6’) SMF109TME 4 Binary Time since midnight, in hundredths of a
second, record was moved into the SMF
buffer. In record types 2 and 3, this field
indicates the time that the record was moved
to the dump data set.

10(X’A’) SMF109DTE 4 Packed Date when the record was moved into the
SMF buffer. In the form of 00yyddF or
0cyydddF [where c is 0 for 19xx and 1 for
20xx, yy is the current year (0-99), dd is the
current day (1-366), and F is the sign]. In
record types 2 and 3, this field indicates the
date that the record was moved into the dump
data.

14(X’E’) SMF109SID 4 EBCDIC System identification (from the SID
parameter).

18(X’12’) SMF109LOG 4096 EBCDIC System logging daemon (syslogd) messages.

Appendix C. SMF type 118 records 929

930 z/OS V1R4.0 CS: IP Configuration Reference

Appendix D. SMF type 119 records

This appendix describes the format 119 SMF records collected for Telnet servers
and clients, FTP servers and clients, and API activity and stack usage information.

EZASMF77 (physically present in SYS1.MACLIB) produces assembler level
DSECTs that can be used to map the various record formats described in this
appendix. When invoking EZASMF77, the default value creates all the record
mappings.

To create the mapping of the format 119 Telnet (server or client) SMF records,
code:
EZASMF77 TELNET=YES

To create the mapping of the format 119 FTP (server or client) SMF records, code:
EZASMF77 FTP=YES

To create the mapping of the API (TCP Connection, UDP Socket, and TCP Stack)
SMF records, code:
EZASMF77 API=YES

To create the mapping for the interval records, code:
EZASMF77 STAT=YES

To create the mapping for the SMF header, self defining section, and TCP/IP Stack
Identification section, code:
EZASMF77 HEADER=YES

Because YES is the default for all of these examples, the following code is
equivalent:
EZASMF77

to
EZASMF77 FTP=YES API=YES TELNET=YES HEADER=YES STAT=YES

Note: Code NO for any of the operands to exclude those mappings from the
assembler output.

Common SMF type 119 record format
All SMF Type 119 records are in the format shown in Table 90. For related
subtypes, see “SMF 119 record subtypes” on page 932.

Table 90. Records types and subtype information

Offset Name Length Format Description

0(x’0’) Standard header 24 Binary SMF system header

0(x’0’) 2 Binary SMF record length

2(x’2’) 2 Binary Segment descriptor

4(x’4’) 1 Binary Record flag

5(x’5’) 1 Binary Record type; will be set to 119(x’77’).

© Copyright IBM Corp. 2000, 2002 931

||

|||||

|||||

|||||

|||||

|||||

|||||

Table 90. Records types and subtype information (continued)

Offset Name Length Format Description

6(x’6’) 4 Binary SMF System timestamp (will be local
time)

10(x’A’) 4 Packed SMF System date (will be local time)

14(x’D’) 4 EBCDIC SMF System ID

18(x’12’) 4 EBCDIC SMF Subsystem ID

22(x’16’) 2 Binary Record subtype

24(x’18’) Self-defining section Binary This section indicates how many sections
follow, and their location in the record.

... TCP/IP identification
section

64 Binary This section is present in every record; it
describes the TCP/IP stack which issued
the record. Its location and size are
indicated by the self-defining section.

... Record-specific data
section 1

... Binary First record-specific data section. Its
location and size are indicated by the
self-defining section.

... Record-specific data
section 1, second entry

... Binary The self-defining section indicates how
many occurrences of each record-specific
data section are present in the record.

... Record-specific data
section 2 (optional)

... Binary Second record-specific data section.

... Binary ...

... Record-specific data
section n, first entry
(optional)

... Binary Last record-specific data section. The
self-defining section indicates how many
types of data sections there are.

... Binary ...

SMF 119 record subtypes
TCP/IP collects SMF information regarding certain Telnet, FTP, or stack activity. The
user can control the collection of these records through the use of the SMFCONFIG
and TELNETPARMS statements in TCPIP.PROFILE, or through various statements
in the FTP.DATA file. For more infomation about those statements, see Chapter 2,
“TCP/IP profile (PROFILE.TCPIP) and configuration statements” on page 9 and
“FTP configuration statements in FTP.DATA” on page 442.

All the records described in this appendix are written using record type x’77’ (format
119), and standard subtype values, at offset 22(x’16’) in SMF record header, are
used to uniquely identify the type of record being collected. Table 91 correlates the
subtype information to the type of record being produced.

Table 91. SMF 119 record subtype information and record type

Record subtype Description TCP/IP component event Reason

1(x’1’) TCP Connection Initiation TCP Event

2(x’2’) TCP Connection Termination TCP Event

3(x’3’) FTP Client Transfer Completion FTPC Event

4 Reserved

5(x’5’) TCP/IP Statistics STACK Interval

932 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|||||

|||||

|||||

|||||

|||||
|

||
|
|||
|
|
|

||
|
|||
|
|

||
|
|||
|
|

||
|
|||

|||||

||
|
|

|||
|
|

|||||
|

Table 91. SMF 119 record subtype information and record type (continued)

Record subtype Description TCP/IP component event Reason

6(x’6’) Interface Statistics IP Interval

7(x’7’) Server Port Statistics STACK Interval

8(x’8’) TCP/IP Stack Start/Stop TCP Event

9 Reserved

10(x’A’) UDP Socket Close UDP Event

11–19 Reserved

20(x’14’) TN3270 Server SNA Session
Initiation

TN3270S Event

21(x’15’) TN3270 Server SNA Session
Termination

TN3270S Event

22(x’16’) TSO Telnet Client Connection
Initiation

TN3270C Event

23(x’17’) TSO Telnet Client Connection
Termination

TN3270C Event

24–69 Reserved

70(x’46’) FTP Server Transfer Completion FTPS Event

71 Reserved

72(x’48’) FTP Server Login Failure FTPS Event

73–255 Reserved

Notes:

1. The TCP/IP Component indicated is the one reported in the TCP/IP
identification section for each record (see following sections).

2. The Reason indicated determines whether each record is an event record (it will
be flagged with a reason code of x’08’; in the TCP/IP identification section) or
an interval record (it will be flagged with one of the six interval reason codes in
the TCP/IP identification section).

Standard data format concepts
The following concepts apply to standard data formats:

v All times are indicated in units of 1/100 seconds since midnight UTC/GMT
(Universal Time, Coordinated/Greenwich Mean Time).

v All dates are indicated in packed decimal (BCD) form, with digits x’01yydddF’.

Note: If no data is available, a date of x’0000000F’ is written.

v Interval durations are specified in one of two formats, indicated within the record
itself. It can either be in units of 1/100 seconds or a 64-bit integer with bit 51
marking the microsecond.

v All interval-type statistics records (such as TCP/IP statistics) report interval data,
rather than total data.

Note: This behavior for type 119 records is a change in semantics from type 118
records, which record summary data. For example, while a type 118
record would report ″bytes sent to date″, a type 119 record would report
″bytes sent since the last recording interval.″

Appendix D. SMF type 119 records 933

v All IP addresses are in 128-bit IPv6 format. IPv4 addresses will be reported in
IPv4-mapped form, namely, with the 4-byte IPv4 address preceded by 12 bytes,
the first 10 of which are 0, and the last 2 of which are ’FF’x. The following
records will support IPv6 addresses:

– TCP Connection Initiation

– TCP Connection Termination

– UDP Socket Close

– FTP Client Transfer Completion

– FTP Server Transfer Completion

– FTP Server Logon Failure

– Server Port Statistics

The remaining type 119 SMF records will not, in V1R4, report information on IPv6
connections or IPv6 statistics.

Common TCP/IP identification section
Table 92 shows a section that is present in every SMF type 119 record produced by
the TCP/IP stack. Its purpose is to identify the system and stack responsible for
producing the record.

Table 92. Common TCP/IP identification section

Offset Name Length Format Description

0(x’0’) SMF119TI_SYSName 8 EBCDIC System name from SYSNAME in
IEASYSxx

8(x’8’) SMF119TI_SysplexName 8 EBCDIC Sysplex name from SYSPLEX in
COUPLExx

16(x’10’) SMF119TI_Stack 8 EBCDIC TCP/IP stack name

24(x’18’) SMF119TI_ReleaseID 8 EBCDIC z/OS CS TCP/IP Release Identifier

32(x’20’) SMF119TI_Comp 8 EBCDIC TCP/IP subcomponent (right padded
with blanks):

FTPC FTP Client

FTPS FTP Server

IP IP layer

STACK Entire TCP/IP stack

TCP TCP layer

TN3270C
TN3270 Client

TN3270S
TN3270 Server

UDP UDP layer

40(x’28’) SMF119TI_ASName 8 EBCDIC Started task qualifier or address
space name of address space that
writes this SMF record

48(x’30’) SMF119TI_UserID 8 EBCDIC User ID of security context under
which this SMF record is written

56(x’38’) 2 EBCDIC Reserved

58(x’3A’) SMF119TI_ASID 2 Binary ASID of address space that writes
this SMF record

934 z/OS V1R4.0 CS: IP Configuration Reference

|
|
|
|

|

|

|

|

|

|

|

||

|||||

|||||
|

|||||
|

|||||

|||||

|||||
|

||

||

||

||

||

|
|

|
|

||

|||||
|
|

|||||
|

|||||

|||||
|

Table 92. Common TCP/IP identification section (continued)

Offset Name Length Format Description

60(x’3C’) SMF119TI_Reason 1 Binary Reason for writing this SMF record:

X’08’ Event record

X’C0’ Interval statistics record,
more records follow

X’80’ Interval statistics record, last
record in set

X’60’ End-of-statistics record,
more records follow

X’20’ End-of-statistics record, last
record in set

X’50’ Shutdown starts record,
more records follow

X’10’ Shutdown starts record, last
record in set

61(x’3D’) 3 EBCDIC Reserved

TCP connection initiation record
The TCP Connection Initiation record is collected whenever a TCP connection is
opened. This record contains pertinent information about the connection available at
the time of its opening.

Notes:

1. Because all of this information is duplicated in the TCP Connection Termination
record, which contains additional information, it is recommended that users only
collect the TCP Connection Termination record.

2. Because this record is generated for every single TCP connection, this can
generate significant load on a server and rapidly fill the SMF data sets. Care
should be exercised in its use. The TCP Connection Termination record is
collected whenever a TCP connection is closed or aborted. This record contains
all pertinent information about the connection, such as elapsed time, bytes
transferred, and so on.

Table 93 shows the TCP connection initiation record self-defining section:

Table 93. TCP connection initiation record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2).

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

Appendix D. SMF type 119 records 935

|

|||||

|||||

||

||
|

||
|

||
|

||
|

||
|

||
|

|||||
|

||

|||||

|||||

|

|||||

|||||

|||||

|||||
|

|||||
|

Table 93. TCP connection initiation record self-defining section (continued)

Offset Name Length Format Description

36(x’24’) SMF119S1Off 4 Binary Offset to TCP Connection initiation
section

40(x’28’) SMF119S1Len 2 Binary Length of TCP Connection initiation
section

42(x’2A’) SMF119S1Num 2 Binary Number of TCP Connection initiation
sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TCP/IP Connection Initiation record, the TCP/IP Stack Identification
Section indicates TCP as the subcomponent and X’08’ (event record) as the record
reason.

Table 94 shows the TCP Connection Initiation specific section of this SMF record.

Table 94. TCP connection initiation specific section

Offset Name Length Format Description

0(x’0’) SMF119AP_TIRName 8 EBCDIC TCP socket resource name (Address
space name of address space that
established this TCP connection)

8(x’8’) SMF119AP_TIConnID 8 EBCDIC TCP socket resource ID (Connection
ID)

16(x’10’) SMF119AP_TISubTask 4 Binary Subtask Name (address of owning
task’s TCB)

20(x’14’) SMF119AP_TIRIP 16 Binary Remote IP address at time of
connection open

36(x’24’) SMF119AP_TILIP 16 Binary Local IP address at time of
connection open

52(x’34’) SMF119AP_TIRPort 2 Binary Remote port number at time of
connection open

54(x’36’) SMF119AP_TILPort 2 Binary Local port number at time of
connection open

56(x’38’) SMF119AP_TITime 4 Binary Time of day of connection
establishment

60(x’3C’) SMF119AP_TIDate 4 Packed Date of connection establishment

TCP connection termination record
The TCP Connection Termination record is collected whenever a TCP connection is
closed or aborted. This record contains all pertinent information about the
connection, such as elapsed time, bytes transferred, and so on.

Notes:

1. Because this information duplicates all of the information contained in the TCP
Connection Initiation record, it is recommended that users only collect the TCP
Connection Termination record.

2. Because this record is generated for every single TCP connection, this can
generate significant load on a server and rapidly fill the SMF data sets. Care
should be exercised in its use.

936 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||
|
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

Table 95 shows the TCP Connection Termination self-defining section:

Table 95. TCP connection termination self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TCP Connection termination
section

40(x’28’) SMF119S1Len 2 Binary Length of TCP Connection
termination section

42(x’2A) SMF119S1Num 2 Binary Number of TCP Connection
termination sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TCP/IP Connection Termination record, the TCP/IP Stack
Identification Section indicates TCP as the subcomponent and X’08’ (event record)
as the record reason.

Table 96 shows the TCP Connection termination specific section of this SMF record.

Table 96. TCP connection termination section

Offset Name Length Format Description

0(x’0’) SMF119AP_TTRName 8 EBCDIC TCP socket resource name (Address
space name of address space that
closed this TCP connection)

8(x’8’) SMF119AP_TTConnID 8 EBCDIC TCP socket resource ID (Connection
ID)

16(x’10’) SMF119AP_TTSubtask 4 Binary Subtask Name (address of owning
task’s TCB)

20(x’14’) SMF119AP_TTSTime 4 Binary Time of connection establishment

24(x’18’) SMF119AP_TTSDate 4 Packed Date of connection establishment

28(x’1C’) SMF119AP_TTETime 4 Binary Time connection entered TIMEWAIT
or LASTACK state.

32(x’20’) SMF119AP_TTEDate 4 Packed Date connection entered TIMEWAIT
or LASTACK state.

36(x’24’) SMF119AP_TTRIP 16 Binary Remote IP address at time of
connection close

52(x’34’) SMF119AP_TTLIP 16 Binary Local IP address at time of
connection close

68(x’44’) SMF119AP_TTRPort 2 Binary Remote port number at time of
connection close

Appendix D. SMF type 119 records 937

||

|||||

|||||

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

Table 96. TCP connection termination section (continued)

Offset Name Length Format Description

70(x’46’) SMF119AP_TTLPort 2 Binary Local port number at time of
connection close

72(x’48’) SMF119AP_TTInBytes 8 Binary Inbound byte count

80(x’50’) SMF119AP_TTOutBytes 8 Binary Outbound byte count

88(x’58’) SMF119AP_TTSWS 4 Binary Send Window Size at time of
connection close

92(x’5C’) SMF119AP_TTMSWS 4 Binary Maximum Send Window Size

96(x’60’) SMF119AP_TTCWS 4 Binary Congestion Window Size at time of
connection close

100(x’64’) SMF119AP_TTSMS 4 Binary Send Segment Size at time of
connection close

104(x’68’) SMF119AP_TTRTT 4 Binary Round Trip Time in milliseconds at
time of connection close

108(x’6C’) SMF119AP_TTRVA 4 Binary Round Trip Time Variance at time of
connection close

112(x’70’) SMF119AP_TTStatus 4 Binary Socket status:

v x’00’: Passive Open (this is a
server socket)

v x’01’: Active Open (this is a client
socket)

113(x’71’) SMF119AP_TTTOS 1 Binary Type of Service (ToS) used by this
connection

114(x’72’) SMF119AP_TTXRT 2 Binary Number of times retransmission was
required for this connection

116(x’74’) SMF119AP_TTProf 32 EBCDIC Service Profile Name

148(x’94’) SMF119AP_TTPol 32 EBCDIC Service Policy Name at the time of
connection close

180(x’B4’) SMF119AP_TTInSeg 8 Binary Inbound segment count

188(x’BC’) SMF119AP_TTOutSeg 8 Binary Outbound segment count

TCP/IP statistics record
The TCP/IP Statistics record is collected at user specified intervals. The record
provides data about IP, TCP, UDP, and ICMP activity in the reporting TCP stack
during the previous recording interval. The cumulative value for each statistic
reported is obtained by summing the values reported for the statistic in the
individual TCP/IP Statistics interval records. If TCP/IP statistics recording is turned
off dynamically, or the TCP stack terminates, a final TCP/IP Statistics record is
generated to report close-out statistics.

The Type 119 TCP/IP Statistics record is generated using the same user specified
interval time value as the equivalent Type 118 TCPIPSTATISTICS record.

Table 97 on page 939 shows the TCP/IP Statistics Record self-defining section:

938 z/OS V1R4.0 CS: IP Configuration Reference

Table 97. SMF records: TCP/IP statistics record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 5(x’5’)

Self-defining section

24(x’5’) SMF119SD_TRN 2 Binary Number of triplets in this record (5)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to statistics section

40(x’28’) SMF119S1Len 2 Binary Length of IP statistics section

42(x’2A’) SMF119S1Num 2 Binary Number of IP statistics sections

44(x’2C’) SMF119S2Off 4 Binary Offset to TCP statistics section

48(x’30’) SMF119S2Len 2 Binary Length of TCP statistics section

50(x’32’) SMF119S2Num 2 Binary Number of TCP statistics sections

52(x’34’) SMF119S3Off 4 Binary Offset to UDP statistics section

56(x’38’) SMF119S3Len 2 Binary Length of UDP statistics section

58(x’3A’) SMF119S3Num 2 Binary Number of UDP statistics sections

60(x’3C’) SMF119S4Off 4 Binary Offset to ICMP statistics section

64(x’40’) SMF119S4Len 2 Binary Length of ICMP statistics section

66(x’42’) SMF119S4Num 2 Binary Number of ICMP statistics sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TCP/IP statistics record, the TCP/IP Stack Identification Section
indicates STACK as the subcomponent and x’08’ (event record), x’20’ (recording
stop), or x’10’ (recording shutdown) as the record reason.

Table 98 shows the IP Statistics section:

Table 98. IP statistics section

Offset Name Length Format Description

0(x’0’) SMF119AP_TSIPDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119AP_TSIPRecData 4 Binary Number of datagrams received

12(x’C’) SMF119AP_TSIPDscData 4 Binary Number of discarded datagrams for
any reason

16(x’10’) SMF119AP_TSIPDscAddr 4 Binary Number of discarded datagrams due
to address errors

20(x’14’) SMF119AP_TSIPAttFwdData 4 Binary Number of attempts to forward
datagrams

24(x’18’) SMF119AP_TSIPDscDUnkPr 4 Binary Number of discarded datagrams due
to unknown protocol

Appendix D. SMF type 119 records 939

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

||

|||||

|||||
|
|

|||||

|||||
|

|||||
|

|||||
|

|||||
|

Table 98. IP statistics section (continued)

Offset Name Length Format Description

28(x’1C’) SMF119AP_TSIPDscDOth 4 Binary Number of discarded datagrams, due
to reasons other than address error,
unknown protocol, and fragmentation
failure

32(x’20’) SMF119AP_TSIPDlvData 4 Binary Number of datagrams delivered

36(x’24’) SMF119AP_TSIPXData 4 Binary Number of datagrams transmitted

40(x’28’) SMF119AP_TSIPXDscOth 4 Binary Number of transmitted datagrams
discarded, due to reasons other than
no route being available

44(x’2C’) SMF119AP_TSIPXDscRoute 4 Binary Number of transmitted datagrams
discarded, due to no route being
available

48(x’30’) SMF119AP_TSIPTimeouts 4 Binary Number of reassembly timeouts

52(x’34’) SMF119AP_TSIPRecDRsbm 4 Binary Number of received datagrams
requiring assembly

56(x’38’) SMF119AP_TSIPRsmb 4 Binary Number of datagrams reassembled

60(x’3C’) SMF119AP_TSIPFailRsmb 4 Binary Number of failed reassembly
attempts

64(x’40’) SMF119AP_TSIPRecFgmt 4 Binary Number of fragmented datagrams
received

68(x’44’) SMF119AP_TSIPDscDFgmt 4 Binary Number of discarded datagrams due
to fragmentation failures

72(x’48’) SMF119AP_TSIPXFgmt 4 Binary Number of fragments generated

76(x’4C’) SMF119AP_TSIPRouteDisc 4 Binary Number of routing discards

80(x’50’) SMF119AP_TSIPMaxRsmb 4 Binary Maximum active number of
reassemblies

84(x’54’) SMF119AP_TSIPCurRsmb 4 Binary Number of currently active
reassemblies

88(x’58’) SMF119AP_TSIPRsmbFlags 4 Binary Reassembly flags

92(x’5C’) SMF119AP_TSIPInCalls 4 Binary Number of inbound calls from device
layer

96(x’60’) SMF119AP_TSIPInUerrs 4 Binary Number of received frame unpacking

100(x’64’) SMF119AP_TSIPIDMem 4 Binary Number of discarded datagrams, due
to memory shortages

104(x’68’) SMF119AP_TSIPODSync 4 Binary Number of transmitted datagrams
discarded, due to Sync errors

108(x’6C’) SMF119AP_TSIPODAsyn 4 Binary Number of transmitted datagrams
discarded, due to Async errors

112(x’70’) SMF119AP_TSIPODMem 4 Binary Number of transmitted datagrams
discarded due to memory shortages

Table 99 on page 941 shows the TCP Statistics section:

940 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|
|
|

|||||

|||||

|||||
|
|

|||||
|
|

|||||

|||||
|

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||

|||||
|

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||
|

|||||
|

|||||
|
|

Table 99. TCP statistics section

Offset Name Length Format Description

0(x’0’) SMF119AP_TSTCDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119AP_TSTCAlg 4 Binary Retransmission algorithm

12(x’C’) SMF119AP_TSTCMinRet 4 Binary Minimum retransmission time, in
milliseconds

16(x’10’) SMF119AP_TSTCMxRet 4 Binary Maximum retransmission time, in
milliseconds

20(x’14’) SMF119AP_TSTCMxCon 4 Binary Maximum TCP connections

24(x’18’) SMF119AP_TSTCOpenConn 4 Binary Number of Active Open connections

28(x’1C’) SMF119AP_TSTCPassConn 4 Binary Number of Passive Open connections

32(x’20’) SMF119AP_TSTCOFails 4 Binary Number of Open connection failures

36(x’24’) SMF119AP_TSTCConReset 4 Binary Number of connection resets

40(x’28’) SMF119AP_TSTCEstab 4 Binary Number of current establishments

44(x’2C’) SMF119AP_TSTCInSegs 4 Binary Number of input TCP segments

48(x’30’) SMF119AP_TSTCOSegs 4 Binary Number of output TCP segments

52(x’34’) SMF119AP_TSTCRxSegs 4 Binary Number of retransmitted segments

56(x’38’) SMF119AP_TSTCInErrs 4 Binary Number of input errors

60(x’3C’) SMF119AP_TSTCReset 4 Binary Number of resets

64(x’40’) SMF119AP_TSTCConCls 4 Binary Number of TCP connections closed

68(x’44’) SMF119AP_TSTCConAttD 4 Binary Number of TCP connection attempts
discarded

72(x’48’) SMF119AP_TSTCTWRef 4 Binary Number of TCP Timewait connections
refused

76(x’4C’) SMF119AP_TSTCHOKAck 4 Binary Number of header predictions (OK for
ACK)

80(x’50’) SMF119AP_TSTCHOKDat 4 Binary Number of header predictions (OK for
Data)

84(x’54’) SMF119AP_TSTCIDupAck 4 Binary Number of duplicate ACKs received

88(x’58’) SMF119AP_TSTCDscChecksum4 Binary Number of received packets
discarded due to bad checksum
values

92(x’5C’) SMF119AP_TSTCDscLen 4 Binary Number of received packets
discarded due to bad header length

96(x’60’) SMF119AP_TSTCDscInsData 4 Binary Number of received packets
discarded due to insufficient data

100(x’64’) SMF119AP_TSTCDscOldTime 4 Binary Number of received packets
discarded due to old timestamp
information

104(x’68’) SMF119AP_TSTCICmpDupSeg 4 Binary Number of received complete
duplicate segments

108(x’6C’) SMF119AP_TSTCIPartDupSeg 4 Binary Number of received partial duplicate
segments

112(x’70’) SMF119AP_TSTCICmpSegsWin4 Binary Number of complete segments
received after window closure

Appendix D. SMF type 119 records 941

||

|||||

|||||
|
|

|||||

|||||
|

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||

|||||
|
|

|||||
|

|||||
|

|||||
|
|

|||||
|

|||||
|

|||||
|

Table 99. TCP statistics section (continued)

Offset Name Length Format Description

116(x’74’) SMF119AP_TSTCIPartSegsWin 4 Binary Number of partial segments received
after window closure

120(x’78’) SMF119AP_TSTCIOOrder 4 Binary Number of out of order segments
received

124(x’7C’) SMF119AP_TSTCISegCls 4 Binary Number of segments received after
the TCP connection closed

128(x’80’) SMF119AP_TSTCIWinPr 4 Binary Number of received window probes

132(x’84’) SMF119AP_TSTCIWinUp 4 Binary Number of received window updates

136(x’88’) SMF119AP_TSTCOWinPr 4 Binary Number of transmitted window
probes

140(x’8C’) SMF119AP_TSTCOWinUp 4 Binary Number of transmitted window
updates

144(x’90’) SMF119AP_TSTCODlAck 4 Binary Number of transmitted delayed ACKs

148(x’94’) SMF119AP_TSTCOKApr 4 Binary Number of transmitted keepalive
probes

152(x’98’) SMF119AP_TSTCRxTim 4 Binary Number of retransmitted timeouts

156(x’9C’) SMF119AP_TSTCRxMTU 4 Binary Number of retransmitted Path MTU
discovery packets

160(x’A0’) SMF119AP_TSTCPathM 4 Binary Number of Path MTUs beyond
retransmit limit

164(x’A4’) SMF119AP_TSTCDropPr 4 Binary Number of TCP connections dropped
due to probes

168(x’A8’) SMF119AP_TSTCDropKA 4 Binary Number of TCP connections dropped
while in KeepAlive state

172(x’AC’) SMF119AP_TSTCDropF2 4 Binary Number of TCP connections dropped
while in FINWAIT2 state

176(xB’0’) SMF119AP_TSTCDropRx 4 Binary Number of TCP connections dropped
due to retransmits

Table 100 shows the UDP Statistics section:

Table 100. UDP statistics section

Offset Name Length Format Description

0(x’0’) SMF119AP_TSUDDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119AP_TSUDRecData 8 Binary Number of UDP datagrams received

16(x’10’) SMF119AP_TSUDRecNoPort 4 Binary Number of UDP datagrams received
with no port defined

20(x’14’) SMF119AP_TSUDNoRec 4 Binary Number of other UDP datagrams not
received

24(x’18’) SMF119AP_TSUDXmtData 8 Binary Number of UDP datagrams sent

Table 101 on page 943 shows the ICMP Statistics section:

942 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||

|||||
|

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||
|
|

|||||

|||||
|

|||||
|

|||||
|

Table 101. ICMP statistics section

Offset Name Length Format Description

0(x’0’) SMF119AP_TSICDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119AP_TSICInMsg 4 Binary Number of inbound ICMP messages

12(x’C’) SMF119AP_TSICInError 4 Binary Number of inbound ICMP error
messages

16(x’10’) SMF119AP_TSICInDstUnreach 4 Binary Number of inbound ICMP destination
unreachable messages

20(x’14’) SMF119AP_TSICInTimeExcd 4 Binary Number of inbound ICMP time
exceeded messages

24(x’18’) SMF119AP_TSICInParmProb 4 Binary Number of inbound ICMP parameter
problem messages

28(x’1C’) SMF119AP_TSICInSrcQuench 4 Binary Number of inbound ICMP source
quench messages

32(x’20’) SMF119AP_TSICInRedirect 4 Binary Number of inbound ICMP redirect
messages

36(x’24’) SMF119AP_TSICInEcho 4 Binary Number of inbound ICMP echo
request messages

40(x’28’) SMF119AP_TSICInEchoRep 4 Binary Number of inbound ICMP echo reply
messages

44(x’2C’) SMF119AP_TSICInTstamp 4 Binary Number of inbound ICMP timestamp
request messages

48(x’30’) SMF119AP_TSICInTstampRep 4 Binary Number of inbound ICMP timestamp
reply messages

52(x’34’) SMF119AP_TSICInAddrMask 4 Binary Number of inbound ICMP address
mask request messages

56(x’38’) SMF119AP_TSICInAddrMRep 4 Binary Number of inbound ICMP address
mask reply messages

60(x’3C’) SMF119AP_TSICOutMsg 4 Binary Number of outbound ICMP messages

64(x’40’) SMF119AP_TSICOutError 4 Binary Number of outbound ICMP error
messages

68(x’44’) SMF119AP_TSICOutDstUnreach4 Binary Number of outbound ICMP
destination unreachable messages

72(x’48’) SMF119AP_TSICOutTimeExcd 4 Binary Number of outbound ICMP time
exceeded messages

76(x’4C’) SMF119AP_TSICOutParmProb 4 Binary Number of outbound ICMP parameter
problem messages

80(x’50’) SMF119AP_TSICOutSrcQuench 4 Binary Number of outbound ICMP source
quench messages

84(x’54’) SMF119AP_TSICOutRedirect 4 Binary Number of outbound ICMP redirect
messages

88(x’58’) SMF119AP_TSICOutEcho 4 Binary Number of outbound ICMP echo
request messages

92(x’5C’) SMF119AP_TSICOutEchoRep 4 Binary Number of outbound ICMP echo
reply messages

96(x’60’) SMF119AP_TSICOutTstamp 4 Binary Number of outbound ICMP timestamp
request messages

Appendix D. SMF type 119 records 943

||

|||||

|||||
|
|

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

Table 101. ICMP statistics section (continued)

Offset Name Length Format Description

100(x’64’) SMF119AP_TSICOutTstampRep 4 Binary Number of outbound ICMP timestamp
reply messages

104(x’68’) SMF119AP_TSICOutAddrMask 4 Binary Number of outbound ICMP address
mask request messages

108(x’6C’) SMF119AP_TSICOutAddrMRep 4 Binary Number of outbound ICMP address
mask reply messages

TN3270 server SNA session initiation record
The TN3270 Server SNA Session Initiation record is collected when the z/OS
TN3270 Server establishes an SNA session with a Telnet client. The information in
this record relates to a given LU-LU session, and not to the TCPIP Telnet
connection; for instance, if multiple LU-LU sessions utilize the same Telnet
connection, we would report separate SNA Session Initiation records for each
LU-LU session.

The Type 119 TN3270 Server SNA Session Initiation record is collected at the same
point in session processing as the equivalent Type 118 Telnet Server ″LOGN″ SMF
record.

Note: Because the TN3270 Server SNA Session Initiation record contains a subset
of the information that the TN3270 Server SNA Session Termination record
contains, it is recommended that users only collect the TN3270 Server SNA
Session Termination records.

Table 102. TN3270 server SNA session initiation record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 20(x’14’)

Self-defining section

24(x’0’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’18’) 2 Binary Reserved

28(x’1A’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’1C’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’20’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TN3270 server SNA session
initiation section

40(x’28’) SMF119S1Len 2 Binary Length of TN3270 server SNA
session initiation section

42(x’2A’) SMF119S1Num 2 Binary Number of TN3270 server SNA
session initiation sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TN3270 Server SNA Session Initiation record, the TCP/IP Stack
Identification Section indicates TN3270S as the subcomponent and X’08’ (event

944 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

record) as the record reason. Table 102 on page 944 shows the TN3270 Server
SNA Initiation-specific section of this SMF record.

Table 103 shows the TN3270 server SNA session initiation section (TCP/IP
identification section):

Note: ’TN3270S’ is the subcomponent, and X’08’ (event record) is the record
reason.

Table 103. TN3270 server SNA session initiation section

Offset Name Length Format Description

0(x’0’) SMF119TN_NILU 8 EBCDIC Telnet LU name

8(x’8’) SMF119TN_NIAppl 8 EBCDIC Host application name

16(x’10’) SMF119TN_NILdev 4 Binary Telnet server internal logical device
number

20(x’14’) SMF119TN_NIRIP 16 Binary Remote IP address

36(x’24’) SMF119TN_NILIP 16 Binary Local IP address

52(x’30’) SMF119TN_NIRPort 2 Binary Remote (client) port number

54(x’34’) SMF119TN_NILPort 2 Binary Local port number

56(x’38’) SMF119TN_NITime 4 Binary Time of day of session initiation

60(x’3C’) SMF119TN_NIDate 4 Packed Date of session initiation

TN3270 server SNA session termination record
The TN3270 Server SNA Session Termination record is collected when the z/OS
TN3270 Server terminates an SNA session with a Telnet client. The information in
this record relates to a given LU-LU session, and not to the TCPIP Telnet
connection; for instance, if multiple LU-LU sessions utilize the same Telnet
connection, we would report separate SNA Session Termination records for each
LU-LU session.

The Type 119 TN3270 Server SNA Session Termination record is collected at the
same point in session processing as the equivalent Type 118 Telnet Server ″LOGF″
SMF record.

Note: Because the TN3270 Server SNA Session Termination record contains a
superset of the information that the TN3270 Server SNA Session Termination
record contains, it is recommended that users only collect the TN3270
Server SNA Session Termination records.

Table 104 shows the TN3270 Server SNA session termination record self-defining
section:

Table 104. TN3270 server SNA sesson termination record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 21(x’15’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(x’1A’) 2 Binary Reserved

Appendix D. SMF type 119 records 945

||

|||||

|||||

|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||
|

||

|||||

|||||
|

|

|||||

|||||

Table 104. TN3270 server SNA sesson termination record self-defining section (continued)

Offset Name Length Format Description

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TN3270 server SNA session
termination section

40(x’28’) SMF119S1Len 2 Binary Length TN3270 server SNA session
termination section

42(x’2A’) SMF119S1Num 2 Binary Number of TN3270 server SNA
session termination sections

44(x’2C’) SMF119S2Num 4 Binary Offset to TN3270 server host name
section

48(x’30’) SMF119S2Len 2 Binary Length of TN3270 server host name
section

50(x’32’) SMF119S2Num 2 Binary Number of TN3270 server host name
sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TN3270 server SNA session termination record, the TCP/IP Stack
Identification Section indicates TN3270S as the subcomponent and X’08’ (event
record) as the record reason.

Table 105 shows the TN3270 server SNA session termination specific section of this
SMF record.

Table 105. TN3270 server SNA session termination section

Offset Name Length Format Description

0(x’0’) SMF119TN_NTLU 8 EBCDIC Telnet LU name

8(x’8’) SMF119TN_NTAppl 8 EBCDIC Host application name

16(x’10’) SMF119TN_NTLdev 4 Binary Telnet server internal logical device
number

20(x’14’) SMF119TN_NTRIP 16 Binary Remote IP address

36(x’24’) SMF119TN_NTLIP 16 Binary Local IP address

52(x’34’) SMF119TN_NTRPort 2 Binary Remote port number

54(x’36’) SMF119TN_NTLPort 2 Binary Telnet server local port number

56(x’38’) SMF119TN_NTHostNm 8 EBCDIC TCP/IP Host name

64(x’40’) SMF119TN_NTInByte 8 Binary Inbound byte count

72(x’48’) SMF119TN_NTOutByte 8 Binary Outbound byte count

80(x’50’) SMF119TN_NTiTime 4 Binary Time of day of session initiation

84(x’54’) SMF119TN_NTiDate 4 Packed Date of session initiation

88(x’58’) SMF119TN_NTtTime 4 Binary Time of day of session termination

92(x’5C’) SMF119TN_NTtDate 4 Packed Date of session termination

96(x’60’) SMF119TN_NTDur 4 Binary Session duration in units of 1/100
seconds

946 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||

|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

Table 105. TN3270 server SNA session termination section (continued)

Offset Name Length Format Description

100(x’64’) SMF119TN_NTSType 1 Binary Telnet session type:

0 UNKNOWN

1 TN3270

2 TN3270E

3 LINEMODE

4 DBCSTRANSFORM

5 BINARY

101(x’65’) SMF119TN_NTLUSel 1 Binary TN3270E LU selection method:

0 LU chosen by server

1 LU requested by client

102(x’66’) SMF119TN_NTSSL 1 Binary SSL status:

0 No SSL session

1 Server authentication only

2 Server and client
authentication (no SAF)

3 Server and client
authentication (SAF)

103(x’67’) 1 Binary Reserved

104(x’68’) SMF119TN_NTCopt 1 Binary Telnet connection options negotiated
for this connection:

v 1000 0000 TN3270E

v 0100 0000 Terminal type

v 0010 0000 End of Record

v 0001 0000 Transmit binary

v 0000 1000 Echos

v 0000 0100 Suppress go ahead

v 0000 0010 Timemark

v 0000 0001 New Environment

105(x’69’) 1 Binary Reserved

Appendix D. SMF type 119 records 947

|

|||||

|||||

||

||

||

||

||

||

|||||

||

||

|||||

||

||

||
|

||
|

|||||

|||||
|

|

|

|

|

|

|

|

|

|||||

Table 105. TN3270 server SNA session termination section (continued)

Offset Name Length Format Description

106(x’6A’) SMF119TN_NT32opt 2 Binary TN3270E connection options
negotiated for this connection.

First Byte:

v 1000 0000 Bind image

v 0100 0000 SysRequest

v 0010 0000 Responses

v 0001 0000 SCS control codes

v 0000 1000 DCS control codes

v 0000 0100 Contention Resolution

v 0000 0010 FMH Support

v 0000 0001 SNA Sense Support

Second Byte

v 1000 0000 Suppress Header Byte
Doubling

v 0xxx xxxx Reserved

108(x’6C’) SMF119TN_NTRCode 8 EBCDIC Session termination reason code.
The values in this field are the same
as those displayed in message
EZZ6034I as value for the object
variable.

116(x’74’) SMF119TN_NTLMode 8 EBCDIC SNA logmode

124(x’7C’) SMF119TN_NTDevt 20 EBCDIC Telnet device type

Table 106 shows the TN3270 Server SNA Session Termination Host name section
section. This section is optional, and will be present if HNGROUP was applicable
for this session.

Table 106. TN3270 server host name section

Offset Name Length Format Description

0(x’0’) SMF119TN_NTHostname n EBCDIC Host name associated with this
session

TSO Telnet client connection initiation record
The TSO Telnet Client Connection Initiation record is collected at the establishment
of a connection using the TSO Telnet client. Note that this denotes the connection,
rather than a particular session. This record contains pertinent information about the
connection available at the time of its opening.

Note: Because all of this information is duplicated in the TSO Telnet Client
Connection Termination record, which contains additional information, it is
recommended that users only collect the TSO Telnet Client Connection
Termination record.

Table 107 on page 949 shows the TSO Telnet client connection initiation record
self-defining section:

948 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|||||
|
|
|
|

|||||

|||||
|

||

|||||

|||||
|
|

Table 107. TSO Telnet client connection initiation section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 22(x’16’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TSO Telnet client connection
initiation section

40(x’28’) SMF119S1Len 2 Binary Length of TSO Telnet client
connection initiation section

42(x’2A’) SMF119S1Num 2 Binary Number of TSO Telnet client
connection initiation sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TSO Telnet client connection initiation record, the TCP/IP Stack
Identification Section indicates TN3270C as the subcomponent and X’08’ (event
record) as the record reason.

Table 108 shows the TSO Telnet client connection initiation specific section of this
SMF record.

Table 108. TSO Telnet client connection initiation record TCP/IP identification section

Offset Name Length Format Description

0(x’0’) SMF119TN_CIRIP 16 Binary Remote (server) IP address

16 (x’10’) SMF119TN_CILIP 16 Binary Local IP address

32(x’20’) SMF119TN_CIRPort 2 Binary Remote (server) port number

34 (x’22’) SMF119TN_CILPort 2 Binary Local port number

36 (x’24’) SMF119TN_CITime 4 Binary Time of day of session initiation

40(x’28’) SMF119TN_CIDate 4 Packed Date of session initiation

TSO Telnet client connection termination record
The TSO Telnet Client Connection Termination record is collected at the termination
of a connection using the TSO Telnet client. Note that this denotes the connection,
rather than a particular session. This record contains all pertinent information about
the connection, such as elapsed time, bytes transferred, and so on.

Note: Because this information duplicates all of the information contained in the
TSO Telnet Client Connection Initiation record, it is recommended that users
only collect the TSO Telnet Client Connection Termination record.

Table 109 on page 950 shows the TSO Telnet client connection termination record
self-defining section:

Appendix D. SMF type 119 records 949

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

Table 109. TSO Telnet client connection termination record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 23(x’17’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TSO Telnet client connection
termination section

40(x’28’) SMF119S1Len 2 Binary Length of TSO Telnet client
connection termination section

42(x’2A’) SMF119S1Num 2 Binary Number of TSO Telnet client
connection termination sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TSO Telnet client connection termination record, the TCP/IP Stack
Identification Section indicates TN3270C as the subcomponent and X’08’ (event
record) as the record reason.

Table 110 shows the TSO Telnet client connection termination specific section of
this SMF record.

Table 110. TSO Telnet client connection termination section

Offset Name Length Format Description

0(x’0’) SMF119TN_CTRIP 16 Binary Remote (server) IP address

16 (x’10’) SMF119TN_CTLIP 16 Binary Local IP address

32(x’20’) SMF119TN_CTRPort 2 Binary Remote (server) port number

34 (x’22’) SMF119TN_CTLPort 2 Binary Local port number

36 (x’24’) SMF119TN_CTNJENode 8 EBCDIC NJE Node Name

44(x’2C’) SMF119TN_CTInBytes 8 Binary Inbound byte count

52(x’34’) SMF119TN_CTOutBytes 8 Binary Outbound byte count

60(x’3C’) SMF119TN_CTiTime 4 Binary Time of day of session initiation

64(x’40’) SMF119TN_CTiDate 4 Packed Date of session initiation

68(x’44’) SMF119TN_CTtTime 4 Binary Time of day of session termination

72(x’48’) SMF119TN_CTtDate 4 Packed Date of session termination

76(x’4C’) SMF119TN_CTDur 4 Binary Telnet client session duration in 1/100
seconds

950 z/OS V1R4.0 CS: IP Configuration Reference

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

Table 110. TSO Telnet client connection termination section (continued)

Offset Name Length Format Description

80(x’50’) SMF119TN_CTCOpt 1 Binary Telnet connection options negotiated
for this connection:

x000 0000
Reserved

0100 0000
Terminal type

0010 0000
End of record

0001 0000
Transmit binary

0000 1000
Echos

0000 0100
Suppress go ahead

0000 00xx
Reserved

81(x’51’) 3 Binary Reserved

84(x’54’) SMF119TN_CTDevt 20 EBCDIC Telnet device type

FTP server transfer completion record
The FTP Server Transfer Completion record is collected when the z/OS FTP Server
completes processing of one of the following FTP file transfer operations: file
appending, file deletion, file storage (includes both store and store unique
operations), file retrieval, or file renaming. A common format for the record is used
for each FTP file transfer operation, so the record contains an indication of which
operation was performed. The record also contains optional sections provided when
gethostbyaddr() processing was performed during the file transfer operation, as
well as when the file names involved in the transfer operation were MVS or HFS
filenames.

The Type 119 FTP Server Transfer Completion record is collected at the same point
in file transfer processing as the equivalent Type 118 FTP Server SMF records. The
Type 118 records used different record subtypes, as opposed to a field within the
SMF record information, to represent the different file transfer operations being
recorded.

Table 111 shows the FTP server transfer completion record self-defining section:

Table 111. FTP server transfer completion record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 70(x’46’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (5)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

Appendix D. SMF type 119 records 951

|

|||||

|||||
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|||||

|||||
|

Table 111. FTP server transfer completion record self-defining section (continued)

Offset Name Length Format Description

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to FTP server section

40(x’28’) SMF119S1Len 2 Binary Length of FTP server section

42(x’2A’) SMF119S1Num 2 Binary Number of FTP server sections

44(x’2C’) SMF119S2Off 4 Binary Offset to FTP server host name
section

48(x’30’) SMF119S2Len 2 Binary Length of FTP server host name
section

50(x’32’) SMF119S2Num 2 Binary Number of FTP server host name
sections

52(x’34’) SMF119S3Off 4 Binary Offset to FTP server first associated
data set name section

56(x’38’) SMF119S3Len 2 Binary Length of FTP server first associated
data set name section

58(x’3A’) SMF119S3Num 2 Binary Number of FTP server first
associated data set name sections

60(x’3C’) SMF119S4Off 4 Binary Offset to FTP server second
associated data set name section

64(x’40’) SMF119S4Len 2 Binary Length of FTP server second
associated data set name section

66(x’42’) SMF119S4Num 2 Binary Number of FTP server second
associated data set name sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the FTP Server Transfer Completion record, the TCP/IP Stack
Identification Section indicates FTPS as the subcomponent and X’08’ (event record)
as the record reason.

Table 112 shows the FTP server transfer completion specific section of this SMF
record.

Table 112. FTP server transfer completion record section

Offset Name Length Format Description

0(x’0’) SMF119FT_FSOper 1 Binary FTP Operation according to SMF77
subtype classification:

x’01’: Append

x’02’: Delete

x’03’: Rename

x’04’: Retrieve

x’05’: Store

x’06’: Store Unique

1(x’1’) 3 Binary Reserved

952 z/OS V1R4.0 CS: IP Configuration Reference

||

|||||

|||||
|

||

||

||

||

||

||

|||||

Table 112. FTP server transfer completion record section (continued)

Offset Name Length Format Description

4(x’4’) SMF119FT_FSCmd 4 EBCDIC FTP command (according to RFC
959+)

8(x’8’) SMF119FT_FSFType 4 EBCDIC File type (SEQ, JES, or SQL)

12(x’C’) SMF119FT_FSDRIP 16 Binary Remote IP address (data connection)

28(x’1C’) SMF119FT_FSDLIP 16 Binary Local IP address (data connection)

44(x’2C’) SMF119FT_FSDRPort 2 Binary Remote port number (data
connection - client)

46(x’2E’) SMF119FT_FSDLPort 2 Binary Local port number (data connection -
server)

48 (x’30’) SMF119FT_FSCRIP 16 Binary Remote IP address (control
connection)

64(x’40’) SMF119FT_FSCLIP 16 Binary Local IP address (control connection)

80 (x’50’) SMF119FT_FSCRPort 2 Binary Remote port number (control
connection - client)

82 (x’52’) SMF119FT_FSCLPort 2 Binary Local port number (control connection
- server)

84(x’54’) SMF119FT_FSSUser 8 EBCDIC Client User ID on server

92(x’5C’) SMF119FT_FSType 1 EBCDIC Data type:

A: ASCII

E: EBCDIC

I: Image

B: Double-byte

U: UCS-2

93(x’5D’) SMF119FT_FSMode 1 EBCDIC Transmission mode

B: Block

C: Compressed

S: Stream

94(x’5E’) SMF119FT_FSStruct 1 EBCDIC Data structure

F: File

R: Record

95(x’5F’) SMF119FT_FSDsType 1 EBCDIC Data set type

S: SEQ

P: PDS

H: HFS

96(x’60’) SMF119FT_FSSTime 4 Binary Transmission start time of day

100(x’64’) SMF119FT_FSSDate 4 Packed Transmission start date

104(x’68’) SMF119FT_FSETime 4 Binary Transmission end time of day

108(x’6C’) SMF119FT_FSEDate 4 Packed Transmission end date

112(x’70’) SMF119FT_FSDur 4 Binary File transmission duration in units of
1/100 seconds

Appendix D. SMF type 119 records 953

|

|||||

|||||
|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||
|

|||||
|

|||||

|||||

||

||

||

||

||

|||||

||

||

||

|||||

||

||

|||||

||

||

||

|||||

|||||

|||||

|||||

|||||
|

Table 112. FTP server transfer completion record section (continued)

Offset Name Length Format Description

116(x’74’) SMF119FT_FSBytes 8 Binary Transmission byte count; 64-bit
integer

124(x’7C’) SMF119FT_FSLReply 4 EBCDIC Last reply to client (3-digit RFC 959
code, right-justified)

128(x’80’) SMF119FT_FSM1 8 EBCDIC PDS Member name

136(x’88’) SMF119FT_FSRS 8 EBCDIC Reserved for abnormal end
information

144(x’90’) SMF119FT_FSM2 8 EBCDIC Second PDS member name (if
rename operation)

152(x’98’) SMF119FT_FSBytesFloat 8 Floating point
hex

z/OS floating point format for
transmission byte count

Table 113 shows the FTP Server Transfer Completion host name section. This
section is optional, and will be present if gethostbyaddr operation was performed for
the local IP address.

Table 113. FTP server transfer completion record section: Host name

Offset Name Length Format Description

0(x’0’) SMF119FT_FSHostname n EBCDIC Host Name

Table 114 shows the FTP server Transfer Completion first associated data set name
section. This section represents an MVS or HFS data set name associated with the
rename file transfer. Use the ″Data Set Type″ field information in the FTP Server
Transfer Completion section to determine the type of filename represented here.

Table 114. FTP server transfer completion record section: First associated data set name

Offset Name Length Format Description

0(x’0’) SMF119FT_FSFileName1 n EBCDIC MVS or HFS file name associated
with the file transfer operation.

Table 115 shows the FTP server Transfer Completion second associated data set
name section. This section represents an MVS or HFS data set name associated
with the rename file transfer operation. Use the ″Data Set Type″ field information in
the FTP Server Transfer Completion section to determine the type of filename
represented here.

Table 115. FTP server transfer completion record section: Second associated data set name

Offset Name Length Format Description

0(x’0’) SMF119FT_FSFileName2 n EBCDIC Second MVS or HFS file name
associated with the data set name
section.

FTP server logon failure record
The FTP Server Login Failure record is collected when an attempt to log in to the
z/OS FTP Server completes unsuccessfully. A return code within the SMF record
provides information as to the cause of the login failure.

954 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||
|

|||||
|

|||||

|||||
|

|||||
|

||||
|
|
|
|

||

|||||

|||||
|

||

|||||

|||||
|
|

||

|||||

|||||
|
|
|

The Type 119 FTP Server Login Failure record is collected at the same point in FTP
login processing as the equivalent Type 118 FTP Server (subtype x’72’) SMF
record.

Table 116 shows the FTP server logon failure record self-defining section:

Table 116. FTP server logon failure record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 72(x’48’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to FTP server logon failure
section

40(x’28’) SMF119S1Len 2 Binary Length of FTP server logon failure
section

42(x’2A’) SMF119S1Num 2 Binary Number of FTP server logon failure
sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the FTP Server logon failure record, the TCP/IP Stack Identification
Section indicates FTPS as the subcomponent and X’08’ (event record) as the
record reason.

Table 117 shows the FTP server logon failure specific section of this SMF record.

Table 117. FTP server logon failure record section

Offset Name Length Format Description

0(x’0’) SMF119FT_FFRIP 16 Binary Remote IP address

16(x’10’) SMF119FT_FFLIP 16 Binary Local IP address

32(x’20’) SMF119FT_FFRPort 2 Binary Remote port number (Client)

34(x’22’) SMF119FT_FFLPort 2 Binary Local port number (Server)

36(x’24’) SMF119FT_FFUserID 8 EBCDIC Client User ID received by server

Appendix D. SMF type 119 records 955

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

Table 117. FTP server logon failure record section (continued)

Offset Name Length Format Description

44(x’2C’) SMF119FT_FFReason 1 Binary Login failure reason:

’01’X Password is not valid.

’02’X Password has expired.

’03’X User ID has been revoked.

’04’X User does not have server
access.

’05’X FTCHKPWD User exit reject
login.

’06’X Excessive bad passwords.

’07’X Group ID process failed.

’08’X User ID is unknown.

45(x’2D’) 3 Binary Reserved

FTP client transfer completion record
The FTP Client Transfer Completion record is collected when the z/OS FTP Client
completes processing of one of the following FTP file transfer operations: file
appending, file storage, or file retrieval. A common format for the record is used for
each FTP file transfer operations, so the record contains an indication of which
operation was performed. The record also contains optional sections provided when
the file name involved in the transfer operation was an MVS or HFS filename, as
well as when the FTP operation traversed a SOCKS server in the path from the
z/OS client to the FTP server.

The Type 119 FTP Client Transfer Completion record is collected at the same point
in file transfer processing as the equivalent Type 118 FTP Client SMF record.

Table 118 shows the FTP client transfer completion record self-defining section:

Table 118. FTP client transfer completion record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 3(x’3’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (4)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to FTP client section

40(x’28’) SMF119S1Len 2 Binary Length of FTP client section

42(x’2A’) SMF119S1Num 2 Binary Number of FTP client sections

956 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||

||

||

||

||
|

||
|

||

||

||

|||||
|

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||

|||||

Table 118. FTP client transfer completion record self-defining section (continued)

Offset Name Length Format Description

44(x’2C’) SMF119S2Off 4 Binary Offset to FTP client associated data
set name section

48(x’30’) SMF119S2Len 2 Binary Length of FTP client associated data
set name section

50(x’32’) SMF119S2Num 2 Binary Number of FTP client associated data
set name sections

52(x’34’) SMF119S3Off 4 Binary Offset to FTP client SOCKS section

56(x’38’) SMF119S3Len 2 Binary Length of FTP client SOCKS section

58(x’3A’) SMF119S3Num 2 Binary Number of FTP client SOCKS
sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the FTP Client Transfer Completion record, the TCP/IP Stack
Identification Section indicates FTPC as the subcomponent and X’08’ (event record)
as the record reason.

Table 119 shows the FTP Client Transfer Completion specific section of this SMF
record.

Table 119. FTP client transfer completion record section

Offset Name Length Format Description

0(x’0’) SMF119FT_FCCmd 4 EBCDIC FTP subcommand (according to RFC
959)

4(x’4’) SMF119FT_FCFType 4 EBCDIC Local file type (SEQ, JES, or SQL)

8(x’8’) SMF119FT_FCDRIP 16 Binary Remote IP address (data connection)

24(x’18’) SMF119FT_FCDLIP 16 Binary Local IP address (data connection)

40(x’28’) SMF119FT_FCDRPort 2 Binary Remote port number (data
connection)

42(x’2A’) SMF119FT_FCDLPort 2 Binary Local port number (data connection)

44(x’2C’) SMF119FT_FCCRIP 16 Binary Remote IP address (control
connection)

60 (x’3C’) SMF119FT_FCCLIP 16 Binary Local IP address (control connection)

76(x’4C’) SMF119FT_FCCRPort 2 Binary Remote port number (control
connection)

78 (x’4E’) SMF119FT_FCCLPort 2 Binary Local port number (control
connection)

80 (x’50’) SMF119FT_FCRUser 8 EBCDIC User ID (login name) on server

88(x’58’) SMF119FT_FCLUser 8 EBCDIC Local User ID

96(x’60’) SMF119FT_FCType 1 EBCDIC Data format

A: ASCII

E: EBCDIC

I: Image

B: Double-byte

U: UCS-2

Appendix D. SMF type 119 records 957

|

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||

|||||
|
|

||

|||||

|||||
|

|||||

|||||

|||||

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||
|

|||||

|||||

|||||

||

||

||

||

||

Table 119. FTP client transfer completion record section (continued)

Offset Name Length Format Description

97(x’61’) SMF119FT_FCMode 1 EBCDIC Transfer mode

B: Block

C: Compressed

S: Stream

98(x’62’) SMF119FT_FCStruct 1 EBCDIC Structure

F: File

R: Record

99(x’63’) SMF119FT_FCDSType 1 EBCDIC Data set type

S: SEQ

P: PDS

H: HFS

100(x’64’) SMF119FT_FCSTime 4 Binary Transmission start time of day

104(x’68’) SMF119FT_FCSDate 4 Packed Transmission start date

108(x’6C’) SMF119FT_FCETime 4 Binary Transmission end time of day

112(x’70’) SMF119FT_FCEDate 4 Packed Transmission end date

116(x’74’) SMF119FT_FCDur 4 Binary File transmission duration in units of
1/100 seconds

120(x’78’) SMF119FT_FCBytes 8 Binary Transmission byte count; 64-bit
integer

128(x’80’) SMF119FT_FCLReply 4 EBCDIC Last server reply (3-digit RFC 959
code, right justified)

132(x’84’) SMF119FT_FCM1 8 EBCDIC PDS member name

140(x’8C’) SMF119FT_FCHostname 8 EBCDIC Host name

148(x’94’) SMF119FT_FCRS 8 EBCDIC Reserved for abnormal end info

156(x’9C’) SMF119FT_FCBytesFloat 8 Floating point
hex

z/OS floating point format for
transmission byte count

Table 120 shows the FTP client Transfer Completion associated data set name
section. This section represents the MVS or HFS data set name associated with the
file transfer.

Table 120. FTP client transfer completion associated data set name section

Offset Name Length Format Description

0(x’0’) SMF119FT_FCFileName n EBCDIC MVS or HFS Data Set Name
associated with the Rename file
transfer operation. Use the ″Data Set
Type″ field information in the FTP
Client Transfer Completion section to
determine the type of filename
represented here.

Table 121 on page 959 shows the FTP client transfer completion SOCKS section.
This section is present when the FTP operation traverses a SOCKS server on the
path between the z/OS FTP client and FTP server.

958 z/OS V1R4.0 CS: IP Configuration Reference

|

|||||

|||||

||

||

||

|||||

||

||

|||||

||

||

||

|||||

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||

|||||

||||
|
|
|
|

||

|||||

|||||
|
|
|
|
|
|
|

Table 121. FTP client transfer completion SOCKS section

Offset Name Length Format Description

0(x’0’) SMF119FT_FCCIP 16 Binary IP address of SOCKS server for
control connection

16(x’10’) SMF119FT_FCCPort 2 Binary SOCKS port number (control
connection)

18(x’12’) SMF119FT_FCCProt 1 Binary SOCKS protocol version (control
connection)

X’01’ SOCKS Version 4

X’02’ SOCKS Version 5

UDP socket close record
The UDP Socket Close record is collected whenever a UDP socket is closed (note
that this is not collected for individual datagrams sent using the sendto API call).
This record contains pertinent information about the socket, such as timestamps for
its opening and closing, and bytes flowing through the socket.

Notes:

1. The socket’s partner information is contained in this record; however, this
merely documents the partner at the time of socket close. Hence, this
information would be more meaningful for a client UDP application than a server
UDP application.

2. Because this record is generated for every single UDP socket, this can generate
significant load on a server and rapidly fill the SMF data sets. Care should be
exercised in its use.

Table 122 shows the UDP socket close record self-defining section:

Table 122. UDP socket close record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 10(x’A’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to UDP socket close section

40(x’28’) SMF119S1Len 2 Binary Length of UDP socket close section

42(x’2A’) SMF119S1Num 2 Binary Number of UDP socket close
sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the UDP socket close record, the TCP/IP Stack Identification Section
indicates UDP as the subcomponent and X’08’ (event record) as the record reason.

Appendix D. SMF type 119 records 959

||

|||||

|||||
|

|||||
|

|||||
|

||

||
|

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||

|||||
|
|

Table 123 shows the UDP socket close specific section of this SMF record.

Table 123. UDP socket close record section

Offset Name Length Format Description

0(x’0’) SMF119UD_UCRname 8 EBCDIC UDP socket resource name (address
space name of address space that
opens this socket)

8(x’8’) SMF119UD_UCConnID 4 Binary UDP socket resource ID (connection
ID)

12(x’C’) SMF119UD_UCSubTask 4 Binary Subtask ID. This is the task TCB for
the task owning the socket.

16(x’10’) SMF119UD_UCOTime 4 Binary Time of day of socket open

20(x’14’) SMF119UD_UCODate 4 Packed Date of socket open

24(x’18’) SMF119UD_UCCTime 4 Binary Time of day of socket close

28(x’1C’) SMF119UD_UCCDate 4 Packed Date of socket close

32(x’20’) SMF119UD_UCRIP 16 Binary Remote IP of last datagram received
on socket

48(x’30’) SMF119UD_UCLIP 16 Binary Local IP address at time of socket
close

64(x’40’) SMF119UD_UCRPort 2 Binary Remote port of last datagram
received on socket

66(x’42’) SMF119UD_UCLPort 2 Binary Local port number at time of socket
close

68(x’44’) SMF119UD_UCType 1 Binary UDP Socket Type

x’01’: Standard

x’02’: Enterprise Extender

69(x’45’) SMF119UD_UCReason 1 Binary Reason for socket close

x’01’: Normal

x’02’: Abnormal: application error
or stack termination

70(x’46’) 2 Binary Reserved

72(x’48’) SMF119UD_UCInDgrams 8 Binary Number of inbound UDP datagrams

80(x’50’) SMF119UD_UCOutDgrams 8 Binary Number of outbound UDP datagrams

88(x’58’) SMF119UD_UCInBytes 8 Binary Number of inbound bytes

96(x’60’) SMF119UD_UCOutBytes 8 Binary Number of outbound bytes

TCP/IP stack start/stop record
The TCP/IP Stack Start/Stop record is collected when an individual TCP/IP stack
becomes available for processing and when the stack ceases to be available for
processing. The record can be used as a beginning and ending ″bookmark″ with
which to delineate all other SMF recording activity for a given TCP/IP stack.

There is no Type 118 record equivalent for the TCP/IP Stack Start/Stop record.

Table 124 on page 961 shows the TCP/IP stack Start/Stop record self-defining
section:

960 z/OS V1R4.0 CS: IP Configuration Reference

||

|||||

|||||
|
|

|||||
|

|||||
|

|||||

|||||

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||

||

||

|||||

||

||
|

|||||

|||||

|||||

|||||

|||||
|

Table 124. TCP/IP stack start/stop record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 8(x’8’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to TCP/IP start/stop section

40(x’28’) SMF119S1Len 2 Binary Length of TCP/IP start/stop section

42(x’2A’) SMF119S1Num 2 Binary Number of TCP/IP start/stop sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the TCP/IP Stack Start/Stop record, the TCP/IP Stack Identification
Section indicates TCP as the subcomponent and X’08’ (event record) as the record
reason.

Table 125 shows the TCP/IP Stack Start/Stop specific section of this SMF record.

Table 125. TCP/IP stack start/stop record section

Offset Name Length Format Description

0(x’0’) SMF119TC_STType 1 Binary Event type:

x’80’ Stack start up

x’40’ Stack termination

x’20’ Stack unplanned termination

1(x’1’) Reserved

4(x’4’) SMF119TC_STTime 4 Binary Time of day stack startup or
termination

8(x’8’) SMF119TC_STDate 4 Packed Date of stack startup or termination

Server port statistics record
The Port Statistics record, as an interval record, periodically records statistics on
ports that have been configured with the PORT statement in the TCP/IP PROFILE.
Note that this excludes all ports defined by PORTRANGE, or for which the
RESERVED flag has been set.

Each TCP or UDP port’s activity is reported; connection information is provided for
TCP ports, and traffic information is provided for UDP ports.

Depending on the number of reserved ports, this report may actually be spread
across multiple records.

Table 126 on page 962 shows the server port statistics record self-defining section:

Appendix D. SMF type 119 records 961

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||

|||||
|

||

|||||

|||||

||

||

||

|||||

|||||
|

|||||
|

Table 126. Server port statistics record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 7(x’7’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to first TCP server port section

40(x’28’) SMF119S1Len 2 Binary Length of each TCP server port
section

42(x’2A’) SMF119S1Num 2 Binary Number of TCP server port sections

44(x’2C’) SMF119S2Off 4 Binary Offset to first UDP server port section

48(x’30’) SMF119S2Len 2 Binary Length of each UDP server port
section

50(x’32’) SMF119S2Num 2 Binary Number of UDP server port sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the Server Port Statistics record, the TCP/IP Stack Identification
Section indicates STACK as the subcomponent and one of the six possible interval
record reason settings, depending on if the reporting is due to interval expiration,
statistics collection termination, or collection shutdown, and whether one or more
physical records are needed to report all the Port statistics.

Table 127 shows TCP Server Port statistics specific section (one per reserved port
definition).

Table 127. TCP server port statistics section

Offset Name Length Format Description

0(x’0’) SMF119SP_TCDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119SP_TCRName 8 EBCDIC Server socket resource name (the
name specified on the PORT
reservation statement)

16(x’10’) SMF119SP_TCBindIP 16 Binary For bind-specific port reservations:
the local IP address

32(x’20’) SMF119SP_TCPort 2 Binary Port number

34(x’22’) 2 Binary Reserved

36(x’24’) SMF119SP_TCConn 4 Binary Number of successful connection
establishments

40(x’28’) SMF119SP_TCBinds 4 Binary Number of socket binds to this port
reservation

962 z/OS V1R4.0 CS: IP Configuration Reference

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||
|

|||||

|||||

|||||
|

|||||
|

||

|||||

|||||
|
|

|||||
|
|

|||||
|

|||||

|||||

|||||
|

|||||
|

Table 127. TCP server port statistics section (continued)

Offset Name Length Format Description

44(x’2C’) SMF119SP_TCBusySrv 4 Binary Number of connection requests
rejected due to Server Busy
conditions

48(x’30’) SMF119SP_TCSynAttack 4 Binary Number of connection requests
rejected due to SYN Attack detect
conditions

52(x’34’) SMF119SP_TCHighwater 4 Binary Highest number of active TCP
connections

56(x’38’) SMF119SP_TCNumConns 4 Binary Number of active TCP connections

Table 128 shows the UDP server port statistics record (one per reserved port
definition being collected):

Table 128. UDP server port statistics section

Offset Name Length Format Description

0(x’0’) SMF119SP_UDDuration 8 Binary Duration of recording interval

8(x’8’) SMF119SP_UDRName 8 EBCDIC Server socket resource name (the
name specified on the PORT
reservation statement)

16(x’10’) SMF119SP_UDBindIP 16 Binary For bind-specific port reservations:
the local IP address

32(x’20’) SMF119SP_UDPort 2 Binary Port number

34(x’22’) 2 Binary Reserved

36(x’24’) SMF119SP_UDIDgrams 8 Binary Number of inbound UDP datagrams
to server port

44(x’2C’) SMF119SP_UDODgrams 8 Binary Number of outbound UDP datagrams
from server port

52(x’34’) SMF119SP_UDIBytes 8 Binary Number of inbound bytes

60(x’3C’) SMF119SP_UDOBytes 8 Binary Number of outbound bytes

Interface statistics record
The Interface Statistics record is collected at user specified intervals. The record
provides data about user-defined interfaces (LINK statements), one Interface
specific section per defined interface. Only non-VIPA and non-loopback interfaces
are included in the SMF record, and any interface in the process of being deleted
from the stack at the time of interval reporting is likewise ignored.

Each Interface specific section reports statistical data about the interface for the
previous recording interval. To determine a cumulative value for a given statistic
reported, the user must sum the values reported for the statistic in the individual
Interface Statistics interval records. If Interface statistics recording is turned off
dynamically, or the TCP stack terminates, a final Interface Statistics record is
generated to report close-out data. If a given LINK statement is deleted during a
recording interval, any data related to that interface during the recording interval is
lost (i.e., is not reported in the next interval record).

Appendix D. SMF type 119 records 963

|

|||||

|||||
|
|

|||||
|
|

|||||
|

|||||
|

||

|||||

|||||

|||||
|
|

|||||
|

|||||

|||||

|||||
|

|||||
|

|||||

|||||
|

Depending on the number of interfaces, this report may be spread across multiple
records, in which case the self-defining section for each record will specify the
content layout of that particular record.

There is no Type 118 record equivalent to the Link Interface Statistics record.

Table 129 shows the interface statistics record self-defining section:

Table 129. Interface statistics record self-defining section

Offset Name Length Format Description

0(x’0’) Standard SMF Header 24 Standard SMF header; subtype will
be 6(x’6’)

Self-defining section

24(x’18’) SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(x’1A’) 2 Binary Reserved

28(x’1C’) SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(x’20’) SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(x’22’) SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(x’24’) SMF119S1Off 4 Binary Offset to first interface section

40(x’28’) SMF119S1Len 2 Binary Length of each interface section

42(x’2A’) SMF119S1Num 2 Binary Number of interface sections

See Table 92 on page 934 for the contents of the TCP/IP Stack Identification
Section. For the Interface Statistics record, the TCP/IP Stack Identification Section
indicates IP as the subcomponent and one of the six possible interval record reason
settings, depending on if the reporting is due to interval expiration, statistics
collection termination, or collection shutdown, and whether one or more physical
records are needed to report all the interface statistics.

Table 130 shows the interface statistics specific record (one per LINK definition):

Table 130. Interface statistics section

Offset Name Length Format Description

0(x’0’) SMF119SP_IFDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(x’8’) SMF119IS_IFLnkHome 16 Binary Link HOME address

24(x’18’) SMF119IS_IFName 16 EBCDIC Link name

40(x’28’) SMF119IS_IFDevName 16 EBCDIC Device name

56(x’38’) SMF119IS_IFDesc 18 EBCDIC Link Description (TCPIP PROFILE
keyword for LINK type.) Possible
values include: ATM, CDLC, CTC,
ETHERnet, ETHEROR802.3, FDDI,
HCH, IBMTR, IP, IPAQENET,
IPAQIDIO, IPAQTR, MPCPTP,
OSAENET, OSAFDDI, SAMEHOST,
Unknown, 802.3

74(x’4A’) 2 Binary Reserved

964 z/OS V1R4.0 CS: IP Configuration Reference

||

|||||

|||||
|

|

|||||

|||||

|||||

|||||
|

|||||
|

|||||

|||||

|||||
|

||

|||||

|||||
|
|

|||||

|||||

|||||

|||||
|
|
|
|
|
|
|

|||||

Table 130. Interface statistics section (continued)

Offset Name Length Format Description

76(x’4C’) SMF119IS_IFActualMtu 4 Binary MTU size

80(x’50’) SMF119IS_IFSPeed 4 Binary Speed

84(x’54’) SMF119IS_IFHSpeed 4 Binary HSpeed

88(x’58’) SMF119IS_IFInBytes 8 Binary Number of inbound bytes

96(x’60’) SMF119IS_IFInUniC 8 Binary Number of inbound Unicast packets

104(x’68’) SMF119IS_IFInBroadC 8 Binary Number of inbound broadcast
packets

112(x’70’) SMF119IS_IFInMultiC 8 Binary Number of inbound multicast packets

120(x’78’) SMF119IS_IFInDisc 4 Binary Number of inbound discarded
packets

124(x’7C’) SMF119IS_IFInError 4 Binary Number of inbound packets in error

128(x’80’) SMF119IS_IFInUProt 4 Binary Number of inbound packets with
unknown protocol.

132(x’84’) SMF119IS_IFOutBytes 8 Binary Number of outbound bytes

140(x’8C’) SMF119IS_IFOutUniC 8 Binary Number of outbound Unicast packets

148(x’94’) SMF119IS_IFOutBroadC 8 Binary Number of outbound broadcast
packets

156(x’9C’) SMF119IS_IFOutMultiC 8 Binary Number of outbound multicast
packets

164(x’A4’) SMF119IS_IFOutDisc 4 Binary Number of outbound discarded
packets

168(x’A8’) SMF119IS_IFOutError 4 Binary Number of outbound packets in error

172(x’AC’) SMF119IS_IFOQL 4 Binary Current output queue length

Appendix D. SMF type 119 records 965

|

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||

|||||
|

966 z/OS V1R4.0 CS: IP Configuration Reference

Appendix E. LDAPv2 schema 2 definition files

This appendix contains the policy schema definition files that define the policy
schema characteristics to an LDAP server. These files are in the syntax used for
LDAP protocol version 2. Different files are used to define the schema in LDAP
protocol version 3 syntax, but they are not included here because the protocol
version 2 syntax is easier to read and also because the schema definitions are
essentially the same.

These files show, respectively, the definitions of the various attributes that can be
used to define policies, and the definitions of the object classes that contain these
attributes. See Chapter 19, “z/OS UNIX system services Policy Agent and SLA
subagent” on page 675 and z/OS Communications Server: IP Configuration Guide
for guidance about the different types of policies and examples of their usage.

PAGENTAT sample
#
IBM Communications Server for OS/390
CS for OS/390 IP
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGAT
#
5694-A01 (C) Copyright IBM Corp. 1998, 2001
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
Status = CSV1R2
#
pagent_at.conf
#
This file contains a set of LDAP directory attributes for the
Quality of Service (QOS) and Intrusion Detection System (IDS)
policy objects defined with the LDAP server. It must be included
in the LDAP server’s initial configuration file (i.e., slapd.conf
file).
#
This file is for LDAP protocol version 2 servers.
#
**************************** IMPORTANT ****************************
* *
* Two versions of policies are supported with this file: *
* *
* - Version 2 policies are supported for CSV2R10. *
* - Version 3 policies are supported for CSV1R2. *
* *
* Unless otherwise noted, all attributes defined herein apply *
* to both of the above versions. *
* *
**************************** IMPORTANT ****************************
#

objectClass attribute is used to associate an object with a class (see
object class definition file for detail).
This is a multi-valued attribute.
attribute objectClass cis objectClass 128 normal

cn attribute specifies the common name of an object (e.g., a user friendly
name and is often included in the object distinguished name).
This is a single-valued attribute.
attribute cn cis cn 128 normal

ibm-policyKeywords attribute is used to provide a search filter for
policy object retrieval. This attribute applies to version 3

© Copyright IBM Corp. 2000, 2002 967

policies.
This is a multi-valued attribute.
attribute ibm-policyKeywords cis policyKeywords 128 normal

ibm-policyGroupName attribute specifies the user friendly name of a
policyGroup object.
This is a single-valued attribute.
attribute ibm-policyGroupName cis policyGroupName 32 normal
ibm-policyGroupKeywords attribute is used to provide a level of grouping
together different policyGroup objects such that they can be searched
and found together in one LDAP search (e.g., a way of scoping).
This is a multi-valued attribute.
attribute ibm-policyGroupKeywords cis policyGroupKeywd 128 normal
ibm-policyGroupsAuxContainedSet attribute provides an unordered set of
distinguished name pointers to one or more policyGroup objects that
are associated with the object to which this attribute has been
appended.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced policyGroup object.
attribute ibm-policyGroupsAuxContainedSet dn policyGroupsSet 256 normal

ibm-policyRulesAuxContainedSet attribute provides an unordered set of
distinguished name pointers to one or more policyRule objects that
are contained within the object to which this attribute has been
appended.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced policyRule object.
attribute ibm-policyRulesAuxContainedSet dn policyRulesSet 256 normal

ibm-policyGroupForLoadDistribution attribute provides a means to mark
policy rules contained in a policy group as being intended for load
distribution. The S/390 implementation uses this attribute for
policies to be interpreted on the Sysplex Distributor (SD)
distributing stack. NOTE: The S/390 implementation discards the policy
group if a syntax error is detected on this attribute. However, if
any contained policy rules are retrieved outside the scope of the
policy group, the default value of this attribute will be applied to
them. This attribute applies to version 2 policies.
This is a single-valued attribute. Valid values are TRUE and FALSE.
The default is FALSE.

attribute ibm-policyGroupForLoadDistribution cis policyGrpForLoadD 16 normal
attribute description cis description 256 normal

ibm-policyRuleName attribute specifies the user friendly name of a
policyRule object.
This is a single-valued attribute.

attribute ibm-policyRuleName cis policyRuleName 32 normal
ibm-policyRuleEnabled attribute specifies an enumeration indicating
whether a policy rule is administratively enabled, disabled, or
enabled for debug mode. Note that the S/390 implementation treats
enabled for debug the same as enabled.
This is a single-valued attribute. The defined values for this
attribute are 1 for enabled, 2 for disabled, and 3 for enabled for
debug mode. Default is 1.
attribute ibm-policyRuleEnabled cis policyRuleEnable 1 normal

ibm-policyRuleConditionListType attribute specifies whether the list of
policy conditions associated with this policy rule is in Disjunctive Normal Form
(DNF - ORed groups/sets of ANDed conditions) or Conjunctive Normal Form
(CNF - ANDed groups/sets of ORed conditions).
This is a single-valued attribute. The defined values for this
attribute are 1 for DNF, and 2 for CNF. Default is 1. Note that
this attribute is only valid for complex rules.
attribute ibm-policyRuleConditionListType cis policyRuleCondLT 1 normal

ibm-policyRuleConditionList attribute specifies an unordered list of strings
of the form:
ibm-policyRuleConditionList:group-number:< +|- >:dn

968 z/OS V1R4.0 CS: IP Configuration Reference

indicating a set of policy conditions that determine when the policy rule
is applicable/fired. The group-number specifies the group or set of
the policy conditions, in which the referenced condition belongs.
The < +|- > specifies if the condition is to be negated. The dn is
the distinguished name of the referenced condition. This attribute
applies to version 2 policies.
This is a multi-valued attribute. Here is an example:
ibm-policyRuleConditionListType:1
ibm-policyRuleConditionList:1:+:C1
ibm-policyRuleConditionList:1:+:C2
ibm-policyRuleConditionList:2:+:C3
ibm-policyRuleConditionList:2:-:C4
This is equivalent to: (C1 AND C2) OR (C3 AND (NOT C4))
attributeibm-policyRuleConditionList cis policyRuleCondLi 256 normal

ibm-policyRuleConditionListDN attribute specifies an unordered list of
DN pointers indicating a set of policy conditions that determine when
the policy rule is applicable/fired. This attribute contains the
distinguished name of the referenced condition. This attribute
applies to version 3 policies.
This is a multi-valued attribute.
attribute ibm-policyRuleConditionListDN dn policyRuleCListD 256 normal

ibm-policyRuleActionList attribute is an unordered list of strings
of the form:
ibm-policyRuleActionList:n:dn
it specifies an ordered set of policy actions to be performed if the
overall associated policy conditions of the corresponding policy rule
evaluates to TRUE. The n value specifies the order of the actions
to be executed. A value of 0 means "don’t care". The dn is the
distingushed name of the referenced action. Note that the S/390
implementation executes only one action that is found to be most
appropriate (e.g., action with scope of DataTraffic or Both for
non-RSVP IP traffic). However, the actions are still ordered
according to this attribute. If there are more actions than can be
executed, the first one in the ordered list will be selected and the
remaining ones will be ignored. This attribute applies to version
2 policies.
This is a multi-valued attribute. Here is an example:
ibm-policyRuleActionList:1:DN-Action1
ibm-policyRuleActionList:2:DN-Action2
attribute ibm-policyRuleActionList cis policyRuleActL 256 norma
ibm-policyRuleActionListDN attribute is an unordered list of DN
pointers to an ordered set of policy actions to be performed if the
overall associated policy conditions of the corresponding policy rule
evaluates to TRUE. This attribute contains the distinguished name of
the referenced action. Note that the S/390 implementation executes
only one action that is found to be most appropriate (e.g., action with
scope of DataTraffic or Both for non-RSVP IP traffic). However, the
actions are still ordered according to the ibm-policyActionOrder
attribute. If there are more actions than can be executed, the first
one in the ordered list will be selected and the remaining ones will be
ignored. This attribute applies to version 3 policies.
This is a multi-valued attribute.
attribute ibm-policyRuleActionListDN dn policyRuleAListD 256 normal

ibm-policyRuleValidityPeriodList attribute specifies the distinguished
names of policyTimePeriodCondition objects that determine when the policy
rule is scheduled to be active (inactive).
This is a multi-valued attribute. Here is an example:
ibm-policyRuleValidityPeriodList:DN-timeperiod1
ibm-policyRuleValidityPeriodList:DN-timeperiod2
In this example, the policy rule will be active if the time is within
either the time specified in DN-timeperiod1 object or
DN-timeperiod2 object.
attribute ibm-policyRuleValidityPeriodList cis policyRulePerL 256 normal

Appendix E. LDAPv2 schema 2 definition files 969

ibm-policyRuleKeywords attribute is used to provide a level of grouping
together different policyRule objects such that they can be initially
searched and found together in one LDAP search (e.g., a way of scoping).
This is a multi-valued attribute.
attribute ibm-policyRuleKeywords cis policyRuleKeywd 128 normal

ibm-policyRuleUsage attribute is used to provide guidelines on how the
corresponding policy rule should be used. S/390 will interpret this
attribute but ignore its value.
This is a single-valued attribute.
attribute ibm-policyRuleUsage cis policyRuleUsage 128 normal

ibm-policyRulePriority attribute specifies a non-negative integer for
prioritizing a policy rule relative to other policy rules. A larger
value means higher priority. Given two rules that are overlapped (they
both cover some IP traffic), a rule with higher priority will be applied.
The maximum supported value is 255.
This is a single-valued attribute. Default value is zero.
attribute ibm-policyRulePriority cis policyRulePrio 32 normal

ibm-policyRuleMandatory attribute is used as a flag to indicate that
the evaluation of the policy conditions and execution of policy actions
(when overall condition is evaluated to TRUE) is required.
This is a single-valued attribute. Its value is either TRUE or FALSE.
Default is TRUE. In S/390 implementation, it is always assumed to be
TRUE, therefore, this attribute is simply ignored.
attribute ibm-policyRuleMandatory cis policyRuleMand 16 normal
ibm-policyRuleSequencedActions attribute provides an integer enumeration
to indicate how to interpret the action ordering indicated via the
ibm-policyRuleActionList attribute (e.g., the n value), for version
2 policies, or the ibm-policyActionOrder attribute, for version 3
policies. The defined values for this attribute are: 1 (for
mandatory), 2 (for recommended), and 3 (for don’t care). The default
is 3.
This is a single-valued attribute.
attribute ibm-policyRuleSequencedActions cis policyRuleSeqA 1 normal

ibm-policyRoles attribute specifies a role or set of roles (known as a
role-combination) that this policy plays. Policy consumers (clients)
can search for policy rules that contain one or more roles or
role-combinations using this attribute. Role-combinations are
specified using the syntax:
role1&&role2# This attribute applies to version 3 policies.
#
This is a multi-valued attribute.
attribute ibm-policyRoles cis policyRoles 128 normal

ibm-policyInstanceName attribute specifies the user friendly name
of a ibm-policyInstance object. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyInstanceName cis policyInstName 32 normal

ibm-policyConditionName attribute specifies the user friendly name of a
ibm-policyCondition object.
This is a single-valued attribute.
attribute ibm-policyConditionName cis policyCondName 32 normal

ibm-policyConditionGroupNumber attribute specifies the group or set of
the policy conditions to which a policy condition belongs. These
groups are used to form the DNF or CNF expression associated with a
policy rule. This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-policyConditionGroupNumber cis policyCondGrpNum 32 normal

ibm-policyConditionNegated attribute specifies whether a policy
condition is negated in the DNF or CNF expression associated with a

970 z/OS V1R4.0 CS: IP Configuration Reference

policy rule. A value of TRUE (meaning negated) or FALSE may be
specified. This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-policyConditionNegated cis policyCondNegate 32 normal

ibm-policyConditionDN attribute specifies the distinguished name (DN)
of a reusable policy condition. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyConditionDN dn policyCondDN 256 normal

ibm-policyActionName attribute specifies the user friendly name
of a ibm-policyAction object.
#Up to 32 characters are supported (longer
names are silently truncated).
This is a single-valued attribute.
attribute ibm-policyActionName cis policyActionName 32 normal

ibm-policyActionOrder attribute specifies the relative order of the
actions to be executed in the context of a policy rule. A value of 0
means "don’t care". Note that the S/390 implementation executes only
one action that is found to be most appropriate (e.g., action with
scope of DataTraffic or Both for non-RSVP IP traffic). However, the
actions are still ordered according to this attribute. This attribute
applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-policyActionOrder cis policyActOrder 32 normal

ibm-policyActionDN attribute specifies the distinguished name (DN)
of a reusable policy action. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyActionDN dn policyActDN 256 normal

ibm-sourceIPAddressRange attribute specifies the source addresses in IP
packets to which the policy rule applies. From a S/390 server’s point
of view, for inbound traffic, the source address in the IP packets will
be the address of the client, whereas for outbound traffic, the source
address will be one that is defined on the S/390 server (e.g., local
subnet addresses including VIPA). Here is the format of this
attribute:
ibm-sourceIPAddressRange:n<-parameter according to 1 | 2 | 3 option>
ibm-sourceIPAddressRange:1 policy is applied to locally generated
packets
ibm-sourceIPAddressRange:2-<IPv4Address>-<PrefixMaskLength>
IPv4Address is in dotted decimal format.
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its source address unmasked bits are identical
to the unmasked bits defined.
ibm-sourceIPAddressRange:3-<from-IPv4Address>[-to-IPv4Address>]
specifies IPv4Address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its source
address is within the range defined.
This is a single-valued attribute.
some examples:
ibm-sourceIPAddressRange:1
ibm-sourceIPAddressRange:2-9.87.65.43-24
ibm-sourceIPAddressRange:3-9.87.65.43-9.87.65.255
ibm-sourceIPAddressRange:3-9.87.65.43
this last example contains only one address defined, no range.
attribute ibm-sourceIPAddressRange cis sourceIPARange 64 normal

ibm-destinationIPAddressRange attribute specifies the destination addresses in
IP packets to which the policy rule applies. From a S/390 server’s point
of view,

Appendix E. LDAPv2 schema 2 definition files 971

#for inbound traffic, the destination address in the IP packets will
be the local address defined on the server, whereas for outbound traffic,
the destination address will be the remote client’s address.
Here is the format of this attribute:
ibm-destinationIPAddressRange:n<-parameter according to 1 | 2 | 3 option>
ibm-destinationIPAddressRange:1 policy is applied to locally destined
packets
ibm-destinationIPAddressRange:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its destination address unmasked bits are
identical to the unmasked bits defined.
ibm-destinationIPAddressRange:3-<from-IPv4Address>[-to-IPv4Address>]
specifies IPv4Address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
destination address is within the range defined.
This is a single-valued attribute.
see ibm-sourceIPAddressRange for comments.
attribute ibm-destinationIPAddressRange cis destIPARange 64 normal

ibm-sourcePortRange attribute specifies the source application port number in the
IP packets to which the policy rule applies. From a S/390 server’s point
of view, for inbound traffic, the source port in an IP packet will
be the remote client port, whereas for outbound traffic, the
source port will be one of a local application in the server.
Here is the format of this attribute:
ibm-sourcePortRange:<from-port>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
An IP packet matches the condition if its
source port is within the range defined.
Note that port number can’t exceed 16-bit field value.
This is a single-valued attribute.
some examples:
ibm-sourcePortRange:20:21
ibm-sourcePortRange:80
this last example contains only one port defined, no range.
attribute ibm-sourcePortRange cis sourcePortRange 32 normal

ibm-destinationPortRange attribute specifies the destination application
port number in the IP packets to which the policy rule applies.
From a S/390 server’s
point of view, for inbound traffic, the destination port in an IP packet will
be the local application port in the server, whereas for outbound traffic,
the destination port will be the remote client’s port.
Here is the format of this attribute:
ibm-destinationPortRange:<from-port>[:<to-port>]
This is a single-valued attribute.
see ibm-sourcePortRange for comments.
attribute ibm-destinationPortRange cis destPortRange 32 normal

ibm-protocolNumberRange attribute specifies the protocol ID numbers in IP
packets to which the policy rule applies. The format of this attribute
is as follows:
ibm-protocolNumberRange:<from-protocolID>[:<to-protocolID>]
Two integers that specify a protocol ID range.
to-protocolID has to be no less than from-protocolID.
An IP packet matches the condition if its protocol
ID value is within the range defined.
Note that protocol number can’t exceed 255 (8-bit field)
This is a single-valued attribute.
attribute ibm-protocolNumberRange cis protoNumRange 32 normal
ibm-applicationName attribute specifies the name of the application that
is executing in the S/390 (e.g., also referred to as job name). Application
name is used when a predefined port number is not known for the application
(e.g., applications that use dynamically assigned port numbers). Note

972 z/OS V1R4.0 CS: IP Configuration Reference

that in S/390, application names are converted to upper case for comparison
with job names. ’*’ can be used as a wildcard. The specified name is
limited to 8 characters (longer names are silently truncated).
The format of this attribute is as follows:
ibm-applicationName:<name of the application/job in the system>
This is a single-valued attribute.
some examples:
ibm-applicationName:HTTPD
ibm-applicationName:FTPD*
attribute ibm-applicationName cis applName 8 normal
ibm-applicationData attribute is used for content-based policy classification.
This means the policy allows policy condition to include application
data to be included in the evaluation process. It enables an application
to assign different types of QoS treatments for different transactions
(or streams of data) within a session. In S/390, only web URI (Universal
Resource Identifier) is supported as application data and only when the
web application server activates Fast Response Cache Accelerator (FRCA)
function. This attribute is limited to 128 characters (longer data are
silently truncated). The format of this attribute is as follows:
ibm-applicationData:<a character string>
This is a single-valued attribute.
an example:
ibm-applicationData:/cat/purchase/info
attribute ibm-applicationData ces applData 128 normal

ibm-applicationPriority attribute is used for content-based policy
classification. It allows an application to assign different
priorities for different transactions (or streams of data) within a
session. Valid values are as follows:
0 = Any application priority specified (default).
1 = EXPEDITED, 2 = HIGH, 3 = MEDIUM, 4 = LOW, 5 = BESTEFFORT.
The format of this attribute is as follows:
ibm-applicationPriority:<an integer value>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-applicationPriority:3 attribute ibm-applicationPriority

cis applPriority 1 normal
ibm-interface attribute is used for both ibm-policyRule and

ibm-policyAction objects.
For ibm-policyRule objects, it is used to limit the policy scope to specific
inbound and outbound interfaces/subnets as IP packets traverse a network
element (e.g., router). If both inbound and outbound interface values
are specified in an ibm-interface attribute, it means the corresponding
policy is to be applied to transit traffic that arrives on one interface
and departs on another interface (e.g., traffic going through a router).
From S/390 server’s point of view, because our implementation of policy
is as a host, a packet is destined to the server after it arrives on an
inbound interface, whereas an outbound packet originates from the server
and is sent on an outbound interface. As a result, if both inbound and
outbound interface non-null values are specified together, the corresponding
rule won’t be mapped to any traffic since S/390 doesn’t support policy as a
routing node.
For ibm-policyAction objects, this attribute specifies a set of
Sysplex Distributor routing interfaces (up to 32). These routing interfaces
are used by the SD routing component to choose among available servers
in the S/390 sysplex. An interface value of 0 can be specified to indicate
that the SD router can use any available target server if none of the
target servers identified with instances of this attribute are available.
The default is no policy control of Sysplex Distributor routing.
The format of this attribute is as follows:
ibm-interface:1-[<In-Interface-IPv4Address>][-<Out-Interface-IPv4Address>]
Note that only type 1 here is supported. If either one of the
inbound/outbound interfaces is not specified, all inbound/outbound
interfaces are assumed. For ibm-policyAction objects, only the
outbound interface can be specified.
This is a multi-valued attribute. However, it is treated as

Appendix E. LDAPv2 schema 2 definition files 973

single-valued for ibm-policyRule objects by the S/390 implementation.
some examples:
ibm-interace:1-9.87.65.43-9.87.60.1
with this specification, the corresponding rule is
to be applied when traffic enters interface 9.87.65.43
and departs on interface 9.87.60.1. As mentioned above,
with S/390 implementation as a server, this
corresponding rule WILL NOT be mapped.
ibm-interace:1-9.87.65.43 no outbound specified
ibm-interace:1--9.87.60.1 no inbound specified
attribute ibm-interface cis interface 64 normal

ibm-idsConditionType attribute is used to specify the type of IDS
conditions associated with a policy rule. Valid values are ATTACK,
for rules that specify attack conditions, TR, for Traffic Regulation
rules, SCAN_GLOBAL, for the single rule that specifies global
attributes for scan detection, or SCAN_EVENT, for individual scan
detection rules.
The format of this attribute is as follows:
ibm-idsConditionType:ATTACK | TR | SCAN_GLOBAL | SCAN_EVENT
This attribute applies to version 3 policies.
This is a multi-valued attribute, although in most cases IDS rules
should specify only a single type.# an example:
ibm-idsConditionType:TR
attribute ibm-idsConditionType cis idsConditionType 32 normal

ibm-idsAttackType attribute specifies the known types of intrusion
attacks to be evaluated in conjunction with a policy rule. Attacks
are specified as follows:
MALFORMED_PACKET - specifies a rule for a number of specific
malformed packets that are detected on inbound traffic.
FLOOD - specifies a rule for flooding attacks.
OUTBOUND_RAW - specifies a rule to enforce restrictions on the use
of RAW sockets for outbound processing, to prevent this stack
from being used to attack other systems. A list of restricted
IP protocols may also be specified in the rule’s conditions.
ICMP_REDIRECT - specifies a rule for ICMP redirect detection.
PERPETUAL_ECHO - specifies a rule for preventing perpetual echos
over UDP ports. A list of local UDP ports that always respond
to an input packet is also specified in the rule’s conditions,
and a separate list of remote (network) UDP ports that always
respond is specified. Use of this attack type is restricted to
using the CNF condition type, with exactly 3 CNF levels. One
level provides the attack type of PERPETUAL_ECHO, one level
provides the local ports, and one level provides the remote
ports. No other conditions may be specified in the rule.
IP_FRAGMENT - specifies a rule for detecting suspicious fragmented
packets (e.g. fragment overlays IP or transport header).
RESTRICTED_IP_OPTIONS - specifies a rule to detect inbound IP
packets with IP options that are not allowed. A list of
restricted IP options is also specified in the rule’s conditions.
RESTRICTED_IP_PROTOCOL - specifies a rule to detect inbound IP
packets with IP protocols that are not allowed. A list of
restricted IP protocols is also specified in the rule’s
conditions.
The format of this attribute is as follows:
ibm-idsAttackType:MALFORMED_PACKET | FLOOD | OUTBOUND_RAW |
ICMP_REDIRECT | PERPETUAL_ECHO | IP_FRAGMENT |
RESTRICTED_IP_OPTIONS | RESTRICTED_IP_PROTOCOL
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsAttackType:IP_FRAGMENT
attribute ibm-idsAttackType cis idsAttackType 32 normal

ibm-idsIPOptionRange attribute specifies a list of restricted IP
options for IDS attack rules. This attribute is only valid when

974 z/OS V1R4.0 CS: IP Configuration Reference

ibm-idsAttackType specifies RESTRICTED_IP_OPTIONS.
The format of this attribute is as follows:
ibm-idsIPOptionRange:<from-option>[:<to-option>]
two integers that specify an option range.
to-option has to be no less than from-option.
Note that option number can’t exceed 255.
This attribute applies to version 3 policies.
This is a single-valued attribute.# some examples:
ibm-idsIPOptionRange:10:12
ibm-idsIPOptionRange:20
this last example contains only one option, no range.
attribute ibm-idsIPOptionRange cis idsIPOptionRange 32 normal

ibm-idsLocalPortRange attribute specifies a list of local ports for
IDS rules.
The format of this attribute is as follows:
ibm-idsLocalPortRange:<from-portl>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
Note that port number can’t exceed 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsLocalPortRange:8000:8009
ibm-idsLocalPortRange:12005
this last example contains only one port, no range.
attribute ibm-idsLocalPortRange cis idsLclPortRange 32 normal

ibm-idsRemotePortRange attribute specifies a list of remote ports for
IDS rules.
The format of this attribute is as follows:
ibm-idsRemotePortRange:<from-portl>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
Note that port number can’t exceed 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsRemotePortRange:9000:9100
ibm-idsRemotePortRange:11100
this last example contains only one port, no range.
attribute ibm-idsRemotePortRange cis idsRmtPortRange 32 normal

ibm-idsProtocolRange attribute specifies a list of protocols for
IDS rules.
The format of this attribute is as follows:
ibm-idsProtocolRange:<from-protocol>[:<to-protocol>]
two integers that specify a protocol range.
to-protocol has to be no less than from-protocol.
Note that protocol number can’t exceed 255.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsProtocolRange:100:105
ibm-idsProtocolRange:17
this last example contains only one protocol, no range.
attribute ibm-idsProtocolRange cis idsProtocolRange 32 normal

ibm-idsLocalHostIPAddress attribute specifies a list of local IP
addresses for IDS rules.# The format of this attribute is as follows:
ibm-idsLocalHostIPAddress:n<-parameter according to 2 | 3 option>
ibm-idsLocalHostIPAddress:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its local address unmasked bits are
identical to the unmasked bits defined.
ibm-idsLocalHostIPAddress:3-<from-IPv4Address>[-<to-IPv4Address]

Appendix E. LDAPv2 schema 2 definition files 975

specifies an IPv4 address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
local address is within the range defined.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsLocalHostIPAddress:2-9.87.65.43-24
ibm-idsLocalHostIPAddress:3-9.87.65.43-9.87.65.255
ibm-idsLocalHostIPAddress:3-9.87.65.43
this last example contains only one address defined, no range.
attribute ibm-idsLocalHostIPAddress cis idsLclIPAddress 64 normal

ibm-idsRemoteHostIPAddress attribute specifies a list of remote IP
addresses for IDS rules.
The format of this attribute is as follows:
ibm-idsRemoteHostIPAddress:n<-parameter according to 2 | 3 option>
ibm-idsRemoteHostIPAddress:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its remote address unmasked bits are
identical to the unmasked bits defined.
ibm-idsRemoteHostIPAddress:3-<from-IPv4Address>[-<to-IPv4Address]
specifies an IPv4 address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
remote address is within the range defined.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsRemoteHostIPAddress:2-129.10.11.0-23
ibm-idsRemoteHostIPAddress:3-9.10.11.0-9.10.11.255
ibm-idsRemoteHostIPAddress:3-211.0.42.1
this last example contains only one address defined, no range.
attribute ibm-idsRemoteHostIPAddress cis idsRmtIPAddress 64 normal

ibm-ptpConditionTime attribute specifies the range of calendar dates on which
the corresponding policy rule is valid. The format of this attribute is as
follows:
ibm-ptpConditionTime:yyyymmddhhmmss:yyyymmddhhmmss
where yyyy is year, mm is month, dd is date, hh is hour, mm is
minute and
ss is second. Seconds are rounded to the nearest minute. Default is
always. Out of bounds values are forced to be correct (for instance
month 13 becomes January of the following year). Dates before the
start of the Posix epoch (Jan/01/1970 00:00:00 UTC) are not valid. The
time is kept in the format of seconds since the epoch - this value
wraps early in the year 2038, so times after that are not valid.
This is a single-valued attribute.
an example:
ibm-ptpConditionTime:19990101080000:20021231170000
(translates to: from Jan/01/1999 8AM to Dec/31/2002 5PM)
attribute ibm-ptpConditionTime cis ptpConditionTime 64 normal

ibm-ptpConditionMonthOfYearMask attribute specifies a mask identifying
the months
of the year in which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionMonthOfYearMask:<a string of 12 ’0’s and ’1’s>
This is a single-valued attribute.
an example:
ibm-ptpConditionMonthOfYearMask:111000000000
(Jan, Feb, and March)
attribute ibm-ptpConditionMonthOfYearMask cis ptpCondMonMas 12 normal

ibm-ptpConditionDayOfMonthMask attribute specifies a mask identifying
the days

976 z/OS V1R4.0 CS: IP Configuration Reference

of the month on which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionDayOfMonthMask:<a string of 31 or 62 ’0’s and ’1’s>
The first 31 bits identify the days of the month in the forward
direction (from the first day to the last day). The last 31 bits,
which are optional, identify the days of the month in the reverse
direction (from the last day to the first day). For example,
the 32nd bit represents the 31st day in January, but represents
the 29th day in February in a leap year.
Default is all month long.
This is a single-valued attribute.
an example:
ibm-ptpConditionDayOfMonthMask:1111111111111110000000000000000
(first 15 days of the month)
attribute ibm-ptpConditionDayOfMonthMask cis ptpCondDayMonM 64 normal

ibm-ptpConditionDayOfWeekMask attribute specifies a mask identifying the days
of the week on which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionDayOfWeekMask:< astring of 7 ’0’s and ’1’s
beginning with Sunday>
Default is all week long.
This is a single-valued attribute.
an example:
ibm-ptpConditionDayOfWeekMask:0111110
(weekdays)
attribute ibm-ptpConditionDayOfWeekMask cis ptpCondDayWeekM 8 normal

ibm-ptpConditionTimeOfDayMask attribute specifies a range of times in a day
during which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionTimeOfDayMask:hhmmss:hhmmss
The second time identifies later time than the first. When it is
smaller the time range spans midnight. Seconds are rounded to
the nearest minute. Default is 24 hours.
This is a single-valued attribute.
some examples:
ibm-ptpConditionTimeOfDayMask:080000:170000
(8AM to 5PM)
ibm-ptpConditionTimeOfDayMask:170000:080000
(5PM to 8AM the next day)
attribute ibm-ptpConditionTimeOfDayMask cis ptpCondTimeDayM 16 normal

ibm-ptpConditionTimeZone attribute specifies the time zone for which to
apply the time specified in the ibm-policyTimePeriodCondition. The format
of this attribute is as follows:
ibm-ptpConditionTimeZone:< either Z or <’+’ | ’-’><hh[mm]> >
Z indicates UTC
’+’ or ’-’ represents east or west of UTC.
+/-0 is the same as UTC.
hhmm is the hour and minutes from UTC (up to
+/-1359). Minutes are optional. Default is
local time.
This is a single-valued attribute.
an example:
ibm-ptpConditionTimeZone:+0400
(4 hours east of UTC)
attribute ibm-ptpConditionTimeZone cis ptpCondTimeZone 8 normal

ibm-ptpConditionLocalOrUtcTime attribute specifies whether the time
zone to be applied to the time specified in the ibm-policyTimePeriodCondition
is in local time or UTC time. This attribute applies to version 3
policies.
This is a single-valued attribute. The defined values for this
attribute are 1 for local time and 2 for UTC time. The default is 1.
attribute ibm-ptpConditionLocalOrUtcTime cis ptpCondLocalOrUtc 8 normal

Appendix E. LDAPv2 schema 2 definition files 977

ibm-PolicyScope attribute identifies the type of QoS service that the
corresponding policy action specifies. It can either be DataTraffic
(aka DiffServ for Differentiated Services) or RSVP (for Resource reSerVation
Protocol) or Both. Based on the policy scope, a set of corresponding
parameters can be applied for the traffic that is mapped to the policy
action.
The format of this attribute is as follows:
ibm-PolicyScope:<DataTraffic | RSVP | Both>
Default is Both.
This is a single-valued attribute.
an example:
ibm-PolicyScope:DataTraffic
attribute ibm-PolicyScope cis PolicyScope 16 normal

ibm-Permission attribute specifies whether or not to accept or deny traffic
that is mapped to the corresponding policy action.
The format of this attribute is as follows:
ibm-Permission:<Blocked | Allowed>
Default is Allowed.
This is a single-valued attribute.
attribute ibm-Permission cis Permission 8 normal

ibm-MaxRate attribute specifies the maximum TCP throughput for a connection
that is mapped to the corresponding policy action. It is used to control
the upper limit of the TCP congestion window with respect to the roundtrip
time. The format of this attribute is as follows:
ibm-MaxRate:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxRate cis MaxRate 32 normal

ibm-MinRate attribute specifies the minimum TCP throughput for a connection
that is mapped to the corresponding policy action. It is used to control
the lower limit of the TCP congestion window with respect to the roundtrip
time. The format of this attribute is as follows:
ibm-MinRate:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MinRate cis MinRate 32 normal

ibm-MaxDelay attribute specifies the maximum TCP roundtrip delay
for a connection
that is mapped to the corresponding policy action. It is used mainly for
policy performance monitor and/or profiling (see SLAPM MIB).
The format of this attribute is as follows:
ibm-MaxDelay:<an integer number in milliseconds>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxDelay cis MaxDelay 32 normal

ibm-OutgoingTOS attribute specifies the IP TOS byte (Type Of Service, aka
Differentiated Services - DS byte) value to be set for outgoing IP packets
that are mapped to the corresponding policy action from S/390. This TOS/DS
byte also determines the priority queue in which to place packets for S/390
QDIO devices.
The format of this attribute is as follows:
ibm-OutgoingTOS:<a string of 8’0’ and ’1’>
Default is 0.
This is a single-valued attribute.
an example:
ibm-OutgoingTOS:11000000
attribute ibm-OutgoingTOS cis OutgoingTOS 8 normal

ibm-MaxConnections attribute specifies the maximum number of TCP connections
that are allowed within the policy action that contains this attribute.
When this number is reached, additional TCP connections whose traffic is
mapped to a policy rule which references the corresponding action are

978 z/OS V1R4.0 CS: IP Configuration Reference

denied.
The format of this attribute is as follows:
ibm-MaxConnections:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxConnections cis MaxConnections 32 normal

ibm-DiffServInProfileRate attribute specifies the mean rate (token generating
rate) of a token bucket traffic conditioner that enforces the rate of
traffic that is mapped to the corresponding policy action by a policy rule.
If the traffic exceeds this rate, it will be considered as out-of-profile
and therefore will be treated with the action specified in
ibm-DiffServExcessTrafficTreatment attribute. If this value is non-zero,
but ibm-DiffServInProfileTokenBucket is zero, then no token bucket traffic
enforcement is performed.
The format of this attribute is as follows:
ibm-DiffServInProfileRate:<an integer number in Kbps>
Default is no token bucket enforcement of traffic.
This is a single-valued attribute.
attribute ibm-DiffServInProfileRate cis DSInProfRate 32 normal

ibm-DiffServInProfilePeakRate attribute specifies the peak rate of a
token bucket
traffic conditioner that enforces the peak rate of traffic that is mapped to
the corresponding policy action by a policy rule. If the traffic exceeds
this rate, it will be considered as out-of-profile and therefore will
be treated with the ibm-DiffServExcessTrafficTreatment attribute. If this
value is non-zero, but ibm-DiffServInProfileMaxPacketSize or
ibm-DiffServInProfileRate is zero, then no token bucket peak rate enforcement
is performed. If this value is less than ibm-DiffServInProfileRate, then
no token bucket traffic or peak rate enforcement is performed.
The format of this attribute is as follows:
ibm-DiffServInProfilePeakRate:<an integer number in Kbps>
Default is no token bucket enforcement of peak rate.
This is a single-valued attribute.
attribute ibm-DiffServInProfilePeakRate cis DSInProfPeakRt 32 normal

ibm-DiffServInProfileTokenBucket attribute specifies the maximum burst size of
a token bucket traffic conditioner that enforces the burst of traffic
that is mapped to the corresponding policy action by a policy rule. It is
used together with the mean rate in generating tokens consumed by outgoing
traffic.
The format of this attribute is as follows:
ibm-DiffServInProfileTokenBucket:<an integer number in Kb>
Default is 100.
This is a single-valued attribute.
attribute ibm-DiffServInProfileTokenBucket cis DSInProfTB 32 normal

ibm-DiffServInProfileMaxPacketSize attribute specifies the maximum size of an
IP packet being enforced by a token bucket traffic conditioner.
Note that due to blocking in S/390, multiple packets tend to be sent
back to back and if maximum packet size is just big enough for one packet,
violation of the peak rate (peak rate enforcement is based on the size of
each individual packet) will result and violated packets will be sent with
different TOS value or dropped as a consequence. To accommodate this
blocking, the value of this attribute should be set in multiples of the
maximum packet size (e.g., equal to the token bucket size).
The format of this attribute is as follows:
ibm-DiffServInProfileMaxPacketSize:<an integer number in Kb>
Default is 100.
This is a single-valued attribute.
attribute ibm-DiffServInProfileMaxPacketSize cis DSInProfMPS 32 normal

ibm-DiffServOutProfileTransmittedTOSByte attribute specifies the TOS value to
be used for out-of-profile traffic if the excess treatment specified is
to send them as best effort.
The format of this attribute is as follows:

Appendix E. LDAPv2 schema 2 definition files 979

ibm-DiffServOutProfileTransmittedTOSByte:<a string of 8’0’ and ’1’>
Default is 0.
This is a single-valued attribute.
attribute ibm-DiffServOutProfileTransmittedTOSByte cis DSOutProfTosB 8 normal

ibm-DiffServExcessTrafficTreatment attribute specifies how a token bucket
traffic conditioner should treat out-of-profile traffic. Two options
can be specified, either Drop or BestEffort. If treatment is to send
BestEffort, a different TOS value, if specified, will be used. If
treatment is to Drop, depending on whether the traffic is UDP or TCP
different mechanisms will be used to handle Drop treatment:
For UDP, traffic will actually be dropped.
For TCP, Drop treatment is simulated in that TCP congestion window is
cut (just as the case when a packet is dropped) immediately but the
violated packet will be sent. This is to avoid overhead associated
with retransmission processing and also to reduce the traffic
generated immediately without having to wait for a roundtrip time
(i.e., standard TCP lost detection delay). Also, TCP connections
that are mapped to the same policy (i.e., aggregation) will share
the throughput equally among them.
The format of this attribute is as follows:
ibm-DiffServExcessTrafficTreatment:<Drop | BestEffort>
Default is BestEffort.
This is a single-valued attribute.
attribute ibm-DiffServExcessTrafficTreatment cis DSExcessTreat16 normal

ibm-FlowServiceType attribute specifies the reservation type
that can be requested by an RSVP flow, either ControlledLoad
or Guaranteed. Guaranteed service is considered to be greater than
ControlledLoad. Use this attribute to limit the service type requested
from RSVP applications.
ibm-FlowServiceType:<ControlledLoad | Guaranteed>
Default is ControlledLoad
This is a single-valued attribute.
attribute ibm-FlowServiceType cis FlowServiceType 32 normal

ibm-MaxRatePerFlow attribute specifies the maximum rate
that can be requested by an RSVP flow that is mapped to a policy rule
which references the corresponding policy action containing this attribute.
The format of this attribute is as follows:
ibm-MaxRatePerFlow:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxRatePerFlow cis MaxRatePerFlow 32 normal

ibm-MaxTokenBucketPerFlow attribute specifies the maximum token bucket size
that can be requested by an RSVP flow that is mapped to a policy rule
which references the corresponding policy action containing this attribute.
The format of this attribute is as follows:
ibm-MaxTokenBucketPerFlow:<an integer number in Kbits>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxTokenBucketPerFlows cis MaxTBPerFlow 32 normal

ibm-MaxFlows attribute specifies the maximum number of RSVP flows that are
allowed within the policy action that contains this attribute. When
this number is reached, additional RSVP flow requests that are mapped
to a policy rule which references the corresponding action are denied.
The format of this attribute is as follows:
ibm-MaxFlows:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxFlows cis MaxFlows 32 normal

ibm-idsActionType attribute is used to specify the type of IDS
actions associated with a policy rule. Valid values are ATTACK,
for rules that specify attack actions, TR, for Traffic Regulation

980 z/OS V1R4.0 CS: IP Configuration Reference

actions, SCAN_GLOBAL, for the single action that specifies global
attributes for scan detection, or SCAN_EVENT, for individual scan
detection actions.
The format of this attribute is as follows:
ibm-idsActionType:ATTACK | TR | SCAN_GLOBAL | SCAN_EVENT
This attribute applies to version 3 policies.
This is a multi-valued attribute.
an example:
ibm-idsActionType:SCAN_EVENT
attribute ibm-idsActionType cis idsActionType 32 normal

ibm-idsNotification attribute specifies the types of notification to
be provided for the events mapped by the corresponding IDS rule.
Valid values are NONE, for no notification, SYSLOG, to log to the
syslog daemon (syslogd), SYSLOGDETAIL, to log more detailed information
to syslogd, or CONSOLE, to log to the system console.
The format of this attribute is as follows:
ibm-idsNotification:NONE | SYSLOG | SYSLOGDETAIL | CONSOLE
The default is NONE.
This attribute applies to version 3 policies.
This is a multi-valued attribute, but NONE can’t be specified with
any other values.
an example:
ibm-idsNotification:CONSOLE
attribute ibm-idsNotification cis idsNotification 32 normal

ibm-idsStatInterval attribute specifies the interval length in minutes
for collecting IDS statistics.
The format of this attribute is as follows:
ibm-idsStatInterval:<an integer number>
The default is 60.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsStatInterval:600
attribute ibm-idsStatInterval cis idsStatInterval 32 normal

ibm-idsLoggingLevel attribute specifies the syslogd logging level for
logging IDS information. Valid values are 0 through 7.
The format of this attribute is as follows:
ibm-idsStatInterval:<an integer number>
The default is 0.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsLoggingLevel:1
attribute ibm-idsLoggingLevel cis idsLoggingLevel 32 normal

ibm-idsTypeActions attribute specifies the type of actions to be taken
for IDS events. Valid values are STATISTICS, for collecting statistics
information only, EXCEPTSTATS, for collecting exception statistics
only, LOG, to log IDS information according to the ibm-idsNotification
attribute, or LIMIT, to enforce IDS Traffic Regulation limits and to
cause detected attack packets to be dropped.
The format of this attribute is as follows:
ibm-idsTypeActions:STATISTICS | EXCEPTSTATS | LOG | LIMIT
This attribute applies to version 3 policies.
This is a multi-valued attribute.
an example:
ibm-idsTypeActions:LOG
attribute ibm-idsTypeActions cis idsTypeActions 32 normal

ibm-idsTraceData attribute specifies the amount of information written
to the IDS event trace. Valid values are NONE, for no tracing, HEADER
for tracing the IP and transport headers in packets, FULL, for tracing
entire packets, or RECORDSIZE, for tracing the amount of data specified
with the ibm-idsTraceRecordSize attribute (this amount of data

Appendix E. LDAPv2 schema 2 definition files 981

includes the IP and transport headers).
The format of this attribute is as follows:
ibm-idsTraceData:NONE | HEADER | FULL | RECORDSIZE
The default is HEADER.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTraceData:RECORDSIZE
attribute ibm-idsTraceData cis idsTraceData 32 normal

ibm-idsTraceRecordSize attribute specifies the amount of packet data
to trace, when ibm-idsTraceData:RECORDSIZE is specified.
The format of this attribute is as follows:
ibm-idsTraceRecordSize:<an integer number>
The default is 100.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTraceRecordSize:50
attribute ibm-idsTraceRecordSize cis idsTraceRecordSz 32 normal

ibm-idsMaxEventMessage attribute specifies the maximum number of event
messages to be displayed on the console during a 5 minute period for
an IDS attack type (e.g. MALFORMED_PACKET).
The format of this attribute is as follows:
ibm-idsMaxEventMessage:<an integer number>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsMaxEventMessage:5
attribute ibm-idsMaxEventMessage cis idsMaxEventMsg 32 normal

ibm-idsTRtcpTotalConnections attribute specifies the size of the total
connection pool for IDS TCP Traffic Regulation functions. The maximum
value is 65535.
The format of this attribute is as follows:
ibm-idsTRtcpTotalConnections:<an integer number>
The default is 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpTotalConnections:1000
attribute ibm-idsTRtcpTotalConnections cis idsTRtcpTotConn 32 normal

ibm-idsTRtcpPercentage attribute specifies the percentage of the total
connections allowed with the ibm-idsTRtcpTotalConnections attribute
that can be used by a single host. The range is 0 - 100%.
The format of this attribute is as follows:
ibm-idsTRtcpPercentage:<an integer number>
The default is 100.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpPercentage:50
attribute ibm-idsTRtcpPercentage cis idsTRtcpPercent 32 normal

ibm-idsTRtcpLimitScope attribute specifies the scope of TCP traffic
regulation. Valid values are PORT, meaning that traffic regulation
parameters apply to the aggregate of all sockets bound to the target
port, or PORT_INSTANCE, meaning that traffic regulation parameters
apply to each socket bound to the target port individually.
The format of this attribute is as follows:
ibm-idsTRtcpLimitScope:PORT | PORT_INSTANCE
The default is PORT_INSTANCE. However, note that when
schema version 2 QOS policies with PolicyScope TR are
converted to schema version 3 IDS policies, this attribute
is set to PORT, to emulate the schema version 2 semantic.

982 z/OS V1R4.0 CS: IP Configuration Reference

This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpLimitScope:PORT
attribute ibm-idsTRtcpLimitScope cis idsTRtcpLmtScope 32 normal

ibm-idsTRudpQueueSize attribute specifies the size of the port backlog
queue. This attribute is used to select one of a number of abstract
queue sizes that map to internally defined limits. Valid values are
VERY_LONG, LONG, SHORT, VERY_SHORT.
The format of this attribute is as follows:
ibm-idsTRudpQueueSize:VERY_LONG | LONG | SHORT | VERY_SHORT
The default is VERY_LONG.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRudpQueueSize:SHORT
attribute ibm-idsTRudpQueueSize cis idsTRudpQueueSize 32 normal

ibm-idsFSInterval attribute specifies the interval in minutes for
monitoring for fast scanning attacks. The maximum value is 1440.
Only one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsFSInterval:<an integer number>
The default is 1.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsFSInterval:10
attribute ibm-idsFSInterval cis idsFSInterval 32 normal

ibm-idsFSThreshold attribute specifies the fast scanning threshold.
A fast scan attack is detected if more events from a single source
are detected than specified within the interval defined with the
ibm-idsFSInterval attribute. The maximum value is 64. Only one
policy rule in the set of rules for a given stack can specify this
global scan value.
The format of this attribute is as follows:
ibm-idsFSThreshold:<an integer number>
The default is 5.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsFSThreshold:9
attribute ibm-idsFSThreshold cis idsFSThreshold 32 normal

ibm-idsSSInterval attribute specifies the interval in minutes for
monitoring for slow scanning attacks. The maximum value is 1440.
The value specified must be greater than the value specified for the
ibm-idsFSInterval attribute. However, a value of 0 can be specified
to indicate that no slow scan processing should be performed. Only
one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsSSInterval:<an integer number>
The default is 120.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSSInterval:300
attribute ibm-idsSSInterval cis idsSSInterval 32 normal

ibm-idsSSThreshold attribute specifies the slow scanning threshold.
A slow scan attack is detected if more events from a single source
are detected than specified within the interval defined with the
ibm-idsSSInterval attribute. The maximum value is 64. The value

Appendix E. LDAPv2 schema 2 definition files 983

specified must be greater than the value specified for the
ibm-idsFSInterval attribute. However, a value of 0 can be specified
to indicate that no slow scan processing should be performed. Only
one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsSSThreshold:<an integer number>
The default is 10.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSSThreshold:25
attribute ibm-idsSSThreshold cis idsSSThreshold 32 normal

ibm-idsSensitivity attribute specifies the sensitivity of events
monitored for fast and slow scan attack detection. Events that are
monitored can be classified as normal, possibly suspicious, or very
suspicious. This attribute selects which of these types of events
should be counted for scan attack detection. Valid values are
NONE, meaning no events are counted, HIGH, meaning all event types
are counted, MEDIUM, meaning possibly suspicious and very suspicious
events are counted, or LOW, meaning only very suspicious events are
counted.
The format of this attribute is as follows:
ibm-idsSensitivity:NONE | HIGH | MEDIUM | LOW
The default is NONE.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSensitivity:MEDIUM
attribute ibm-idsSensitivity cis idsSensitivity 32 normal

ibm-idsScanExclusion attribute specifies IP addresses and optionally
ports that are to be excluded when monitoring for scan attacks. For
example, responses from name servers may appear to be scan attacks,
unless the name servers are excluded using this attribute.
The format of this attribute is as follows:
ibm-idsScanExclusion:1-<RemoteOPv4Address>-<PrefixMaskLength>
[-<RemoteFromPort>][->RemoteToPort>]
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the action
if its remote address unmasked bits are
identical to the unmasked bits defined.
This attribute applies to version 3 policies.
This is a multi-valued attribute.
some examples:
ibm-idsScanExclusion:1-130.0.1.1
ibm-idsScanExclusion:1-130.0.2.1-100-110
ibm-idsScanExclusion:1-130.0.3.1-53
The first example shows only an IP address, the second shows
a port range, and the last shows only one port, no range.
attribute ibm-idsScanExclusion cis idsScanExclusion 32 normal

ibm-policyRepositoryName attribute specifies the user friendly name of
an ibm-policyRepository object. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyRepositoryName cis policyRepName 256 normal

ibm-policySubtreesAuxContainedSet attribute provides an unordered
set of distinguished name pointers to one or more directory subtrees
that anchor policy-related objects. This allows a more efficient
retrieval of policy objects from an LDAP server. This attribute
applies to version 3 policies.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced directory subtree.
attribute ibm-policySubtreesAuxContainedSet dn policySubtreeSet 256 normal

984 z/OS V1R4.0 CS: IP Configuration Reference

SubnetAddr attribute specifies the interface IP address for which the
type of service (TOS) byte mappings defined with the SetSubnetPrioTosMask
object are to be applied. The specified value must be a valid interface
for the stack for which this attribute applies.
The format of this attribute is as follows:
SubnetAddr:<IPv4Address>
Default is all interfaces.
This is a single-valued attribute.
attribute SubnetAddr cis SubnetAddr 32 normal

SubnetTosMask attribute specifies the type of service (TOS) byte bits
that are to be considered for mapping to outbound interface priorities
using the SetSubnetPrioTosMask object. This attribute is required.
The format of this attribute is as follows:
SubnetTosMask:<a string of 8 ’0’ and ’1’>
This is a single-valued attribute.
attribute SubnetTosMask cis SubnetTosMask 8 normal

PriorityTosMapping attribute specifies type of service (TOS) byte to
outbound interface priority mappings for the SetSubnetPrioTosMask
object. For devices that support tagging of Virtual LAN (VLAN) frames,
the VLAN user priority can optionally be specified. This attribute
can be repeated for each such mapping to be defined.
The format of this attribute is as follows:
PriorityTosMapping:<integer number-sting of 8’0’ and ’1’[-integer number]>
The following example shows the default values for the mapping:
PriorityTosMapping:1-11100000
PriorityTosMapping:1-11000000
PriorityTosMapping:1-10100000
PriorityTosMapping:1-10000000
PriorityTosMapping:2-01100000
PriorityTosMapping:3-01000000
PriorityTosMapping:4-00100000
PriorityTosMapping:4-00000000
The following example shows VLAN user priority specified:
PriorityTosMapping:1-11000000-3
This is a multi-valued attribute.
attribute PriorityTosMapping cis PriorityTosMap 32 normal

PAGENTOC sample
#
IBM Communications Server for z/OS
CS for z/OS IP
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGOC
#
5694-A01 (C) Copyright IBM Corp. 1998, 2001
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
Status = CSV1R2
#
pagent_oc.conf
#
This file contains objectclass definitions to be defined in
an LDAP server for Quality of Service (QOS) and Intrusion Detection
Services (IDS) policies. It must be included in the LDAP server’s
initial configuration file (i.e., slapd.conf file).
#
This file is for LDAP protocol version 2 servers.
#
**************************** IMPORTANT ****************************

Figure 45. PAGENTAT sample

Appendix E. LDAPv2 schema 2 definition files 985

* *
* Two versions of policies are supported with this file: *
* *
* - Version 2 policies are supported for CSV2R10. *
* - Version 3 policies are supported for CSV1R2. *
* *
* Unless otherwise noted, all object classes defined herein apply *
* to both of the above versions. *
* *
**************************** IMPORTANT ****************************
#

The ibm-policy object class is an abstract class which is used as the
root of all policy related structural classes. This class applies to
version 3 policies.
objectclass ibm-policy

requires
objectClass

allows
cn,
ibm-policyKeywords,
description

The ibm-policyGroup object class is a structural subclass of
ibm-policy that acts as a container for either a set of related
policy rules or a set of related policy groups (e.g., groups imbedded
within a group). An ibm-policyGroup object can use either the
ibm-policyRulesAuxContainedSet or ibm-policyGroupsAuxContainedSet
pointer to realize this containment.
objectclass ibm-policyGroup

requires
objectClass,
ibm-policyGroupName

allows
ibm-policyGroupsAuxContainedSet,
ibm-policyRulesAuxContainedSet,
ibm-policyGroupKeywords,
cn,
ibm-policyKeywords,
description

The ibm-policyRule object class is a structural subclass of
ibm-policy that represents the "If Condition then Action" semantic
associated with a policy. The set of conditions (e.g., source IP
address ranges, source port numbers etc.) are either included directly
into an ibm-policyRule object (i.e., a simple rule) or pointed to by
the ibm-policyRuleConditionList or ibm-policyRuleConditionListDN
attribute (i.e., a complex rule).
objectclass ibm-policyRule

requires
objectClass,
ibm-policyRuleName

allows
ibm-policyRuleEnabled,
ibm-policyRuleConditionListType,
ibm-policyRuleConditionList,
ibm-policyRuleConditionListDN,
ibm-policyRuleActionList,
ibm-policyRuleActionListDN,
ibm-policyRuleValidityPeriodList,
ibm-policyRuleKeywords,
ibm-policyRuleUsage,
ibm-policyRulePriority,
ibm-policyRuleMandatory,
ibm-policyRuleSequencedActions,
ibm-policyRoles,
cn,

986 z/OS V1R4.0 CS: IP Configuration Reference

ibm-policyKeywords,
description

The ibm-policyRuleConditionAssociation object class is a structural
subclass of ibm-policy that represents policy condition objects. The
policy conditions themselves are represented by auxiliary subclasses
of the auxiliary class ibm-policyConditionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation for rule-specific conditions. For
reusable conditions, the auxiliary classes are attached to instances
of the class ibm-policyInstance or ibm-policyConditionInstance. This
class applies to version 3 policies.
objectclass ibm-policyRuleConditionAssociation

requires
objectClass,
ibm-policyConditionName,
ibm-policyConditionGroupNumber,
ibm-policyConditionNegated

allows
ibm-policyConditionDN,
cn,
ibm-policyKeywords,
description

The ibm-policyRuleActionAssociation object class is a structural
subclass of ibm-policy that represents policy action objects. The
policy actions themselves are represented by auxiliary subclasses of
the auxiliary class ibm-policyActionAuxClass. These auxiliary classes
are attached directly to instances of the class
ibm-policyRuleActionAssociation for rule-specific actions. For
reusable actions, the auxiliary classes are attached to instances of
the class ibm-policyInstance or ibm-policyActionInstance. This class
applies to version 3 policies.
objectclass ibm-policyRuleActionAssociation

requires
objectClass,
ibm-policyActionName,
ibm-policyActionOrder

allows
ibm-policyActionDN,
cn,
ibm-policyKeywords,
description

The ibm-policyInstance object class is a structural subclass of
ibm-policy that represents either policy condition or policy action
objects. The policy conditions or actions themselves are represented
by auxiliary subclasses of the auxiliary class
ibm-policyConditionAuxClass or ibm-policyActionAuxClass. These
auxiliary classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation or ibm-policyRuleActionAssociation
for rule-specific conditions or actions. For reusable conditions or
actions, the auxiliary classes are attached to instances of the class
ibm-policyInstance, ibm-policyConditionInstance or
ibm-policyActionInstance. This class applies to version 3 policies.
objectclass ibm-policyInstance

requires
objectClass

allows
ibm-policyInstanceName,
cn,
ibm-policyKeywords,
description

The ibm-policyConditionInstance object class is a structural subclass
of ibm-policyInstance that represents policy condition objects. The
policy conditions themselves are represented by auxiliary subclasses

Appendix E. LDAPv2 schema 2 definition files 987

of the auxiliary class ibm-policyConditionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation for rule-specific conditions. For
reusable conditions, the auxiliary classes are attached to instances
of the class ibm-policyInstance or ibm-policyConditionInstance. This
class applies to version 3 policies.
objectclass ibm-policyConditionInstance

requires
objectClass

allows
ibm-policyInstanceName,
ibm-policyConditionName,
cn,
ibm-policyKeywords,
description

The ibm-policyActionInstance object class is a structural subclass
of ibm-policyInstance that represents policy action objects. The
policy actions themselves are represented by auxiliary subclasses
of the auxiliary class ibm-policyActionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleActionAssociation for rule-specific actions. For
reusable actions, the auxiliary classes are attached to instances of
the class ibm-policyInstance or ibm-policyActionInstance. This class
applies to version 3 policies.
objectclass ibm-policyActionInstance

requires
objectClass

allows
ibm-policyInstanceName,
ibm-policyActionName,
cn,
ibm-policyKeywords,
description

The ibm-policyCondition object class is a structural subclass of
ibm-policy that represents a condition to be evaluated in conjunction
with a policy rule object (i.e., "If Condition then Action" semantic).
The actual conditions are contained in subclasses of this class.
This class applies to version 2 policies.
objectclass ibm-policyCondition

requires
objectClass,
ibm-policyConditionName

allows
cn,
ibm-policyKeywords,
description

The ibm-policyTimePeriodCondition object class is a structural
subclass of ibm-policyCondition that represents the time periods
during which a policy rule is active, to be evaluated in conjunction
with a policy rule. The ibm-policyTimePeriodCondition object can only
be referenced within a policy rule object. This class applies to
version 2 policies.
objectclass ibm-policyTimePeriodCondition

requires
objectClass,
ibm-policyConditionName

allows
ibm-ptpConditionTime,
ibm-ptpConditionMonthOfYearMask,
ibm-ptpConditionDayOfMonthMask,
ibm-ptpConditionDayOfWeekMask,
ibm-ptpConditionTimeOfDayMask,
ibm-ptpConditionTimeZone,
cn,

988 z/OS V1R4.0 CS: IP Configuration Reference

ibm-policyKeywords,
description

The ibm-networkingPolicyCondition object class is a structural subclass
of ibm-policyCondition that represents a set of networking related
conditions to be evaluated in conjunction with a policy rule object.
The networking conditions themselves are represented by the auxiliary
subclasses ibm-routeConditionAuxClass, ibm-hostConditionAuxClass, and
ibm-applicationConditionAuxClass, which are attached to this class.
This class applies to version 2 policies.
objectclass ibm-networkingPolicyCondition

requires
objectClass,
ibm-policyConditionName

allows
cn,
ibm-policyKeywords,
description

The ibm-policyAction object class is a structural subclass of
ibm-policy that represents an action to be performed as a result of
evaluation of a policy rule (e.g., the "If Condition then Action"
representation). The actions themselves are contained in the
ibm-serviceCategories subclass. This class applies to version 2
policies.
objectclass ibm-policyAction

requires
objectClass,
ibm-policyActionName

allows
cn,
ibm-policyKeywords,
description

The ibm-serviceCategories object class is a structural subclass of
ibm-policyAction that contains a set of Quality of Service (QoS)
attributes to apply to a flow of IP packets, identified by a policy
rule condition, as they traverse the network. This class applies to
version 2 policies.
objectclass ibm-serviceCategories

requires
objectClass,
ibm-policyActionName

allows
ibm-PolicyScope,
ibm-Permission,
ibm-MaxRate,
ibm-MinRate,
ibm-MaxDelay,
ibm-OutgoingTOS,
ibm-MaxConnections,
ibm-Interface,
ibm-DiffServInProfileRate,
ibm-DiffServInProfilePeakRate,
ibm-DiffServInProfileTokenBucket,
ibm-DiffServInProfileMaxPacketSize,
ibm-DiffServOutProfileTransmittedTOSByte,
ibm-DiffServExcessTrafficTreatment,
ibm-FlowServiceType,
ibm-MaxRatePerFlow,
ibm-MaxTokenBucketPerFlow,
ibm-MaxFlows,
cn,
ibm-policyKeywords,
description

The ibm-policyElementAuxClass object class is an auxiliary subclass of

Appendix E. LDAPv2 schema 2 definition files 989

ibm-policy that is used to "tag" an instance of a class defined outside
the realm of policy as being nevertheless relevant to a policy
specification. Every instance to which this class is attached becomes
an instance of the ibm-policy class. This class applies to version 3
policies.
objectclass ibm-policyElementAuxClass

requires
objectClass

allows
cn,
ibm-policyKeywords,
description

The ibm-policyConditionAuxClass object class is an auxiliary class that
represents a condition to be evaluated in conjunction with a policy
rule object (i.e., "If Condition then Action" semantic). It is
attached directly to an instance of ibm-policyRuleConditionAssociation
or ibm-policyRule for rule-specific conditions, or to an instance of
ibm-policyInstance or ibm-policyConditionInstance for reusable
conditions. The actual conditions are represented by auxiliary
subclasses of this class. This class applies to version 3 policies.
objectclass ibm-policyConditionAuxClass

requires
objectClass

The ibm-policyTimePeriodConditionAuxClass object class is an
auxiliary subclass of ibm-policyConditionAuxClass that represents the
time periods during which a policy rule is active, to be evaluated in
conjunction with a policy rule. This class applies to version 3
policies.
objectclass ibm-policyTimePeriodConditionAuxClass

requires
objectClass

allows
ibm-ptpConditionTime,
ibm-ptpConditionMonthOfYearMask,
ibm-ptpConditionDayOfMonthMask,
ibm-ptpConditionDayOfWeekMask,
ibm-ptpConditionTimeOfDayMask,
ibm-ptpConditionTimeZone,
ibm-ptpConditionLocalOrUtcTime

The ibm-networkingPolicyConditionAuxClass object class is an auxiliary
subclass of ibm-policyConditionAuxClass that represents a set of
networking related conditions to be evaluated in conjunction with a
policy rule object. The networking conditions themselves are
represented by the auxiliary subclasses ibm-routeConditionAuxClass,
ibm-hostConditionAuxClass, and ibm-applicationConditionAuxClass.
This class applies to version 3 policies.
objectclass ibm-networkingPolicyConditionAuxClass

requires
objectClass

The ibm-routeConditionAuxClass object class is an auxiliary subclass
of ibm-networkingPolicyConditionAuxClass that represents the routing
of an entity (e.g., a packet) to be evaluated in conjunction with a
policy rule.
objectclass ibm-routeConditionAuxClass

requires
objectClass

allows
ibm-interface

The ibm-hostConditionAuxClass object class is an auxiliary subclass
of ibm-networkingPolicyConditionAuxClass that represents the
communicating end hosts (e.g., IP addresses) to be evaluated in
conjunction with a policy rule.

990 z/OS V1R4.0 CS: IP Configuration Reference

objectclass ibm-hostConditionAuxClass
requires

objectClass
allows

ibm-sourceIPAddressRange,
ibm-destinationIPAddressRange

The ibm-applicationConditionAuxClass object class is an auxiliary
subclass of ibm-networkingPolicyConditionAuxClass that represents the
nature of the application (e.g., port 21, FTPD) and the transport
entity (e.g., TCP) to be evaluated in conjunction with a policy rule.
objectclass ibm-applicationConditionAuxClass

requires
objectClass

allows
ibm-sourcePortRange,
ibm-destinationPortRange,
ibm-protocolNumberRange,
ibm-applicationName,
ibm-applicationData,
ibm-applicationPriority

The ibm-idsConditionAuxClass object class is an auxiliary subclass of
ibm-policyConditionAuxClass. It represents conditions that must be
true for Intrusion Detection Services (IDS) policy rules. This class
applies to version 3 policies.
objectclass ibm-idsConditionAuxClass

requires
objectClass,
ibm-idsConditionType

allows
description

The ibm-idsAttackConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass representing the known types of
intrusions to be evaluated in conjunction with an IDS policy rule.
This class applies to version 3 policies.
objectclass ibm-idsAttackConditionAuxClass

requires
objectClass

allows
ibm-idsAttackType,
description

The ibm-idsIPAttackConditionAuxClass object class is an auxiliary
subclass of ibm-idsAttackConditionAuxClass representing allowed IP
values for IDS IP attacks. This class applies to version 3 policies.
objectclass ibm-idsIPAttackConditionAuxClass

requires
objectClass

allows
ibm-idsIPOptionRange,
description

The ibm-idsTrafficRegulationConditionAuxClass object class is an
auxiliary subclass of ibm-idsConditionAuxClass representing traffic
regulation conditions. This auxiliary class has no significant
attributes but its inclusion in the policy condition object signifies
that traffic regulation parameters may be provided in the
ibm-idsTrafficRegulationActionAuxClass. This class applies to version
3 policies.
objectclass ibm-idsTrafficRegulationConditionAuxClass

requires
objectClass

allows
description

Appendix E. LDAPv2 schema 2 definition files 991

The ibm-idsScanConditionAuxClass object class is an auxiliary subclass
of ibm-idsConditionAuxClass representing global conditions for setting
scanning attack detection parameters. This auxiliary class has no
significant attributes but its inclusion in the policy condition
object signifies that the global scan parameters may be provided in
the ibm-idsScanActionAuxClass. This class applies to version 3
policies.
objectclass ibm-idsScanConditionAuxClass

requires
objectClass

allows
description

The ibm-idsScanEventConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass specifying the scan event
conditions to be detected. This auxiliary class has no significant
attributes but its inclusion in the policy condition object signifies
that the scan event parameters may be provided in the
ibm-idsScanSensitivityActionAuxClass and/or
ibm-idsScanExclusionActionAuxClass. Multiple scan events to be
detected can be specified for a TCP/IP stack. This class applies to
version 3 policies.
objectclass ibm-idsScanEventConditionAuxClass

requires
objectClass

allows
description

The ibm-idsTransportConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass representing local and remote port
ranges and protocol ranges to be applied to IDS conditions. This class
applies to version 3 policies.
objectclass ibm-idsTransportConditionAuxClass

requires
objectClass

allows
ibm-idsLocalPortRange,
ibm-idsRemotePortRange,
ibm-idsProtocolRange,
description

The ibm-idsHostConditionAuxClass object class is an auxiliary subclass
of ibm-idsConditionAuxClass representing local and remote IP hosts
to be applied to IDS conditions. This class applies to version 3
policies.
objectclass ibm-idsHostConditionAuxClass

requires
objectClass

allows
ibm-idsLocalHostIPAddress,
ibm-idsRemoteHostIPAddress,
description

The ibm-policyActionAuxClass object class is an auxiliary class that
represents an action to be performed as a result of evaluation of a
policy rule (e.g., the "If Condition then Action" semantic). It is
attached directly to an instance of ibm-policyRuleActionAssociation
for rule-specific actions, or to an instance of ibm-policyInstance or
ibm-policyActionInstance for reusable actions. The actions
themselves are represented by auxiliary subclasses such as
ibm-serviceCategoriesAuxClass. This class applies to version 3
policies.
objectclass ibm-policyActionAuxClass

requires
objectClass

992 z/OS V1R4.0 CS: IP Configuration Reference

The ibm-serviceCategoriesAuxClass object class is an auxiliary subclass
of ibm-policyActionAuxClass that contains a set of Quality of Service
(QoS) attributes to apply to a flow of IP packets, identified by a
policy rule condition, as they traverse the network. This class
applies to version 3 policies.
objectclass ibm-serviceCategoriesAuxClass

requires
objectClass

allows
ibm-PolicyScope,
ibm-Permission,
ibm-MaxRate,
ibm-MinRate,
ibm-MaxDelay,
ibm-OutgoingTOS,
ibm-MaxConnections,
ibm-Interface,
ibm-DiffServInProfileRate,
ibm-DiffServInProfilePeakRate,
ibm-DiffServInProfileTokenBucket,
ibm-DiffServInProfileMaxPacketSize,
ibm-DiffServOutProfileTransmittedTOSByte,
ibm-DiffServExcessTrafficTreatment,
ibm-FlowServiceType,
ibm-MaxRatePerFlow,
ibm-MaxTokenBucketPerFlow,
ibm-MaxFlows

The ibm-idsActionAuxClass object class is an auxiliary subclass of
ibm-policyActionAuxClass. It represents actions to be performed
for a corresponding Intrusion Detection Services (IDS) rule. This
class applies to version 3 policies.
objectclass ibm-idsActionAuxClass

requires
objectClass,
ibm-idsActionType

allows
description

The ibm-idsNotificationAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass indicating IDS notification actions. This
class applies to version 3 policies.
objectclass ibm-idsNotificationAuxClass

requires
objectClass

allows
ibm-idsNotification,
ibm-idsStatInterval,
ibm-idsLoggingLevel,
ibm-idsTypeActions,
ibm-idsTraceData,
ibm-idsTraceRecordSize,
description

The ibm-idsAttackActionsAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass indicating IDS attack type actions. This
class applies to version 3 policies.
objectclass ibm-idsAttackActionsAuxClass

requires
objectClass

allows
ibm-idsMaxEventMessage,
description

The ibm-idsTrafficRegulationActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing actions for
handling Traffic Regulation. It has no significant attributes but

Appendix E. LDAPv2 schema 2 definition files 993

is used to anchor additional traffic regulation subclasses. This
class applies to version 3 policies.
objectclass ibm-idsTrafficRegulationActionAuxClass

requires
objectClass

allows
description

The ibm-idsTRtcpActionAuxClass object class is an auxiliary subclass
of ibm-idsTrafficRegulationActionAuxClass representing actions for
handling traffic regulation for TCP on a per port basis. This class
applies to version 3 policies.
objectclass ibm-idsTRtcpActionAuxClass

requires
objectClass

allows
ibm-idsTRtcpTotalConnections,
ibm-idsTRtcpPercentage,
ibm-idsTRtcpLimitScope,
description

The idsTRudpActionAuxClass object class is an auxiliary subclass of
ibm-idsTrafficRegulationActionAuxClass representing actions for
handling traffic regulation for UDP. This class applies to version 3
policies.
objectclass ibm-idsTRudpActionAuxClass

requires
objectClass

allows
ibm-idsTRudpQueueSize,
description

The ibm-idsScanActionAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass representing the global setting of scan
attack detection parameters. Note that only one set of these
parameters is allowed per TCP/IP stack. This class applies to version
3 policies.
objectclass ibm-idsScanActionAuxClass

requires
objectClass

allows
ibm-idsFSInterval,
ibm-idsFSThreshold,
ibm-idsSSInterval,
ibm-idsSSThreshold,
description

The ibm-idsScanSensitivityActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing the
sensitivity of the scan events which are detected. This class
applies to version 3 policies.
objectclass ibm-idsScanSensitivityActionAuxClass

requires
objectClass

allows
ibm-idsSensitivity,
description

The ibm-idsScanExclusionActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing exclusions
in conjunction with scanning attacks. It is valid to be attached to
an IDS action when the corresponding condition is for detecting scan
events. This class applies to version 3 policies.
objectclass ibm-idsScanExclusionActionAuxClass

requires
objectClass

allows

994 z/OS V1R4.0 CS: IP Configuration Reference

ibm-idsScanExclusion,
description

The ibm-policyRepository object class is a structural class which is
used as the root of reusable policy information, such as policy
conditions and policy actions. This class applies to version 3
policies.
objectclass ibm-policyRepository

requires
objectClass,
ibm-policyRepositoryName

allows
cn,
description

The ibm-policySubtreesPtrAuxClass object class is an auxiliary class
that allows a set of pointers to be defined which point to sets of
objects that are at the root of subtrees containing policy-related
information. By attaching this pointer attribute to instances of
various other classes, a policy administrator has a flexible way of
providing an entry point into the directory that allows a client to
locate and retrieve the policy information relevant to it in an
efficient manner. This class applies to version 3 policies.
objectclass ibm-policySubtreesPtrAuxClass

requires
objectClass

allows
ibm-policySubtreesAuxContainedSet

The ibm-policyGroupContainmentAuxClass object class is an auxiliary
class used to bind policy group objects to an appropriate container
object (e.g., another policy group object) via its attribute pointer
ibm-policyGroupsAuxContainedSet. It is attached to instances of
ibm-policyGroup.
objectclass ibm-policyGroupContainmentAuxClass

requires
objectClass

allows
ibm-policyGroupsAuxContainedSet

The ibm-policyRuleContainmentAuxClass object class is an auxiliary
class used to bind policy rule objects to an appropriate container
object (e.g., a # policy group object) via its attribute pointer
ibm-policyRulesAuxContainedSet. It is attached to instances of
ibm-policyGroup.
objectclass ibm-policyRuleContainmentAuxClass

requires
objectClass

allows
ibm-policyRulesAuxContainedSet

The ibm-policyGroupLoadDistributionAuxClass object class is an
auxiliary class used to specify load distribution attributes for
policy rules contained in the policy group. It is attached to
instances of ibm-policyGroup. This class applies to version 2
policies.
objectclass ibm-policyGroupLoadDistributionAuxClass

requires
objectClass

allows
ibm-policyGroupForLoadDistribution

The SetSubnetPrioTosMask object class is a structural class that
defines a mapping of IP type of service (TOS) byte to outbound
interface priority values. It is not directly related to the other
object classes defined for policy groups, rules, conditions, or
actions.

Appendix E. LDAPv2 schema 2 definition files 995

objectclass SetSubnetPrioTosMask
requires

objectClass,
SubnetTosMask

allows
cn,
SubnetAddr,
PriorityTosMapping,
description

Figure 46. PAGENTOC sample

996 z/OS V1R4.0 CS: IP Configuration Reference

Appendix F. How to read a syntax diagram

This syntax information applies to all commands and statements included in this
document that do not have their own syntax described elsewhere in this document.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation
The following symbols are used in syntax diagrams:

Symbol Description

-- Marks the beginning of the command syntax.

- Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

-. Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Parameters
The following types of parameters are used in syntax diagrams.
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case indicated
in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples
In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

© Copyright IBM Corp. 2000, 2002 997

|
|

|
|
|
|
|

|
|

�� USER user_id
password

�

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead and
the second line begins with a single arrowhead.

�� The first line of a syntax diagram that is longer than one line �

� The continuation of the subcommands, parameters, or both �

Required operands
Required operands and values appear on the main path line.

�� REQUIRED_OPERAND �

You must code required operands and values.

Choose one required item from a stack
If there is more than one mutually exclusive required operand or value to choose
from, they are stacked vertically.

�� REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

�

Optional values
Optional operands and values appear below the main path line.

��
OPERAND

�

You can choose not to code optional operands and values.

Choose one optional operand from a stack
If there is more than one mutually exclusive optional operand or value to choose
from, they are stacked vertically below the main path line.

��
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2

�

Repeating an operand
An arrow returning to the left above an operand or value on the main path line
means that the operand or value can be repeated. The comma means that each
operand or value must be separated from the next by a comma. If no comma
appears in the returning arrow, the operand or value must be separated from the
next by a blank.

998 z/OS V1R4.0 CS: IP Configuration Reference

|

||||||||||||||||||||
|

|
||||||||||||||||||
|

|

|
|

|
|

�� 1

,

REPEATABLE_OPERAND �

Selecting more than one operand
An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

��

1

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

�

Nonalphanumeric characters
If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

�� OPERAND=(001,0.001) �

Blank spaces in syntax diagrams
If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

�� OPERAND=(001 FIXED) �

Default operands
Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

��
DEFAULT

OPERAND
�

Variables
A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the text.

�� variable �

Syntax fragments
Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed

Appendix F. How to read a syntax diagram 999

case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

�� Syntax fragment �

Syntax fragment:

1ST_OPERAND,2ND_OPERAND,3RD_OPERAND

1000 z/OS V1R4.0 CS: IP Configuration Reference

Appendix G. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New protocols
are being designed and implemented by researchers and are brought to the
attention of the Internet community in the form of RFCs. Some of these protocols
are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can see Internet drafts at http://www.ietf.org/ID.html. See “Draft RFCs” on
page 1008 for draft RFCs implemented in z/OS V1R4 Communications Server.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at the following Web address: http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

© Copyright IBM Corp. 2000, 2002 1001

http://www.ietf.org/ID.html
http://www.rfc-editor.org/rfc.html

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

855 Telnet Option Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

858 Telnet Suppress Go Ahead Option J.B. Postel, J.K. Reynolds

859 Telnet Status Option J.B. Postel, J.K. Reynolds

860 Telnet Timing Mark Option J.B. Postel, J.K. Reynolds

861 Telnet Extended Options—List Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

896 Congestion Control in IP/TCP Internetworks J. Nagle

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1006 ISO Transport Service on top of the TCP Version 3 M.T.Rose, D.E. Cass

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1011 Official Internet Protocols J. Reynolds, J. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell,
J.S. Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

1002 z/OS V1R4.0 CS: IP Configuration Reference

||

||

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks
J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun
Microsystems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1060 Assigned Numbers J. Reynolds, J. Postel

1073 Telnet Window Size Option D. Waitzman

1079 Telnet Terminal Speed Option C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1096 Telnet X Display Location Option G. Marcy

1101 DNS encoding of network names and other types P.V. Mockapetris

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-Based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP) J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1158 Management Information Base for Network Management of TCP/IP-based
internets: MIB-II M.T. Rose

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1184 Telnet Linemode Option D. Borman

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

1191 Path MTU Discovery J. Mogul, S. Deering

1198 FYI on the X Window System R.W. Scheifler

Appendix G. Related protocol specifications (RFCs) 1003

||

||
|

1207 FYI on Questions and Answers: Answers to Commonly Asked “Experienced
Internet User” Questions G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 Address Mapping for DDN L. Morales, P. Hasse

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions G.S. Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

1348 DNS NSAP RRs B. Manning

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis,
D. Robinson, R. Ullmann

1363 A Proposed Flow Specification C. Partridge

1372 Telnet Remote Flow Control Option D. Borman, C. L. Hedrick

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2—Carrying Additional Information G. Malkin

1004 z/OS V1R4.0 CS: IP Configuration Reference

||

||

||

||

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

1416 Telnet Authentication Option D. Borman, ed.

1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1535 A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S.Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 IAB Official Protocol Standards J.B. Postel

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions A.N. Marine, J. Reynolds, G.S. Malkin

1695 Definitions of Managed Objects for ATM Management Version 8.0 Using
SMIv2 M. Ahmed, K. Tesink

1706 DNS NSAP Resource Records B. Manning, R. Colella

1713 Tools for DNS debugging A. Romao

1723 RIP Version 2—Carrying Additional Information G. Malkin

1766 Tags for the Identification of Languages H. Alvestrand

1794 DNS Support for Load Balancing T. Brisco

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1876 A Means for Expressing Location Information in the Domain Name System
C. Davis, P. Vixie, T. Goodwin, I. Dickinson

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1901 Introduction to Community-Based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Appendix G. Related protocol specifications (RFCs) 1005

||

||

||

||

||
|

||

1902 Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocols Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-Standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

1982 Serial Number Arithmetic R. Elz, R. Bush

1995 Incremental Zone Transfer in DNS M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P.
Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol Using
SMIv2 K. McCloghrie

2012 SNMPv2 Management Information Base for the Transmission Control
Protocol Using SMIv2 K. McCloghrie

2013 SNMPv2 Management Information Base for the User Datagram Protocol
Using SMIv2 K. McCloghrie

2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

2065 Domain Name System Security Extensions D. Eastlake, C. Kaufman

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

1006 z/OS V1R4.0 CS: IP Configuration Reference

||
|

||

||

||

||

||
|

||

||
|

2137 Secure Domain Name System Dynamic Update D. Eastlake

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System
R. Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP) Version 1 R. Braden, L. Zhang, S.
Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB Using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

2320 Definitions of Managed Objects for Classical IP and ARP over ATM Using
SMIv2 M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2373 IP Version 6 Addressing Architecture R. Hinden, M. O’Dell, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell,
S. Deering

2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon,
R. Elz

2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

2460 Internet Protocol, Version 6 (IPv6) S pecification S. Deering, R. Hinden

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

Appendix G. Related protocol specifications (RFCs) 1007

||

||

||

||

||
|

||
|

||

||

||

||

||

||

||
|

||

||
|

||

||

||
|

||

2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers K. Nichols, S. Blake, F. Baker, D. Black

2535 Domain Name System Security Extensions D. Eastlake

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake

2553 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2571 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

2572 Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick,
J. Johnson

2672 Non-Terminal DNS Name Redirection M. Crawford

2710 Multicast Listener Discovery (MLD) for IPv6S. Deering, W. Fenner, B.
Haberman

2711 IPv6 Router Alert OptionC. Partridge, A. Jackson

2758 Definitions of Managed Objects for Service Level Agreements Performance
Monitoring K. White

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake, B. Wellington

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o, ed.

3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

Draft RFCs
Several areas of IPv6 implementation include elements of the following draft RFCs
and are subject to change during the RFC review process.

1008 z/OS V1R4.0 CS: IP Configuration Reference

||

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||

||
|

||
|

||
|

||

||

||

||

||

||
|

|

|
|

Advanced Sockets API for IPv6
W. Richard Stevens, Matt Thomas, Erik Nordmark, Tatuya Jinmei

Basic Socket Interface Extensions for IPv6
R.E. Gilligan, S. Thomson, J. Bound, J. McCann, W. R. Stevens

Default Address Selection for IPv6
R. Draves

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

A. Conta, S. Deering

IP Version 6 Addressing Architecture
R. Hinden, S. Deering

Appendix G. Related protocol specifications (RFCs) 1009

|
|

|
|

|
|

|
|
|

|
|

1010 z/OS V1R4.0 CS: IP Configuration Reference

Appendix H. Information APARs

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed
below. Documents updated for V1R4 are complete except for the updates
contained in the information APARs that may be issued after V1R4 documents
went to press.

2. Information APARs are predefined for z/OS V1R4 Communications Server and
may not contain updates.

3. Information APARs for OS/390 documents are in the document called OS/390
DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

4. Information APARs for z/OS documents are in the document called z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents
Table 131 lists information APARs for IP documents.

Table 131. IP information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP API Guide ii13255 ii12861 ii12371 ii11635

IP CICS Sockets Guide ii13257 ii12862 ii11626

IP Configuration ii11620
ii12068
ii12353
ii12649
ii13018

IP Configuration Guide ii13244 ii12498
ii13087

ii12362
ii12493
ii13006

IP Configuration Reference ii13245 ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii13249 ii12503 ii12366
ii12495

ii11628

IP Messages Volume 1 ii13250 ii12857
ii13229

ii12367 ii11630
13230

IP Messages Volume 2 ii13251 ii12858 ii12368 ii11631

IP Messages Volume 3 ii13252 ii12859 ii12369
12990

ii11632
ii12883

IP Messages Volume 4 ii13253 ii12860

IP Migration ii13242 ii12497 ii12361 ii11618

© Copyright IBM Corp. 2000, 2002 1011

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Table 131. IP information APARs (continued)

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP Network and Application Design
Guide

ii13243

IP Network Print Facility ii12864 ii11627

IP Programmer’s Reference ii13256 ii12505 ii11634

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

IP User’s Guide ii12365
ii13060

ii11625

IP User’s Guide and Commands ii13247 ii12501 ii12365
ii13060

ii11625

IP System Admin Guide ii13248 ii12502

Quick Reference ii13246 ii12500 ii12364

Information APARs for SNA documents
Table 132 lists information APARs for SNA documents.

Table 132. SNA information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and z/OS CS

V1R1

CS for OS/390
2.8

Anynet SNA over TCP/IP ii11922

Anynet Sockets over SNA ii11921

CSM Guide

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

SNA Customization ii13240 ii12872 ii12388 ii11923

SNA Diagnosis ii13236 ii12490
ii13034`

ii12389 ii11915

SNA Messages ii13238 ii12491 ii12382
ii12383

ii11916

SNA Network Implementation Guide ii13234 ii12487 ii12381 ii11911

SNA Operation ii13237 ii12489 ii12384 ii11914

SNA Migration ii13233 ii12486 ii12386 ii11910

SNA Programming ii13241 ii13033 ii12385 ii11920

Quick Reference ii13246 ii12500 ii12364 ii11913

SNA Resource Definition Reference ii13235 ii12488 ii12380
ii12567

ii11912
ii12568

SNA Resource Definition Samples

SNA Data Areas ii13239 ii12492 ii12387 ii11617

Other information APARs
Table 133 on page 1013 lists information APARs not related to documents.

1012 z/OS V1R4.0 CS: IP Configuration Reference

Table 133. Non-document information APARs

Content Number

OMPROUTE ii12026

iQDIO ii11220

index of recomended maintenace for VTAM ii11220

CSM for VTAM ii12657

CSM for TCP/IP ii12658

AHHC, MPC, and CTC ii01501

DLUR/DLUS for z/OS V1R2 ii12986

Enterprise Extender ii12223

Generic resources ii10986

HPR ii10953

MNPS ii10370

Performance ii11710
ii11711
ii11712

Appendix H. Information APARs 1013

1014 z/OS V1R4.0 CS: IP Configuration Reference

Appendix I. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 2000, 2002 1015

1016 z/OS V1R4.0 CS: IP Configuration Reference

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2000, 2002 1017

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

1018 z/OS V1R4.0 CS: IP Configuration Reference

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Notices 1019

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
eServer
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

1020 z/OS V1R4.0 CS: IP Configuration Reference

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
z/OS.e
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/sites/corporate/tradmarx.htm .

Other company, product, and service names may be trademarks or service marks
of others.

Notices 1021

http://www.intel.com/sites/corporate/tradmarx.htm

1022 z/OS V1R4.0 CS: IP Configuration Reference

Index

Special characters
; statement

resolver setup 213
TCPIP.DATA configuration 247

/etc/ftp/socks.conf 564
/etc/ftp.banner 479
/etc/ftp.login 521
/etc/inetd.conf 880
/etc/named.boot 594
/etc/named.inc 599
/etc/named.pid 596
/etc/osnmp.conf 778
/etc/osnmpd.data 5, 750
/etc/protocol, protocol number assignments 197
/etc/pw.src 6, 751
/etc/services HFS file 200
/etc/services, port assignments 200
/etc/snmptrap.dest 7, 752
/etc/syslog.conf 671, 674
/etc/syslog.pid 671
$GENERATE directive 656
$INCLUDE directive 655
$ORIGIN directive 655
$TTL directive 655
statement

resolver setup 213
TCPIP.DATA configuration 247

Numerics
3172 Interconnect Controller 66
3745/46 Channel DLC devices 93
8232 LAN Channel Station 65

A
A220 devices, HYPERchannel 62
ACCEPT_RIP_ROUTE statement 278
ACCESSERRORMSGS statement 458
accessibility features 1015
accounting 921
acl statement 614
address match lists, BIND 9-based DNS 611
address resolution packets (ARP) 66, 67
address space

configuration statements summary, TCP/IP 9
DEVICE and LINK statement 83
resolver 205
specifying parameters 195
TCP/IP 195

ADMINEMAILADDRESS statement 459
agent, RSVP 723
ALLOWAPPL statement 383
ALTLINK statement 310
ALTNJEDOMAIN statement 824
ALTTCPHOSTNAME statement 825
ALWAYSWTO statement 218

anonymous considerations
ANONYMOUSFILEACCESS statement 462
ANONYMOUSFILETYPEJES statement 463
ANONYMOUSFILETYPESEQ statement 464
ANONYMOUSFILETYPESQL statement 465
ANONYMOUSHFSDIRMODE statement 467
ANONYMOUSHFSFILEMODE statement 468
ANONYMOUSHFSINFO statement 469
ANONYMOUSLEVEL statement 470
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
EMAILADDRCHECK statement 503
FILETYPE statement 507
STARTDIRECTORY statement 568

anonymous logon, FTP 441
ANONYMOUS statement 460
ANONYMOUSFILEACCESS statement 462
ANONYMOUSFILETYPEJES statement 463
ANONYMOUSFILETYPESEQ statement 464
ANONYMOUSFILETYPTESQL statement 465
ANONYMOUSFTPLOGGING statement 466
ANONYMOUSHFSDIRMODE statement 467
ANONYMOUSHFSFILEMODE statement 468
ANONYMOUSHFSINFO statement 469
ANONYMOUSLEVEL statement 470
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
AREA statement 260
ARP

packets 66, 67
table 14, 179

ARPAGE statement 14
AS_BOUNDARY_ROUTING statement 261
ASATRANS statement 475
ASCII-to-EBCDIC

table 909
translation 907

ASCII, DBCS statement 829
ASSORTEDPARMS statement 15
ATM

devices 52
devices, coding order 19

ATM considerations 181
ATMARP server 19
ATMARPSV statement 19
ATMLIS statement 21
ATMPVC statement 24
ATSIGN statement 826
AUTOLOG statement 25
AUTOMOUNT statement 476
AUTORECALL statement 477
AUTOTAPEMOUNT statement 478

B
backbone routes 274
BADSPOOLFILEID statement 827

© Copyright IBM Corp. 2000, 2002 1023

banner considerations
ADMINEMAILADDRESS statement 458, 459
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
BANNER statement 479
HFSINFO statement 510
LOGINMSG statement 521
MVSINFO statement 526

BANNER statement 479
base options, DHCP 659
BEGINROUTES statement 28
BEGINVTAM block 333
BEGINVTAM statement

ALLOWAPPL 383
client identifier specification 382
client identifier types and definitions 381
DEFAULTAPPL 384
DEFAULTLUS 386
DEFAULTLUSSPEC 387
DEFAULTPRT 388
DEFAULTPRTSPEC 389
DESTIPGROUP 390
HNGROUP 391
host name specification 382
INTERPTCP 392
IPGROUP 393
LINEMODEAPPL 394
LINKGROUP 395
LU name specification rules 380
LUGROUP 396
LUMAP 397
PARMSGROUP 399
PARMSMAP 400
PORT 401
PRTDEFAULTAPPL 402
PRTGROUP 403
PRTMAP 404
QUEUESESSION 406
RESTRICTAPPL 407
rules 379
USERGROUP 410
USSTCP 411

Big-5 and Traditional Chinese 919
BIG5

conversion 829
LOADDBCSTABLES 223

BINARYLINEMODE statements 337
BIND 4.9.3-based DNS

boot file directives 597
control entries 599
domain data files 599
named daemon, syntax 594
resource records 599
special characters 604
starting 593

BIND 9-based DNS
$GENERATE directive 656
$INCLUDE directive 655
$ORIGIN directive 655
$TTL directive 655
acl statement 614

BIND 9-based DNS (continued)
address match lists 611
BIND master file extension 656
cataloged procedure 605
comment syntax 612
configuration file concepts 610
configuration file statements 612
controls statement 615
dynamic update policies 649
examples 609
include statement 617
inverse mapping 654
key statement 618
logging statement 619
logging statement categories 621
name server signals 608
NAMED9 605
nametype field values 649
options statement 624
PTR records 654
resource records, overview 650
RNDC configuration file 657
server statement 636
sortlist statement 634
starting 605
starting from the UNIX shell 606
statements, configuration file 612
syntax, named9 606
textual expression of RRs 652
trusted-keys statement 638
TTLS, setting 654
tuning options 628
view statement 639
zone file 650
zone file directives 655
zone file resource records 650
zone statement 642

bind control index 154
BIND master file extension 656
BLKSIZE statement 480
boot file directives 597
bridge, token-ring 68
BSDROUTINGPARMS

modification methods 39
statement 37

BUFFERS statement
SNALINK LU6.2 302
X.25 NPSI 312

BUFNO statement 481

C
cataloged procedures

BIND 9-based DNS 605
EZAFTSERV (EZAFTSRV) 439
FTP (FTPD) 439
LLBD 809
LPSPROC 785
MISCSERV 883
NAMED9 605
NCPROUTE (NCPROUT) 323

1024 z/OS V1R4.0 CS: IP Configuration Reference

cataloged procedures (continued)
NDB setup (NDBSETUP) 811
NRGLBD 809
OMPROUTE 255
OPORTRPC 807
OROUTED 887
OSNMPD 747
PORTC (PORTCPRC) 813
PORTPROC 805
PORTS (PORTSPRC) 812
Remote Execution server (RXPROC) 875
RXPROC 875
SMTPPROC 815
SNALINK (SNALPROC) 297
SNALINK LU6.2 (LU62PROC) 299
SNALPROC 297
SNMPPROC 771
TCP/IP (TCPIPROC) 193
X.25 NPSI (X25PROC) 307

CCXLATE statement 482
channel DLC devices, 3745/46 93
channel-to-channel (CTC) devices 60
channel-to-channel DEVICE and LINK 60
CHECKSPOOLSIZE statement 828
CHKPTINT statement 483
CIPHERSUITE statement 484
CLAW devices 55
client connection initiation record, TSO Telnet 948
client connection termination record, TSO Telnet 949
client identifier specification, rules 382
client identifier statements, Telnet

DESTIPGROUP statement 390
HNGROUP statement 391
IPGROUP statement 393
LINKGROUP statement 395

client identifier types and definitions 381
CLIENTAUTH keyword 435
CLIENTAUTH statement 338
code page conversion

control connection 589
data connection 589
table priority, control connection 589
table priority, data connection 590

CODEFILE, CONVXLAT 917
CODEPAGE statement 339
common configuration statements for RIP and

OSPF 290
Common Link Access to Workstation (CLAW)

device 55
common record format, SMF type 119 records 931
COMMONSEARCH statement 207
Communications Server for z/OS, online

information xxiii
COMMUNITY entry 763
COMPARISON statement 263
CONDDISP statement 485
configuration data sets

ETC.PROTO 197
ETC.SERVICES 200
FTP.DATA 442
FTP.DATA statements 457

configuration data sets (continued)
LPDDATA 786
LU62CFG 299
MIBS.DATA 779
OSNMP.CONF 775
OSNMPD.DATA 750
PAGENT.CONF 714
PROFILE.TCPIP 9
PW.SRC 751
RSVPD.CONF 730
search orders, summary 3
SMTPCONF 816
SNMPD.BOOTS 770
SNMPD.CONF 752
SNMPTRAP.DEST 752
summary list 3
TCPDATA 248
TRAPFWD.CONF 782
X25CONF 307

configuration files
concepts 610
DCAS 435
OMPROUTE 258
PassTicket 434
policy 675
RNDC 657
RSVP 723

configuration statements
FTP.DATA 442
LPD 788
OSPF 258
resolver setup 205
RIP 277
SMTP 816
SNALINK LU6.2 300, 301
SOCKS 586
statement syntax 12
syslogd 672
TCP/IP address space summary 9
TCPIP.DATA 205
X.25 NPSI server 309

configuration statements, TCPIP.DATA 205, 214
connection resolution 370
CONNTYPE statement 340
control connection, code page conversions 589
control entries

BIND 4.9.3-based DNS 599
definitions 599

controls statement 615
conversion tables, control connection 589
converting translation tables to binary 917
CONVXLAT

command 910
examples 918
HANGEUL 917
KANJI 917
syntax 917
TCHINESE 917

CRLLDAPSERVER statement 341
CTC devices 60
CTRLCONN statement 486

Index 1025

D
DASD considerations

AUTOMOUNT statement 476
AUTORECALL statement 477
BUFNO statement 481
CHKPTINT statement 483
CIPHERSUITE statement 484
CONDDISP statement 485
DATACLASS statement 487
DCBDSN statement 491
DEST statement 497
DIRECTORY statement 498
DIRECTORYMODE statement 499
FILETYPE statement 507
LRECL statement 522
MIGRATEVOL statement 525
PRIMARY statement 531
RECFM statement 534
RETPD statement 537
SECONDARY statement 542
SPACETYPE statement 565
TRAILINGBLANKS statement 572
UCOUNT statement 574
UNITNAME statement 579
VCOUNT statement 580
VOLUME statement 581
WRAPRECORD statement 583
WRTAPEFASTIO statement 584

DATA client configuration statements, TCPIP.DATA client
configuration

; 213, 247
213, 247
ALWAYSWTO 218
COMMONSEARCH 207
DATASETPREFIX 219
DEFAULTIPNODES 208
DEFAULTTCPIPDATA 209
DOMAIN 220
DOMAINORIGIN 221
GLOBALIPNODES 210
GLOBALTCPIPDATA 211
HOSTNAME 222
LOADDBCSTABLE 223
LOOKUP 225
MESSAGECASE 226
NAMESERVER 227
NSINTERADDR 228
NSPORTADDR 230
OPTIONS 231
RESOLVERTIMEOUT 233
RESOLVERUDPRETRIES 234
RESOLVEVIA 235
SEARCH 236
SOCKDEBUG 238
SOCKNOTESTSTOR 240
SOCKTESTSTOR 239
SORTLIST 241
TCPIPJOBNAME 243
TCPIPUSERID 244
TRACE RESOLVER 245
TRACE SOCKET 246

data connection
code page conversions 589
network transfer/file system conversion 590

data formats for DHCP 659
data set syntax rules, OROUTED 892
DATACLASS statement 487
DATASETPREFIX statement 219
DATATIMEOUT statement 488
DB2 considerations

DB2 statement 489
DB2PLAN statement 490
SPREAD statement 566
SQLCOL statement 567

DB2 statement 489
DB2PLAN statement 490
DBCS

converting translation tables to binary 917
CONVXLAT command 910
CONVXLAT examples 918
country/region translation tables 916
customizing 915
Korean KSC5601 919
Telnet 3270 DBCS transform mode codefiles 915
TRANSLATE option for the FTP client 914
translation table hierarchy 912
translation table members 916
translation table, syntax rules 916

DBCS statement 829
DBCSTRACE statements 342
DBCSTRANSFORM statement 343
DCAS

CLIENTAUTH 435
configuration file keywords and parameters 435
IPADDR 435
KEYRING 436
LDAPPORT 436
LDAPSERVER 436
PORT 437
SAFKEYRING 437
starting 433
STASHFILE 437
TCPIP 437
V3CIPHER 438

DCB and multiple volumes 581
DCBDSN statement 491
DCONNTIME statement 493
DEBUG statement 344, 494, 789, 832
DEBUGONSITE statement 496
DEFAULT_ROUTE statement 291
DEFAULT_SECURITY entry 764
DEFAULTAPPL statement 384
DEFAULTIPNODES statement 208
DEFAULTLUS statement 386
DEFAULTLUSSPEC statement 387
DEFAULTPRT statement 388
DEFAULTPRTSPEC statement 389
DEFAULTTCPIPDATA statement 209
definition files, LDAPv2 schema 2 967
DELETE statement 42
DEMAND_CIRCUIT statement 264

1026 z/OS V1R4.0 CS: IP Configuration Reference

DEST statement
FTP 497
SNALINK LU6.2 303
X.25 NPSI 313

destinations, syslogd 673
DESTIPGROUP statement 390
DEVICE and LINK statements

3745/46 Channel DLC devices 93
ATM devices 52
channel-to-channel 60
CLAW devices 55
CTC devices 60
Enterprise Extender connection, defining 80
Ethernet link support 65
FDDI 65
High Performance Data Transfer (HPDT) connection,

defining 80
HYPERchannel A220 devices 62
LAN Channel Station and OSA devices 65
MIH considerations 49
missing interrupt handler (MIH) considerations 49
modifying 51
MPCIPA devices 71
MPCIPA HiperSockets devices 76
MPCOSA devices 78
MPCPTP devices 80
MTU values 47
OSA devices 65
overview 47
recovery from device failures 49
requirements 47
SNA LU 6.2 links 86
SNA LU0 links 83
SNALINK LU 6.2 interface 86
SNALINK program 83
summary 47
token ring support 65
Virtual devices 91
VTAM configuration relationship 50
X.25 NPSI connections 88

device failure recovery 49
DEVICE statements, see DEVICE and LINK

statements 47
device type and logmode table 372
DHCP

application and service parameter options 663
base options 659
configuration file option, data formats 659
data formats 659
extensions options 665
IBM-specific options 669
IP layer operation 661
IP layer parameters 662
link layer parameters 663
load balancing options 668
TCP parameter options 663

DIRECT 587
directives

$GENERATE 656
$INCLUDE 655
$ORIGIN 655

directives (continued)
$TTL 655

directives, zone file 655
DIRECTORY statement 498
DIRECTORYMODE statement 499
disability, physical 1015
DISABLESGA statements 347
DNS considerations 382, 391
DNS, BIND 4.9.3-based, see also BIND 4.9.3-based

DNS 593
DNS, BIND 9-based, see also BIND 9-based DNS 605
DNS, online information xxiv
documents, licensed xxiv
domain data files 599
Domain Name Resolver 857
DOMAIN statement 220
DOMAINORIGIN statement 221
DROPASSOCPRINTER statement 346
DUMP statement 500
DUMPONSITE statement 502
Dynamic Host Configuration Protocol (DHCP), see also

DHCP 659
dynamic update policies 649
Dynamic VIPA 185
dynamically changing TCPIP.DATA statements 215
DYNAMICXCF 126

E
EBCDIC-to-ASCII

table 909
translation 907

EE 129
EMAILADDRCHECK statement 503
ENCODING statement 504
ENCRYPTION statement 348
ENDINTAB macroinstruction 429
Enterprise Extender 41, 80, 129
environment variables, OMPROUTE 257
ETC.SERVICES port assignments 200
Ethernet hosts 179
Ethernet Network LCS LINK statement 66
EUCKANJI, DBCS 830
EUCKANJI, LOADDBCSTABLES 223
Express Logon

CLIENTAUTH 435
DCAS configuration file keywords and

parameters 435
DCAS, starting 433
EZADCASP 434
IPADDR 435
KEYRING 436
LDAPPORT 436
LDAPSERVER 436
PassTicket Server configuration file processing 434
PORT 437
SAFKEYRING 437
sample procedure 434
STASHFILE 437
TCPIP 437
V3CIPHER 438

Index 1027

EXPRESSLOGON statement 349
EXTENSIONS statement 505
EZADCASP 434
EZASMF77 931

F
facility names, syslogd 672
FAST statement 314
fault tolerance 109
FDDI LCS 68
Fiber Distributed Data Interface (FDDI) 68
File Transfer Protocol, also see FTP 439
FILETYPE statement 507
FILTER statement 279
FINISHOPEN statement 833
FTCHKCMD 443
FTCHKIP 447
FTCHKJES 449
FTCHKPWD 448
FTP

ACCESSERRORMSGS statement 458
accounting 549, 551, 552, 553, 554, 555, 557, 559,

561, 562, 564, 922
ADMINEMAILADDRESS statement 459
anonymous considerations 462, 464, 465, 467,

468, 469, 470, 473, 474, 503, 504, 507, 568
anonymous logon 441
ANONYMOUS statement 460
ANONYMOUSFILEACCESS statement 462
ANONYMOUSFILETYPEJES statement 463
ANONYMOUSFILETYPESEQ statement 464
ANONYMOUSFILETYPESQL statement 465
ANONYMOUSFTPLOGGING statement 466
ANONYMOUSHFSDIRMODE statement 467
ANONYMOUSHFSFILEMODE statement 468
ANONYMOUSHFSINFO statement 469
ANONYMOUSLEVEL statement 470
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
ASATRANS statement 475
AUTOMOUNT statement 476
AUTORECALL statement 477
AUTOTAPEMOUNT statement 478
banner considerations 458, 459, 473, 474, 479,

510, 521, 526
BANNER statement 479
BLKSIZE statement 480
BUFNO statement 481
cataloged procedure 439
CCXLATE statement 482
CHKPTINT statement 483
CIPHERSUITE statement 484
client transfer completion record 956
code page conversion 589
code page conversion for the control

connection 589
code page conversion for the data connection 589
CONDDISP statement 485
configuration statements in FTP.DATA 442
control connection, code page conversion 589

FTP (continued)
control connection, conversion tables priority 589
CTRLCONN statement 486
DASD considerations 476, 477, 481, 483, 484, 485,

487, 491, 497, 498, 499, 507, 522, 525, 531, 534,
537, 542, 565, 572, 574, 579, 580, 581, 583

data connection, code page conversion 589
data connection, conversion tables priority 590
DATACLASS statement 487
DATATIMEOUT statement 488
DB2 considerations 489, 490, 507, 561, 566, 567
DB2 statement 489
DB2PLAN statement 490
DCBDSN statement 491
DCONNTIME statement 493
DEBUG statement 494
DEBUGONSITE statement 496
DEST statement 497
DIRECT statement 587
DIRECTORY statement 498
DIRECTORYMODE statement 499
DUMP statement 500
DUMPONSITE statement 502
EMAILADDRCHECK statement 503
ENCODING statement 504
extensions beyond RFC 959 505
EXTENSIONS statement 505
FILETYPE statement 507
FTCHKCMD 443
FTCHKIP 447
FTCHKJES 449
FTCHKPWD 448
FTP.DATA 442
FTPD parameters 440
FTPKEEPALIVE statement 508
FTPLOGGING statement 509
FTPOSTPR 445
HFS considerations 578
HFSINFO statement 510
iconv function 589
INACTIVE statement 511
ISPFSTATS statement 512
Japanese SBCS (CP 1041) and DBCS 919
JES considerations 507, 513, 514, 516, 517, 518
JESENTRYLIMIT statement 513
JESINTERFACELEVEL statement 514
JESLRECL statement 516
JESPUTGETTO statement 517
JESRECFM statement 518
KEYRING statement 519
Korean KSC5601 SBCS and DBCS 919
LISTSUBDIR statement 520
LOGINMSG statement 521
logon failure record 954
LRECLstatement 522
MBDATACONN statement 523
MGMTCLASS statement 524
MIGRATEVOL statement 525
MVSINFO statement 526
MVSURLKEY statement 527
performance considerations 442

1028 z/OS V1R4.0 CS: IP Configuration Reference

FTP (continued)
PORTCOMMAND statement 528
PORTCOMMANDIPADDR statement 529
PORTCOMMANDPORT statement 530
PRIMARY statement 531
priority for conversion tables, control

connection 589
priority for conversion tables, data connection 590
QUOTESOVERRIDE statement 532
RDW statement 533
RECFM statement 534
REPLYSECURITYLEVEL statement 536
RETPD statement 537
SBCS 907
SBDATACONN statement 538
SBSUB statement 540
SBSUBCHAR statement 541
SECONDARY statement 542
SECURE_CTRLCONN statement 543
SECURE_DATACONN statement 544
SECURE_FTP statement 545
SECURE_LOGIN statement 546
SECURE_PBSZ statement 548
SMF statement 549
SMF Type 119 records 931
SMF User Exit 450
SMFAPPE statement 551
SMFDEL statement 552
SMFEXIT statement 553
SMFJES statement 554
SMFLOGN statement 555
SMFREN statement 557
SMFRETR statement 559
SMFSQL statement 561
SMFSTOR statement 562
SMS considerations 480, 487, 491, 498, 522, 524,

531, 534, 537, 542, 565, 569, 579, 580, 581
SOCKD statement 588
SOCKS configuration statements 586
SOCKS.CNF 586
SOCKSCONFIGFILE 586
SOCKSCONFIGFILE statement 564
SPACETYPE statement 565
specifying EZAFTSRV parameters 440
SPREAD statement 566, 567
STARTDIRECTORY statement 568
STORCLASS statement 569
summary of configuration statements 451
tape considerations 478
TLSTIMEOUT statement 570
TRACE statement 571
TRAILINGBLANKS statement 572
transfer completion record 951
TRANSLATE option for the FTP client, DBCS 914
translation considerations 475, 482, 486, 538, 575,

576, 577, 585, 907, 908
translation tables 907
TRUNCATE statement 573
UCOUNT statement 574
UCSHOSTCS statement 575
UCSSUB statement 576

FTP (continued)
UCSTRUNC statement 577
UMASK statement 578
UNITNAME statement 579
updating the FTP cataloged procedure 439
user exits 443
VCOUNT statement 580
VOLUME statement 581
WLM considerations 582
WLMCLUSTERNAME statement 582
WRAPRECORD statement 583
WRTAPEFASTIO statement 584
XLATE statement 585

FTP server logon failure record 954
FTP server transfer completion record 951
FTP.DATA

ACCESSERRORMSGS statement 458
ADMINEMAILADDRESS statement 459
anonymous considerations 463
ANONYMOUS statement 460
ANONYMOUSFILEACCESS 568
ANONYMOUSFILEACCESS statement 462
ANONYMOUSFILETYPEJES statement 463
ANONYMOUSFILETYPESEQ statement 464
ANONYMOUSFILETYPESQL statement 465
ANONYMOUSFTPLOGGING statement 466
ANONYMOUSHFSDIRMODE statement 467
ANONYMOUSHFSFILEMODE statement 468
ANONYMOUSHFSINFO statement 469
ANONYMOUSLEVEL statement 470
ANONYMOUSLOGINMSG statement 473
ANONYMOUSMVSINFO statement 474
ASATRANS statement 475
AUTOMOUNT statement 476
AUTORECALL statement 477
AUTOTAPEMOUNT statement 478
BANNER statement 479
BLKSIZE 491
BLKSIZE statement 480
BUFNO statement 481
CCXLATE 585
CCXLATE statement 482
CHKPTINT statement 483
CIPHERSUITE statement 484
CONDDISP statement 485
configuration statements 442
CTRLCONN 482, 585
CTRLCONN statement 486
data directory 487
data set statements 457
DATACLASS 480, 522, 535, 537, 565
DATACLASS PRIMARY 531
DATACLASS SECONDARY 531
DATACLASS statement 487
DATATIMEOUT statement 488
DB2 statement 489
DB2PLAN statement 490
DCBDSN 535, 537
DCBDSN statement 491
DCONNTIME statement 493
DEBUG statement 494

Index 1029

FTP.DATA (continued)
DEBUGONSITE statement 496
DEST statement 497
DIRECTORY statement 498
DIRECTORYMODE statement 499
DUMP statement 500
DUMPONSITE statement 502
EMAILADDRCHECK statement 503
ENCODING statement 504
EXTENSIONS statement 505
FILETYPE statement 507
FTCHKPWD 461
FTPKEEPALIVE statement 508
FTPLOGGING statement 509
HFSINFO statement 510
INACTIVE statement 511
ISPFSTATS statement 512
JESENTRYLIMIT statement 513
JESINTERFACELEVEL statement 514
JESLRECL statement 516
JESPUTGETTO statement 517
JESRECFM statement 518
KEYRING statement 519
LISTSUBDIR statement 520
LOGINMSG statement 521
LRECL 487, 491, 516
LRECL statement 522
MBDATACONN statement 523
MGMTCLASS 491
MGMTCLASS statement 524
MIGRATEVOL statement 525
MVSINFO 474
MVSINFO statement 526
MVSURLKEY statement 527
PORTCOMMAND statement 528
PORTCOMMANDIPADDR statement 529
PORTCOMMANDPORT statement 530
PRIMARY 487, 565
PRIMARY statement 531
QUOTESOVERRIDE statement 532
RDW statement 533
RECFM 487, 491
RECFM statement 534
REPLYSECURITYLEVEL statement 536
RETPD 487, 491
RETPD statement 537
SBDATACONN statement 538
SBSUB statement 540
SBSUBCHAR statement 541
search order 442
SECONDARY 487, 565
SECONDARY statement 542
SECURE_CTRLCONN statement 543
SECURE_DATACONN statement 544
SECURE_FTP statement 545
SECURE_LOGIN statement 546
SECURE_PBSZ statement 548
SMF 551, 552, 555, 557, 559, 562
SMF statement 549
SMFAPPE 550
SMFAPPE statement 551

FTP.DATA (continued)
SMFDEL 550
SMFDEL statement 552
SMFEXIT statement 553
SMFJES 550
SMFJES statement 554
SMFLOGN statement 555
SMFREN 550
SMFREN statement 557
SMFRETR 550
SMFRETR statement 559
SMFSQL 550
SMFSQL statement 561
SMFSTOR 550
SMFSTOR statement 562
SOCKSCONFIGFILE statement 564
SPACETYPE statement 565
SPREAD statement 566
SQLCOL statement 567
STARTDIRECTORY 461
STARTDIRECTORY statement 568
STORCLASS statement 569
TLSTIMEOUT statement 570
TRACE statement 571
TRAILINGBLANKS statement 572
TRUNCATE statement 573
UCOUNT statement 574
UCSHOSTCS statement 575
UCSSUB statement 576
UCSTRUNC statement 577
UMASK statement 578
UNITNAME statement 579
VCOUNT statement 580
VOLUME statement 581
WLMCLUSTERNAME statement 582
WRAPRECORD statement 583
WRTAPEFASTIO statement 584
XLATE 482
XLATE statement 585

FTPD
parameters 440
rules 440

FTPKEEPALIVE statement 508
FTPLOGGING statement 509
FTPOSTPR 445
FULLDATATRACE statement 350

G
GATEWAY statement

IP routing table 96
NCPROUTE 326
OROUTED 892
routing table 96
SMTP 834
TCPIP address space 96

gateways file 892
gateways statements, NCPROUTE 326
GLOBALCONFIG statement 104
GLOBALIPNODES statement 210
GLOBALTCPIPDATA statement 211

1030 z/OS V1R4.0 CS: IP Configuration Reference

H
HANGEUL 830
HANGEUL, CONVXLAT 917
HANGEUL, LOADDBCSTABLES 223
HFS considerations, UMASK statement 578
HFSINFO statement 510
High Performance Data Transfer (HPDT)

connection 80
HiperSockets devices, see also iQDIO 76
HiperSockets manager 126, 127
HNGROUP statement 391
HOME statement 107
host name specification, rules 382
HOSTNAME statement 222
HPDT connection, defining 80
HYPERchannel A220 devices 62

I
IBM 3172 Interconnect Controller 66
IBM 8232 LAN Channel Station 65
IBM RISC System Parallel Channel Attachment 55
IBM Software Support Center, contacting xxv
IBM-specific options, DHCP 669
IBMKANJI 830
ICMP

fragmentation needed packets 96
ignore redirect 15
redirect packets 96
statistics 942
TCP/IP statistics record 938

iconv function 589
IDS

action attributes 735
attack policies 740, 741, 742, 743
condition attributes 734
defaults 698, 708
LDAP object classes 733
policy 733
PolicyAction, mapping to LDAP 698
PolicyRule, mapping to LDAP 708
scan event policies (ICMP) 738
scan event policies (TCP and UDP) 739
scan global policies 737
traffic regulation policies 744

IGNORE_RIP_NEIGHBOR statement 280
INACTIVE statement 351, 511, 835
include statement 617
INCLUDE statement 112
information APARs for IP-related documents 1011
information APARs for non- document

information 1012
information APARs for SNA-related documents 1012
INTAB macroinstruction 424
Interface statement 726
INTERFACE statement 292
INTERFACE statements 113

IPAQENET6 interfaces 114
LOOPBACK6 interfaces 119
modifying 113

INTERFACE statements (continued)
Virtual interface 121

interface statistics record 963
Internet, finding z/OS information online xxiii
INTERPRET macroinstructions rules 423
INTERPRET table setup, Telnet 423
INTERPTCP statement 392
Intrusion Detection Services (IDS), see also IDS 733
invoking orexecd 880
invoking otelnetd 880
IOCTL SIOCSVIPA DEFINE 192
IP forwarding 16, 125
IP routing table 96
IPADDR keyword 435
IPAQENET6 interfaces 114
IPCONFIG statement 123
IPCONFIG6 statement 135
IPGROUP statement 393
IPMAILERADDRESS statement 836
IPv6

network interfaces supported by TCP/IP 113
IPv6 forwarding 135
iQDIO 76, 126
ISO-8 interpretations 912
ISPFSTATS statement 512
ISTLSXCF 80
ITRACE statement 139

J
Japanese SBCS (CP 1041) and DBCS 919
Japanese SBCS and DBCS Codefile 919
JESENTRYLIMIT statement 513
JESINTERFACELEVEL statement 514
JESLRECL statement 516
JESPUTGETTO statement 517
JESRECFM statement 518
JIS78KJ 829
JIS78KJ , LOADDBCSTABLES 223
JIS83KJ 829
JIS83KJ , LOADDBCSTABLES 223
JISROMAN 829
JOBPACING statement 790

K
KANJI, CONVXLAT 917
KEEPALIVEOPTIONS statement, see TCPCONFIG

statement 141
KEEPINACTIVE statement 352
KEEPLU statement 353
key statement 618
keyboard 1015
KEYRING keyword 436
KEYRING statement 354, 519
Korean KSC5601 919
KSC5601 830
KSC5601, LOADDBCSTABLES 223

Index 1031

L
LAN Channel Station and OSA devices

LINK statement for Ethernet Network LCS 66
LINK statement for FDDI LCS 68
LINK statement for Token-Ring Network or PC

Network LCS 67
LAN Channel Station DEVICE statement 65
LDAPPORT keyword 436
LDAPSERVER keyword 436
LDAPv2 schema 2

definition files 967
IDS 733
PAGENTAT 967
PAGENTOC 985

license, patent, and copyright information 1017
licensed documents xxiv
LINEMODEAPPL statement 394
LINK statement

Ethernet Network LCS 66
LINK statement for FDDI LCS 68
OSA-Express Gigabit Ethernet and QDIO Fast

Ethernet 72
SNALINK LU6.2 304
token-ring network or PC network LCS 67
X.25 NPSI 315

LINK statements, see DEVICE and LINK
statements 47

LINKGROUP statement 395
LISTENONADDRESS statement 837
LISTSUBDIR statement 520
LLBD 809
load balancing options, DHCP 668
LOADDBCSTABLES statement 223
LOCALCLASS statement 838
LOCALFORMAT statement 839
LOG statement 840
LOGCHAR macroinstructions 425
logging statement 619
logging statement categories, BIND 9-based DNS 621
LOGINMSG statement 521
LogLevel statement 677, 724
logon failure record, FTP server 954
logon interpret routine

parameter list 428
requirements 427

LOOKUP statement 225
LOOPBACK address 35, 102
LOOPBACK6 interfaces 119
LPD

Japanese SBCS (CP 1041) and DBCS 919
Korean KSC5601 SBCS and DBCS 919
LPDDATA 787
LPDPRFX 787
tracing 787

LPD, remote print server
cataloged procedure 785
configuration data set 786
DEBUG statement 789
JOBPACING statement 790
LPSPROC 785
OBEY statement 791

LPD, remote print server (continued)
SERVICE statement 792
STEPLIMIT statement 802
summary of configuration statements 788
syntax rules 788
UNIT statement 803
VOLUME statement 804

LPDDATA, LPD server configuration data set 786
LPR

Japanese SBCS (CP 1041) and DBCS 919
Korean KSC5601 SBCS and DBCS 919

LPSPROC, LPD server cataloged procedure 785
LRECL statement 522
LU exit

operation 430
setup 430

LU name specification, rules 380
LU62CFG 299
LU62PROC 299
LUGROUP statement 396
LUMAP statement 397
LUSESSIONPEND statement 355

M
MAC addresses 67
macroinstructions

default table variable substitution 417
ENDINTAB 429
INTAB 424
INTERPRET rules 423
LOGCHAR 425
Telnet USS rules 412
USSCMD 413
USSEND 422
USSMSG 415
USSMSG, variables substituted 416
USSPARM 419
USSTAB 421

MAILER statement 841
MAILFILEDSPREFIX statement 843
MAILFILEUNIT statement 844
MAILFILEVOLUME statement 845
mapping statements, Telnet

ALLOWAPPL statement 383
BEGINVTAM block 333, 379
client identifier specification 382
client identifier types and definitions 381
DEFAULTAPPL statement 384
DEFAULTLUS statement 386
DEFAULTLUSSPEC statement 387
DEFAULTPRT statement 388
DEFAULTPRTSPEC statement 389
general rules 379
HNGROUP 384
host name specification, rules 382
INTERPTCP statement 392
IPGROUP 384
LINEMODEAPPL statement 394
LU name specification, rules 380
LUGROUP 398

1032 z/OS V1R4.0 CS: IP Configuration Reference

mapping statements, Telnet (continued)
LUMAP statement 397
LUSESSIONPEND 383
PARMSGROUP 340
PARMSMAP 340
PARMSMAP statement 400
PRTDEFAULTAPPL statement 402
PRTGROUP 398
PRTMAP statement 404
QUEUESESSION 355
RESTRICTAPPL statement 407
TCP/IP profile 379
USSTCP 384
USSTCP statement 411

mapping to LDAP
PolicyAction 698
PolicyRule 708

maximum transmission unit (MTU) 37
MAXMAILBYTES statement 846
MAXRECEIVE statement 356
MAXREQSESS statement 357
MAXVTAMSENDQ statement 358
MBDATACONN statement 523
MD5 260
Medium Access Control (MAC) addresses 67
MESSAGECASE statement 226
MGMTCLASS statement 524
MIBDESC.DATA

search order 775
SQESERV module 771
statement syntax 774

MIBS.DATA
search order 780
statement syntax 779

MIGRATEVOL statement 525
migration, OROUTED to OMPROUTE 898
MIH considerations 49
MISC server

MISCSERV 883
parameters 883

Miscellaneous server
cataloged procedure (MISCSERV) 883
MISCSERV 883
parameters 883

MISCSERV 883
missing interrupt handler (MIH) considerations 49
MPC 50
MPCIPA devices

OSA-Express Gigabit Ethernet, LINK statement 72
QDIO Fast Ethernet, LINK statement 72

MPCIPA HiperSockets devices 76
MPCOSA devices 78
MPCPTP devices 80
MSG07 statement 359
MTU

support 47
values 47

MultiPath Channel (MPC) 50
multiple protocols 50
MVSINFO statement 526
MVSURLKEY statement 527

MX records 653

N
name server cataloged procedure, v9 (NAMED9) 605
named daemon, syntax 594
NAMED9, v9 name server cataloged procedure 605
NAMESERVER statement 227
Nametype field values, BIND 9-based DNS 649
NCP client, trace level 330
NCPROUT 323
NCPROUTE

building the NCPROUTE profile 325
cataloged procedure 323
GATEWAY_PDS 326
gateways statements 326
NCPRPROF 325
options 332
OPTIONS statement 328
parameters 324
profile data set 325
RIP RECEIVE CONTROL 325
RIP_AUTHENTICATION_KEY 326
RIP_SUPPLY_CONTROL 325
SNMP_AGENT 326
SNMP_COMMUNITY 326
syntax rules, gateways statements 326

NCS interface
cataloged procedure (NRGLBD) 809
LLBD 809
NRGLBD 809

NDB setup cataloged procedure 811
NDB system 811
NDBSETUP 811
NETACCESS statement 143
network concentrator function 126
Network database system 811
NJECLASS statement 847
NJEDOMAIN statement 848
NJEFORMAT statement 849
NJENODENAME statement 850
NOLOG

LOG statement 840
SECUR 856

NOLOG statement 851
NOSOURCEROUTE statement 852
NOTIFY 753
NOTIFY entry 759
NOTIFY_FILTER 753
NOTIFY_FILTER entry 760
NOTIFY_FILTER_PROFILE 753
NOTIFY_FILTER_PROFILE entry 759
NRGLBD 809
NSINTERADDR statement 228
NSPORTADDR statement 230

O
OBEY statement 791
object statements, Telnet

DEFAULTLUS statement 386

Index 1033

object statements, Telnet (continued)
DEFAULTLUSSPEC statement 387, 388, 389
LUGROUP statement 396
PARMSGROUP statement 399
PRTGROUP statement 403
USERGROUP statement 410

OLDSOLICITOR statements 360
OMPROUTE

ACCEPT_RIP_ROUTE statement 278
AREA statement 260
Areas 267
AS_BOUNDARY_ROUTING statement 261
authentication 275, 287
Authentication_Type 260
backbone routes 274
BSDROUTINGPARMS 899
BSDROUTINGPARMS to OMPROUTE configuration

file 899
cataloged procedure 255
common configuration statements for RIP and

OSPF 290
COMPARISON statement 263
configuration file 258, 899
DEFAULT_ROUTE statement 291
DEMAND_CIRCUIT statement 264
designed router 269
environment variables 257
FILTER statement 279
IGNORE_RIP_NEIGHBOR statement 280
importing routes to OSPF 261
INTERFACEE statement 292
interfaces 265
Link State Advertisements (LSAs) 268
metrics 263
migrating to, from OROUTED 898
OMPROUTE start parameters and configuration

file 904
ORIGINATE_RIP_DEFAULT statement 281
OROUTED Gateways File to OMPROUTE

configuration file 901
OROUTED profile to OMPROUTE configuration

file 900
OROUTED start parameters to OMPROUTE start

parameters and configuration file 904
OSPF areas 272
OSPF configuration statements 258
OSPF_INTERFACE statement 265
parameters 257
PROFILE.TCPIP to OMPROUTE

PROFILE.TCPIP 899
RACF 898
RANGE statement 272
RIP configuration 277
RIP_INTERFACE statement 282
ROUTERID statement 273
ROUTESA_CONFIG statement 294
security 260, 275, 287
SEND_ONLY statement 289
SNMP subagent 294
starting OMPROUTE using UNIX System

Services 257

OMPROUTE (continued)
stub area 260
syntax rules 258
VIRTUAL_LINK statement 274

OPORTRPC 807
options

tuning 628
options statement 624
OPTIONS statement

NCPROUTE 328
OPTIONS 231
OROUTED 894
X.25 NPSI 316

orexecd command 880
ORIGINATE_RIP_DEFAULT statement 281
OROUTED

advertising algorithm 890
BSDROUTINGPARMS to OMPROUTE configuration

file 899
cataloged procedure 887
data set syntax rules 892
gateways file 892
migrating from, to OMPROUTE 898
OPTIONS statement 894
OROUTED Gateways File to OMPROUTE

configuration file 901
OROUTED profile to OMPROUTE configuration

file 900
OROUTED start parameters to OMPROUTE start

parameters and configuration file 904
packet authentication 891
parameters 888, 890
passive options 893
procedure options 891
profile 891
profile search order 891
profile syntax 891
PROFILE.TCPIP to OMPROUTE

PROFILE.TCPIP 899
RACF 898
RIP RECEIVE CONTROL 891
RIP_SUPPLY_CONTROL 891
start parameters 904
starting from the z/OS shell 888

orshd command 880
OSA address table 70
OSA devices 65
OSA-Express Gigabit Ethernet, LINK statement 72
OSNMP.CONF

sample 778
search order 777
statement syntax 775

OSNMPD
COMMUNITY entry 763
DEFAULT_SECURITY entry 764
NOTIFY entry 759
NOTIFY_FILTER entry 760
NOTIFY_FILTER_PROFILE entry 759
parameters 748
PW.SRC search order 751
PW.SRC statement syntax 751

1034 z/OS V1R4.0 CS: IP Configuration Reference

OSNMPD (continued)
search order 750
SNMP_COMMUNITY entry 763
SNMPD.BOOTS search order 770
SNMPD.BOOTS statement syntax 770
SNMPD.CONF entries 754
SNMPD.CONF sample 767
SNMPD.CONF search order 752
SNMPD.CONF syntax 753
SNMPTRAP.DEST search order 752
SNMPTRAP.DEST statement syntax 752
starting from the z/OS UNIX System Services

shell 748
TARGET_ADDRESS entry 761
TARGET_PARAMETERS entry 762
USM_USER entry 755
VACM_ACCESS entry 758
VACM_GROUP entry 756
VACM_VIEW entry 757

OSNMPD.CONF, search order for 4
OSNMPD.DATA

example 750
search order 750
statement syntax 750

OSNMPD.DATA, search order for 5
OSPF

common configuration statements 290
configuration statements 258
DEFAULT_ROUTE statement 291
hierarchy 263
INTERFACE statement 292
OSPF_INTERFACE statement 265
ROUTESA_CONFIG statement 294

OSPF_INTERFACE statement 265
OUTBOUNDOPENLIMIT statement 854
output data sets 195

P
packet tracing 146
PAGENT

as a started task 716
configuration file statements summary 676
LogLevel statement 677
PAGENT.CONF 714
Policy Agent (policy configuration file) 675
PolicyAction statement 691
PolicyAction, mapping to LDAP 698
PolicyPerfMonitorForSDR statement 678
PolicyRule statement 704
ReadFromDirectory statement 683
search order 714
ServiceCategories statement 700
ServicePolicyRules statement 711
SetSubnetPrioTosMask statement 689
starting from the z/OS shell 714
TcpImage statement 681

PAGENTAT 967
PAGENTOC 985
PARMSGROUP object statements 333
PARMSGROUP statement 399

PARMSMAP statement 400
PassTicket server configuration file, processing 434
PC Network LCS LINK statement 67
PKTTRACE statement 146
policy configuration file 675
PolicyAction statement 691, 698
PolicyAction, mapping to LDAP 698
PolicyPerfMonitorForSDR statement 678
PolicyRule statement 704
PolicyRule, mapping to LDAP 708
PORT and SECUREPORT statement 361
port assignments

/etc/services HFS file 200
overview 197
PROFILE.TCPIP data set 198

PORT keyword 437
PORT statement 401

SMTP 855
TCPIP address space 152

PORTC cataloged procedure 813
PORTCOMMAND statement 528
PORTCOMMANDIPADDR statement 529
PORTCOMMANDPORT statement 530
PORTCPRC 813
PORTMAP

cataloged procedure (OPORTRPC) 807
cataloged procedure (PORTPROC) 805

PORTPROC 805
PORTRANGE statement 157
PORTS cataloged procedure 812
PORTSPRC 812
POSTMASTER statement 856
PRIMARY statement 531
PRIMARYINTERFACE statement 161
print server, remote 785
printing, remote (LPD) 785
priority codes, syslogd 673
procedures, TCP/IP

BIND 9-based DNS 605
FTP (FTPD) 439
LLBD 809
LPSPROC 785
LU62PROC 299
MISCSERV 883
NAMED9 605
NCPROUTE (NCPROUT) 323
NDB setup (NDBSETUP) 811
NRGLBD 809
OMPROUTE 255
OPORTRPC 807
OROUTED 887
OSNMPD 747
PORTC (PORTCPRC) 813
PORTPROC 805
PORTS (PORTSPRC) 812
RXPROC 875
SMTPPROC 815
SNALINK 297
SNALINK LU6.2 299
SNALPROC 297
SNMPPROC 771

Index 1035

procedures, TCP/IP (continued)
TCP/IP (TCPIPROC) 193
X.25 NPSI (X25PROC) 307

profile statements, Telnet 333
PROFILE.TCPIP

search order 12
statement syntax 12

PROFILE.TCPIP port assignments 198
protocol

assignments 197
names 197
numbers 197

PRTDEFAULTAPPL statement 402
PRTGROUP statement 403
PRTINACTIVE statement 362
PRTMAP statement 404
PTR records 654
purging the ARP cache 179
PW.SRC

search order 751
statement syntax 751

Q
QDIO Fast Ethernet, LINK statement 72
QUEUESESSION statement 406
QUOTESOVERRIDE statement 532

R
RACF

OMPROUTE 898
OROUTED 898

RANGE statement 272
RCPT 857
RCPTRESPONSEDELAY statement 857
RDATA 651
RDW statement 533
ReadFromDirectory statement 683
RECFM statement 534
Record Descriptor Words (RDWs) 533
recovery from device failures 49
Remote Execution server

cataloged procedure 875
parameters 877
RXUEXIT user exit sample 878
z/OS 880

remote printing (LPD) 785
REPLYSECURITYLEVEL statement 536
requirements for logon-interpret routines 427
resolver

; and # statements 213
COMMONSEARCH statement 207
DEFAULTIPNODES statement 208
DEFAULTTCPIPDATA statement 209
GLOBALIPNODES statement 210
GLOBALTCPIPDATA statement 211
setup statement information 205
setup statements 205
syntax conventions 206

RESOLVERRETRYINT statement 858

RESOLVERTIMEOUT statement 233
RESOLVERUDPRETRIES statement 234
RESOLVERUSAGE statement 859
RESOLVEVIA statement 235, 236
resource records

as a message 653
BIND 4.9.3-based DNS 599
components 650
definitions 599
example 653
overview 650
RDATA 651
textual expression 652
types and usage 650
valid 650

RESTRICT statement 860
RESTRICTAPPL statement 407
RETPD statement 537
retransmit parameters 32, 99, 270, 287
RETRYAGE statement 862
RETRYINT statement 863
REWRITE822HEADER statement 864
REXECD, z/OS UNIX System Services 880
RFC (request for comment)

list of 1001
RFC (request for comments)

accessing online xxiii
RIP

ACCEPT_RIP_ROUTE statement 278
AS boundary routing capability 261
BSDROUTINGPARMS statement 37
common configuration statements for RIP and

OSPF 290
configuration statements 277
DEFAULT_ROUTE statement 291
FILTER statement 279
IGNORE_RIP_NEIGHBOR statement 280
INTERFACE statement 292
ORIGINATE_RIP_DEFAULT statement 281
RIP_INTERFACE statement 282
ROUTESA_CONFIG statement 294
SEND_ONLY statement 289

RIP RECEIVE CONTROL statement 325
RIP_INTERFACE statement 282
RIP_SUPPLY_CONTROL statement 325
RIP2_AUTHENTICATION_KEY statement 326
RISC/System 6000 DEVICE and LINK statements 55
RNDC configuration file 657
ROUTERID statement 273
ROUTESA_CONFIG statement 294
Routing Information Protocol statements, also see

RIP 277
routing table 96
RSHD, z/OS UNIX System Services 880
RSVP

agent 723
configuration file 723
Interface statement 726
LogLevel statement 724
RSVP statement 728
RSVPD.CONF search order 730

1036 z/OS V1R4.0 CS: IP Configuration Reference

RSVP (continued)
starting as a started task 730
starting from the z/OS shell 730
TcpImage statement 725

RSVP statement 728
RSVPD.CONF, search order 730
rules for client identifier specification 382
rules for host name specification 382
run-time tracing 139
RXPROC 875
RXUEXIT user exit sample 878

S
SACONFIG statement 163
SAFKEYRING keyword 437
SBCS

ASCII and EBCDIC code points 912
ASCII-to-EBCDIC table 909
binary table 918
country/region tables 910
customizing translation tables 909
EBCDIC-to-ASCII table 909
French Telnet client 918
IBM PC Interpretations 912
ISO-8 912
Korean KSC5601 919
syntax rules for translation tables 910
translation table hierarchy 907, 908
translation table members for Telnet 3270 DBCS

transform support 911
translation table members for Telnet client 910
translation tables 907

SBDATACONN statement 538, 542
SBSUB statement 540
SBSUBCHAR statement 541
SCANINTERVAL and TIMEMARK statement 363
schema 2 definition files for LDAPv2 967
SCHINESE 830
SCHINESE, LOADDBCSTABLES 224
search order

ETC.PROTO 3
ETC.SERVICES 3
FTP.DATA 4, 442
MIBDESC.DATA 775
MIBS.DATA 780
OSNMP.CONF 777
OSNMPD.CONF 4
OSNMPD.DATA 5, 750
PAGENT.CONF 5, 714
PROFILE.TCPIP 5, 12
PW.SRC 6, 751
RSVP agent 723
RSVPD.CONF 6, 730
SNMPD.BOOTS 6, 770
SNMPD.CONF 6, 752
SNMPTRAP.DEST 7, 752
TCPXLBIN data set 590
TRAPFWD.CONF 7, 782

SECURE statement 865
SECURE_CTRLCONN statement 543

SECURE_DATACONN statement 544
SECURE_FTP statement 545
SECURE_LOGIN statement 546
SECURE_PBSZ statement 548
SECUREPORT statement 364
Security Access Facility (SAF) 143
security parameters, Telnet 336
security statements, Telnet 407
SEND_ONLY statement 289
SEQUENTIALLU statement 365
SERVAUTH 143, 338
server bind control 197, 198
server exits, SMTP 818
server port statistics record 961
server statement 636
SERVICE statement 792
ServiceCategories statement 700
ServicePolicyRules statement 711
SetSubnetPrioTosMask statement 689
SGA statements 366
shortcut keys 1015
signals, for BIND 9-based DNS 608
SIMCLIENTLU statement 367
SINGLEATTN statements 368
SIOCSVIPA IOCTL 187
site table 228
SJISKANJI 830
SJISKANJI, LOADDBCSTABLES 224
SLA subagent

starting as a started task 718
starting from the z/OS shell 717

SMF logging 166
SMF record layout

API calls 924
FTP client 924
Telnet client 925
Telnet server 922

SMF record layout, type 118
FTP server 922

SMF statement 549
SMF type 119 records

common record format 931
common TCP/IP identification section 934
FTP client transfer completion record 956
FTP server logon failure record 954
FTP server transfer completion record 951
interface statistics record 963
record subtypes 932
server port statistics record 961
standard data format concepts 933
TCP connection initiation record 935
TCP connection termination record 936
TCP/IP stack Start/Stop record 960
TCP/IP statistics record 938
TN3270 server SNA session initiation record 944
TN3270 server SNA session termination record 945
TSO Telnet client connection initiation record 948
TSO Telnet client connection termination record 949
UDP socket close record 959

SMF User Exit, FTP 450
SMFAPPE statement 551

Index 1037

SMFCONFIG statement 166
SMFDEL statement 552
SMFEXIT statement 553
SMFINIT statement 369
SMFJES statement 554
SMFLOGN statement 555
SMFPARMS statement 170
SMFREN statement 557
SMFRETR statement 559
SMFSQL statement 561
SMFSTOR statement 562
SMFTERM statement 369
SMS considerations

BLKSIZE statement 480
DATACLASS statement 487
DCBDSN statement 491
DIRECTORY statement 498
LRECLstatement 522
MGMTCLASS statement 524
PRIMARY statement 531
RECFM statement 534
RETPD statement 537
SECONDARY statement 542
SPACETYPE statement 565
STORCLASS statement 569
UNITNAME statement 579
VCOUNT statement 580
VOLUME statement 581

SMSGAUTHLIST statement 866
SMTP

ALTNJEDOMAIN statement 824
ALTTCPHOSTNAME statement 825
ATSIGN statement 826
BADSPOOLFILEID statement 827
cataloged procedure 815
CHECKSPOOLSIZE statement 828
configuration statements, summary 816
DBCS statement 829
DEBUG statement 832
exit action codes and values 822
FINISHOPEN statement 833
GATEWAY statement 834
INACTIVE statement 835
IPMAILERADDRESS statement 836
Japanese SBCS (CP 1041) and DBCS 919
Korean KSC5601 SBCS and DBCS 919
LISTENONADDRESS statement 837
LOCALCLASS statement 838
LOCALFORMAT statement 839
LOG statement 840
MAILER statement 841
MAILFILEDSPREFIX statement 843
MAILFILEUNIT statement 844
MAILFILEVOLUME statement 845
MAXMAILBYTES statement 846
NJECLASS statement 847
NJEDOMAIN statement 848
NJEFORMAT statement 849
NJENODENAME statement 850
NOLOG statement 851
NOSOURCEROUTE statement 852

SMTP (continued)
OUTBOUNDOPENLIMIT statement 854
PORT statement 855
POSTMASTER statement 856
RCPTRESPONSEDELAY statement 857
RESOLVERRETRYINT statement 858
RESOLVERUSAGE statement 859
RESTRICT statement 860
RETRYAGE statement 862
RETRYINT statement 863
REWRITE822HEADER statement 864
SECURE statement 865
server exit input parameter list 819
server exits 818
SMSGAUTHLIST statement 866
SPOOLPOLLINTERVAL statement 867
statements 823
TEMPERRORRETRIES statement 868
TIMEZONE statement 869
translation considerations 907, 908
user exits settings 819
WARNINGAGE statement 870

SMTPPROC 815
SNA LU 6.2

DEVICE and LINK statements 86
links 86

SNA LU0 links 83
SNA session initiation record, TN3270 server 944
SNA session termination record, TN3270 server 945
SNAEXT statement 370
SNALINK

cataloged procedure 297
parameters 297

SNALINK LU6.2
BUFFERS statement 302
cataloged procedure 299
configuration data set (LU62CFG) 299
configuration statements 301
configuration statements, summary 300
DD statements 300
DEST statement 303
LINK statement 304
statement ordering 301
statement syntax 301
syntax rules 301
TRACE statement 305
VTAM statement 306

SNALPROC 297
SNMP

agent (OSNMPD) 748
command 775
COMMUNITY entry 763
DEFAULT_SECURITY entry 764
management 156, 163
MIBDESC.DATA 774
multiple SNMPv3 agents in same MVS image 770
NOTIFY entry 759
NOTIFY_FILTER entry 760
NOTIFY_FILTER_PROFILE entry 759
osnmp 775
OSNMP.CONF search order 777

1038 z/OS V1R4.0 CS: IP Configuration Reference

SNMP (continued)
OSNMP.CONF statement syntax 775
OSNMPD 748
OSNMPD parameters 748
OSNMPD procedure 747
OSNMPD, starting from the z/OS shell 748
OSNMPD.DATA example 750
OSNMPD.DATA search order 750
OSNMPD.DATA statement syntax 750
parameter data set (SNMPARMS) 772, 773
PW.SRC search order 751
PW.SRC statement syntax 751
Query Engine (SNMPQE) 771
sample 778
see also OSNMPD 748
SNMP_COMMUNITY entry 763
SNMPARMS sample 772
SNMPD.BOOTS search order 770
SNMPD.BOOTS statement syntax 770
SNMPD.CONF entries 754
SNMPD.CONF sample 767
SNMPD.CONF search order 752
SNMPD.CONF syntax 753
SNMPQE 771
SNMPQE parameters 771
SNMPTRAP.DEST search order 752
SNMPTRAP.DEST statement syntax 752
subagent 140
TARGET_ADDRESS entry 761
TARGET_PARAMETERS entry 762
TRAPFWD daemon 780
USM_USER entry 755
VACM_ACCESS entry 758
VACM_GROUP entry 756
VACM_VIEW entry 757

SNMP (Simple Network Management Protocol)
multiple SNMPv3 agents in same MVS image 6
OSNMPD.DATA 5
PW.SRC 6
SNMPTRAP.DEST 7

SNMP_COMMUNITY 753
SNMP_COMMUNITY entry 763
SNMPARMS

parameter data sey 772
parameters 773

SNMPD.BOOTS
search order 770
statement syntax 770

SNMPD.CONF
COMMUNITY entry 763
DEFAULT_SECURITY entry 764
entries, coding 754
NOTIFY entry 759
NOTIFY_FILTER entry 760
NOTIFY_FILTER_PROFILE entry 759
sample 767
search order 752
SNMP_COMMUNITY entry 763
statement syntax 753
TARGET_ADDRESS entry 761
TARGET_PARAMETERS entry 762

SNMPD.CONF (continued)
USM_USER entry 755
VACM_ACCESS entry 758
VACM_GROUP entry 756
VACM_VIEW entry 757

SNMPPROC 771
SNMPQE

cataloged procedure (SNMPPROC) 771
MIBDESC.DATA 774
parameters 771
SNMPARMS parameters 773
SNMPARMS sample 772
SNMPPROC 771

SNMPTRAP.DEST
search order 752
statement syntax 752

SNTPD daemon
starting as a procedure 873
starting from z/OS 873

SOCKD statement 588
SOCKDEBUG statement 238
socket close record, UDP 959
SOCKET.H 172
SOCKNOTESTSTOR statement 240
SOCKS configuration statements

DIRECT statement 587
SOCKD statement 588
SOCKSCONFIGFILE 586

SOCKS.CNF
DIRECT statement 587
SOCKD statement 588
SOCKS configuration statements 586

SOCKSCONFIGFILE
DIRECT statement 587
SOCKD statement 588
statements 586

SOCKSCONFIGFILE statement 564
SOCKTESTSTOR statement 239
SOMAXCONN statement 172
sortlist statement 634
SORTLIST statement 241
SOURCEVIPA 110
SP2 DEVICE and LINK statements 55
SPACETYPE statement 565
special characters

BIND 4.9.3-based DNS 599
definitions 604

SPOOLPOLLINTERVAL statement 867
SPREAD statement 566
SQESERV module 771
SQLCOL statement 567
SSL, Telnet 371
SSLTIMEOUT statement 371
standard data format concepts 933
START statement 173
Start/Stop record, TCP/IP 960
STARTDIRECTORY statement 568
STASHFILE keyword 437
statements

; 247
247

Index 1039

statements (continued)
ACCEPT_RIP_ROUTE 278
ACCESSERRORMSGS 458
acl 614
ADMINEMAILADDRESS 459
ALLOWAPPL 383
ALTLINK 310
ALTNJEDOMAIN 824
ALTTCPHOSTNAME 825
ALWAYSWTO 218
ANONYMOUS 460
ANONYMOUSFILEACCESS 462
ANONYMOUSFILETYPEJES 463
ANONYMOUSFILETYPESEQ 464
ANONYMOUSFILETYPESQL 465
ANONYMOUSFTPLOGGING 466
ANONYMOUSHFSDIRMODE 467
ANONYMOUSHFSFILEMODE 468
ANONYMOUSHFSINFO 469
ANONYMOUSLEVEL 470
ANONYMOUSLOGINMSG 473
ANONYMOUSMVSINFO 474
AREA statement 260
ARPAGE 14
AS_BOUNDARY_ROUTING statement 261
ASATRANS 475
ASSORTEDPARMS 15
ATMARPSV 19
ATMLIS 21
ATMPVC 24
ATSIGN 826
AUTOLOG 25
AUTOMOUNT 476
AUTORECALL 477
AUTOTAPEMOUNT 478
BADSPOOLFILEID 827
BANNER 479
BEGINROUTES 28
BEGINVTAM, general rules 379
BINARYLINEMODE statements 337
BLKSIZE 480
BSDROUTINGPARMS 37
BUFFERS 302, 312
BUFNO 481
CCXLATE 482
CHECKSPOOLSIZE 828
CHKPTINT 483
CIPHERSUITE 484
CLIENTAUTH statement 338
CODEPAGE statement 339
common configuration statements for RIP and

OSPF 290
COMMONSEARCH statement 207
COMPARISON statement 263
CONDDISP 485
CONNTYPE statement 340
controls 615
CRLLDAPSERVER statement 341
CTRLCONN 486
DATACLASS 487
DATASETPREFIX 219

statements (continued)
DATATIMEOUT 488
DB2 489
DB2PLAN 490
DBCS 829
DBCSTRACE statements 342
DBCSTRANSFORM statement 343
DCBDSN 491
DCONNTIME 493
DEBUG 494, 789, 832
DEBUG statement 344
DEBUGONSITE 496
DEFAULT_ROUTE 291
DEFAULTAPPL 384
DEFAULTIPNODES statement 208
DEFAULTLUS 386
DEFAULTLUSSPEC 387
DEFAULTPRT 388
DEFAULTPRTSPEC 389
DEFAULTTCPIPDATA statement 209
DELETE 42
DEMAND_CIRCUIT statement 264
DEST 303, 313, 497
DESTIPGROUP 390
DEVICE and LINK 47
DEVICE and LINK, 3745/46 Channel DLC 93
DEVICE and LINK, ATM devices 52
DEVICE and LINK, CLAW devices 55
DEVICE and LINK, CTC devices 60
DEVICE and LINK, HYPERchannel A220

devices 62
DEVICE and LINK, LAN Channel Station and

OSA 65
DEVICE and LINK, MPCIPA devices 71
DEVICE and LINK, MPCIPA HiperSockets

devices 76
DEVICE and LINK, MPCOSA devices 78
DEVICE and LINK, MPCPTP devices 80
DEVICE and LINK, overview 47
DEVICE and LINK, SNA LU 6.2 links 86
DEVICE and LINK, SNA LU0 links 83
DEVICE and LINK, Virtual devices 91
DEVICE and LINK, X.25 NPSI connections 88
DIRECT 587
DIRECTORY 498
DIRECTORYMODE 499
DISABLESGA statements 347
DOMAIN 220
DOMAINORIGIN 221
DROPASSOCPRINTER statement 346
DUMP 500
DUMPONSITE 502
EMAILADDRCHECK 503
ENCODING 504
ENCRYPTION statement 348
EXPRESSLOGON statement 349
EXTENSIONS 505
FAST 314
FILETYPE 507
FILTER 279
FINISHOPEN 833

1040 z/OS V1R4.0 CS: IP Configuration Reference

statements (continued)
FTPKEEPALIVE 508
FTPLOGGING 509
FULLDATATRACE statement 350
GATEWAY 96, 834
GATEWAY_PDS 326
GLOBALCONFIG 104
GLOBALIPNODES statement 210
GLOBALTCPIPDATA statement 211
HFSINFO 510
HNGROUP 391
HOME 107
HOSTNAME 222
IGNORE_RIP_NEIGHBOR 280
INACTIVE 511, 835
INACTIVE statement 351
include 617
INCLUDE 112
Interface 726
INTERFACE 113, 292
INTERFACE, Virtual interface 121
INTERPTCP 392
IPAQENET6 interfaces 114
IPCONFIG 123
IPCONFIG6 135
IPGROUP 393
IPMAILERADDRESS 836
ISPFSTATS 512
ITRACE 139
JESENTRYLIMIT 513
JESINTERFACELEVEL 514
JESLRECL 516
JESPUTGETTO 517
JESRECFM 518
JOBPACING 790
KEEPALIVEOPTIONS 141
KEEPINACTIVE statement 352
KEEPLU statement 353
key 618
KEYRING 519
KEYRING statement 354
LINEMODEAPPL 394
LINK 304, 315
LINK statement for Ethernet Network LCS 66
LINK statement for FDDI LCS 68
LINK statement for Token-Ring Network or PC

Network LCS 67
LINKGROUP 395
LISTENONADDRESS 837
LISTSUBDIR 520
LOADDBCSTABLES 223
LOCALCLASS 838
LOCALFORMAT 839
LOG 840
logging 619
LOGINMSG 521
LogLevel statement 677, 724
LOOKUP 225
LOOPBACK6 interfaces 119
LRECL 522
LUGROUP 396

statements (continued)
LUMAP 397
LUSESSIONPEND statement 355
MAILER 841
MAILFILEDSPREFIX 843
MAILFILEUNIT 844
MAILFILEVOLUME 845
MAXMAILBYTES 846
MAXRECEIVE statement 356
MAXREQSESS statement 357
MAXVTAMSENDQ statement 358
MBDATACONN 523
MESSAGECASE 226
MGMTCLASS 524
MIGRATEVOL 525
MSG07 statement 359
MVSINFO 526
MVSURLKEY 527
NAMESERVER 227
NCPROUTE gateways 326
NETACCESS 143
NJECLASS 847
NJEDOMAIN 848
NJEFORMAT 849
NJENODENAME 850
NOLOG 851
NOSOURCEROUTE 852
NSINTERADDR 228
NSPORTADDR 230
OBEY 791
OLDSOLICITOR statements 360
options 624
OPTIONS 231, 316
order restrictions 12
ORIGINATE_RIP_DEFAULT 281
OSPF_INTERFACE statement 265
OUTBOUNDOPENLIMIT 854
PARMSGROUP 399
PARMSMAP 400
PKTTRACE 146
PolicyAction statement 691
PolicyPerfMonitorForSDR statement 678
PolicyRule statement 704
PORT 152, 401, 855
PORT and SECUREPORT statement 361
PORTCOMMAND 528
PORTCOMMANDIPADDR 529
PORTCOMMANDPORT 530
PORTRANGE 157
POSTMASTER 856
PRIMARY 531
PRIMARYINTERFACE 161
PRTDEFAULTAPPL 402
PRTGROUP 403
PRTINACTIVE statement 362
PRTMAP 404
QUEUESESSION 406
QUOTESOVERRIDE 532
RANGE statement 272
RCPTRESPONSEDELAY 857
RDW 533

Index 1041

statements (continued)
ReadFromDirectory statement 683
RECFM 534
REPLYSECURITYLEVEL 536
resolver setup 205
RESOLVERRETRYINT 858
RESOLVERTIMEOUT 233
RESOLVERUDPRETRIES 234
RESOLVERUSAGE 859
RESOLVEVIA 235
RESTRICT 860
RESTRICTAPPL 407
RETPD 537
RETRYAGE 862
RETRYINT 863
REWRITE822HEADER 864
RIP configuration 277
RIP RECEIVE CONTROL 325
RIP_INTERFACE 282
RIP_SUPPLY_CONTROL 325
RIP2_AUTHENTICATION_KEY 326
ROUTERID statement 273
ROUTESA_CONFIG 294
RSVP 728
rules 13
SACONFIG 163
SBDATACONN 538
SBSUB 540
SBSUBCHAR 541
SCANINTERVAL and TIMEMARK statement 363
SEARCH 236
SECONDARY 542
SECURE 865
SECURE_CTRLCONN 543
SECURE_DATACONN 544
SECURE_FTP 545
SECURE_LOGIN 546
SECURE_PBSZ 548
SECUREPORT statement 364
SEND_ONLY 289
SEQUENTIALLU statement 365
server 636
SERVICE 792
ServiceCategories statement 700
ServicePolicyRules statement 711
SetSubnetPrioTosMask statement 689
SGA statements 366
SIMCLIENTLU statement 367
SINGLEATTN statements 368
SMF 549
SMFAPPE 551
SMFCONFIG 166
SMFDEL 552
SMFEXIT 553
SMFINIT statement 369
SMFJES 554
SMFLOGN 555
SMFPARMS 170
SMFREN 557
SMFRETR 559
SMFSQL 561

statements (continued)
SMFSTOR 562
SMFTERM statement 369
SMSGAUTHLIST 866
SNAEXT statement 370
SNALINK LU6.2 configuration, summary 300
SNMP_AGENT 326
SNMP_COMMUNITY 326
SOCKD 588
SOCKDEBUG 238
SOCKNOTESTSTOR 240
SOCKSCONFIGFILE 564
SOCKTESTSTOR 239
SOMAXCONN 172
sortlist 634
SORTLIST 241
SPACETYPE 565
SPOOLPOLLINTERVAL 867
SPREAD 566
SQLCOL 567
SSLTIMEOUT statement 371
START 173
STARTDIRECTORY 568
STEPLIMIT 802
STOP 175
STORCLASS 569
TCPCONFIG 176
TcpImage 725
TcpImage statement 681
TCPIP.DATA configuration 215
TCPIP.DATA summary 214
TCPIPJOBNAME 243
TCPIPUSERID 244
Telnet mapping statements 379
TELNETDEVICE 372
TEMPERRORRETRIES 868
TESTMODE statement 374
TIMEMARK statement 375
TIMERS 318
TIMEZONE 869
TKOSPECLU statements 376
TKOSPECLURECON statements 376
TLSTIMEOUT 570
TN3270E statement 377
TRACE 305, 319, 571
TRACE RESOLVER 245
TRACE SOCKET 246
TRAILINGBLANKS 572
TRANSLATE 179
TRUNCATE 573
trusted-keys 638
UCOUNT 574
UCSHOSTCS 575
UCSSUB 576
UCSTRUNC 577
UDPCONFIG 182
UMASK 578
UNIT 803
UNITNAME 579
USERGROUP 410
USSTCP 411

1042 z/OS V1R4.0 CS: IP Configuration Reference

statements (continued)
VCOUNT 580
view 639
VIPADYNAMIC 185
VIRTUAL_LINK statement 274
VOLUME 581, 804
VTAM 306, 321
WARNINGAGE 870
WLMCLUSTERNAME 582
WLMCLUSTERNAME statement 378
WRAPRECORD 583
WRTAPEFASTIO 584
X.25 NPSI 309
XLATE 585
zone 642

statements, modifying
ARPAGE statement 14
ASSORTEDPARMS statement 18
ATMARPSV statement 20
ATMLIS statement 22
ATMPVC statement 24
AUTOLOG statement 26
BEGINROUTES statement 33
BSDROUTINGPARMS statement 38
DEVICE and LINK statements 51, 53
DOMAINORIGIN statement 221
GATEWAY statements 100
GLOBALCONFIG statements 105
HOME statements 107
INTERFACE statements 113
IPCONFIG statement 132
IPCONFIG6 statement 138
ITRACE statement 140
KEEPALIVEOPTIONS statement 141
named (v4) 595
NETACCESS statement 144
NSINTERADDR statement 228
NSPORTADDR statement 230
OPTIONS statement 232
PKTTRACE statement 149
PORTRANGE statement 159
PRIMARYINTERFACE statement 161
RESOLVERTIMEOUT statement 233
RESOLVERUDPRETRIES statement 234
RESOLVEVIA statement 235
SACONFIG statement 164
SEARCH statement 236
SMFCONFIG statement 169
SMFPARMS statement 170
SOMAXCONN statement 172
SORTLIST statement 242
TCPCONFIG statement 178
TCPIP.DATA 215
TRACE RESOLVER statement 245
TRANSLATE statement 180
UDPCONFIG statement 183
VIPADISTRIBUTE statement 190

static routes 28
statistics record, interface 963
statistics record, TCP/IP 938
STEPLIMIT statement 802

STOP statement 175
STORCLASS statement 569
subnet masks 98
summary of DEVICE and LINK statements 47
summary of statements in TCPIP.DATA 214
syntax

NCPROUTE gateways statements 326
PROFILE.TCPIP 12
resolver syntax conventions 206
TCPIP.DATA conventions 217

syslog daemon files 671
syslogd

configuration statements 672
destinations 673
facilities 672
facility names 672
files used by 671
priority codes 673
syntax 671

sysplex distributor 185
system parameters for clients 205
system_name considerations 215

T
table setup

INTERPRET 423
Telnet USS 412

tape considerations, FTP 478
TARGET_ADDRESS 753
TARGET_ADDRESS entry 761
TARGET_PARAMETERS 753
TARGET_PARAMETERS entry 762
tasks

customizing a DBCS translation table
steps for 915

TCHINESE 830
TCHINESE, CONVXLAT 917
TCHINESE, LOADDBCSTABLES 224
TCP connection initiation record 935
TCP connection termination record 936
TCP/IP

address space configuration statements,
summary 9

cataloged procedure 193
common identification section, SMF type 119 934
INTERVAL 511
online information xxiii
protocol specifications 1001
stack Start/Stop record 960
statistics record 938
TCPIPROC 193

TCP/IP address space
configuration statements summary 9
specifying parameters 195
using output data sets 195

TCP/IP profile
PROFILE.TCPIP 9
Telnet parameter statements 334

TCPCONFIG statement 176

Index 1043

TCPDATA.DATA
sample TCPIP.DATA data set 248
TCPDATA 248

TcpImage statement 681, 725
TCPIP

; 213
213
COMMONSEARCH 207
DEFAULTIPNODES 208
DEFAULTTCPIPDATA 209
GLOBALIPNODES 210
GLOBALTCPIPDATA 211

TCPIP keyword 437
TCPIP.DATA

; 247
247
ALWAYSWTO 218
BIG5 223
configuration statements 215
DATASETPREFIX 219
DNS 225
DOMAIN 220
DOMAINORIGIN 221
dynamically changing statements 215
EUCKANJI 223
HANGEUL 223
HOSTNAME 222
JIS78KJ 223
JIS83KJ 223
KSC5601 223
LOADDBCSTABLES 223
LOCAL 225
LOOKUP 225
MESSAGECASE 226
modifying statements 215
NAMESERVER 227
NSINTERADDR 228
NSPORTADDR 230
OPTIONS 231
refreshable statements 216, 217
RESOLVERTIMEOUT 233
RESOLVERUDPRETRIES 234
RESOLVEVIA 235
SCHINESE 224
SEARCH 236
SJISKANJI 224
SOCKDEBUG 238
SOCKNOTESTSTOR 240
SOCKTESTSTOR 239
SORTLIST 241
summary of statements in 214
syntax conventions 217
system_name considerations 215
TCHINESE 224
TCPIPJOBNAME 243
TCPIPUSERID 244
TRACE RESOLVER 245
TRACE SOCKET 246

TCPIPJOBNAME statement 243
TCPIPROC

address space parameters, specifying 195

TCPIPROC (continued)
output data sets 195
TCP/IP cataloged procedure 193

TCPIPUSERID statement 244
TCPIPX25 (X25PROC) 307
Telnet

3270 DBCS transform mode codefiles 915
3270 DBCS transform support 911
accounting 922
ALLOWAPPL statement 383
BEGINVTAM block 333, 379
BEGINVTAM rules 379
Big-5 and Traditional Chinese 919
BINARYLINEMODE statements 337
client identifier specification 382
client identifier types and definitions 381
CLIENTAUTH statement 338
CODEPAGE statement 339
CONNTYPE statement 340
CRLLDAPSERVER statement 341
DBCSTRACE statements 342
DBCSTRANSFORM statement 343
DEBUG statement 344
default table variable substitution 417
DEFAULTAPPL statement 384
DEFAULTLUS statement 386
DEFAULTLUSSPEC statement 387
DEFAULTPRT statement 388
DEFAULTPRTSPEC statement 389
DESTIPGROUP statement 390
device type and logmode table 372
DISABLESGA statements 347
DROPASSOCPRINTER statement 346
ENCRYPTION statement 348
ENDINTAB macroinstruction 429
EXPRESSLOGON statement 349
FULLDATATRACE statement 350
HNGROUP statement 391
host name specification 382
INACTIVE statement 351
INTAB macroinstruction 424
INTERPRET macroinstruction, rules 423
INTERPRET table setup 423
INTERPTCP statement 392
IPGROUP statement 393
Japanese SBCS and DBCS Codefile 919
KEEPINACTIVE statement 352
KEEPLU statement 353
KEYRING statement 354
LINEMODEAPPL statement 394
LINKGROUP statement 395
LOGCHAR macroinstruction 425
logon interpret routine parameter list 428
logon-interpret routines, requirements 427
LU exit routines, operation 430
LU exit setup 430
LU name specification, rules 380
LUGROUP statement 396
LUMAP statement 397
LUSESSIONPEND statement 355
mapping statements 379

1044 z/OS V1R4.0 CS: IP Configuration Reference

Telnet (continued)
MAXRECEIVE statement 356
MAXREQSESS statement 357
MAXVTAMSENDQ statement 358
MSG07 statement 359
OLDSOLICITOR statements 360
overview 333
parameter statements, rules 335
parameter statements, TCP/IP profile 334
PARMSGROUP object statements 333
PARMSGROUP statement 399
PARMSMAP statement 400
PORT and SECUREPORT statement 361
PORT statement 401
profile statements, overview 333
PRTDEFAULTAPPL statement 402
PRTGROUP statement 403
PRTINACTIVE statement 362
PRTMAP statement 404
QUEUESESSION statement 406
RESTRICTAPPL statement 407
rules for parameter statements 335
rules for USS macroinstructions 412
SBCS, French Telnet client 918
SCANINTERVAL and TIMEMARK statement 363
SECUREPORT statement 364
security parameters, rules 336
SEQUENTIALLU statement 365
SGA statements 366
SIMCLIENTLU statement 367
SINGLEATTN statements 368
SMF record layout 922
SMF Type 119 records 931
SMFINIT statement 369
SMFTERM statement 369
SNAEXT statement 370
SSL 371
SSLTIMEOUT statement 371
table setup 412
TELNETDEVICE statement 372
TELNETGLOBALS statements (block) 333
TELNETPARMS statements (block) 333
TESTMODE statement 374
TIMEMARK statement 375
TKOSPECLU/NoTKO statements 376
TKOSPECLURECON/NoTKO statements 376
TN3270 server SNA session initiation record 944
TN3270 server SNA session termination record 945
TN3270E statement 377
translation considerations 907, 908
translation table members 910
TSO Telnet client connection initiation record 948
TSO Telnet client connection termination record 949
USERGROUP statement 410
USS message layout in storage 415
USSCMD macroinstruction 413
USSEND macroinstruction 422
USSMSG macroinstruction 415
USSPARM macroinstruction 419
USSTAB macroinstruction 421
USSTCP statement 411

Telnet (continued)
variables substituted for USSMSG 416
WLMCLUSTERNAME statement 378

Telnet SSL 338, 348
TELNETDEVICE statement 372
TELNETGLOBALS statements (block) 333
TELNETPARMS statement

TELNETDEVICE 372
TELNETPARMS statements (block) 333
TEMPERRORRETRIES statement 868
test configuration port assignments 197
TESTMODE statement 374
TFTP 591
TIMED daemon

starting as a procedure 871
starting from z/OS 871

TIMEMARK statement 375
TIMERS statement 318
TIMEZONE statement 869
TKOSPECLU statement 376
TKOSPECLURECON statements 376
TLSTIMEOUT statement 570
TN3270 server SNA session initiation record 944
TN3270 server SNA session termination record 945
TN3270E statement 377
token-ring

bridge 68
hosts 179
LCS LINK statement 67

TRACE RESOLVER statement 245
TRACE SOCKET statement 246
TRACE statement

FTP 571
SNA LU6.2 305
X.25 NPSI 319

trademark information 1020
Traditional Chinese, and Big-5 919
Traffic regulation manager daemon (TRMD), see also

TRMD 719
TRAILINGBLANKS statement 572
transfer completion record, FTP client 956
transfer completion record, FTP server 951
transform module TNDBCSTM 343
TRANSLATE statement 179
translation considerations

ASATRANS statement 475
CCXLATE statement 482
CTRLCONN statement 486
SBDATACONN statement 538
UCSHOSTCS statement 575
UCSSUB statement 576
UCSTRUNC statement 577
XLATE statement 585

translation tables
ASCII and EBCDIC code points 912
Big-5 and Traditional Chinese 919
converting to binary 917
CONVXLAT examples 918
country/region tables 910
customizing DBCS 915
customizing SBCS 909

Index 1045

translation tables (continued)
DBCS country/region 916
DBCS syntax rules 916
DBCS table hierarchy 912, 914
DBCS, converting to binary 917
French Telnet client, SBCS 918
IBM PC Interpretations 912
ISO-8 912
Japanese SBCS (CP 1041) and DBCS 919
Japanese SBCS and DBCS Codefile 919
Korean KSC5601 SBCS and DBCS 919
loading 223
members for DBCS applications 916
members for Telnet 3270 DBCS transform

support 911
members for Telnet Client and Non-Telnet SBCS

applications 910
SBCS 907
SBCS binary table 918
SBCS, French Telnet client 918
syntax rules 910
Telnet 3270 DBCS transform mode codefiles 915
using 907

TRAPFWD daemon
examples 783
parameters 781
starting from an MVS console 780
starting from the UNIX shell 782
TRAPFWD.CONF syntax 782

TRAPFWD.CONF
examples 783
search order 782
syntax 782

trivial file transfer protocol 591
TRMD

command 719
starting as a started task 719
starting from the z/OS shell 719

TRUNCATE statement 573
trusted-keys statement 638
TSO Telnet client connection initiation record 948
TSO Telnet client connection termination record 949
TTLS, setting 654
tuning options 628
Type 119 records 931

U
UCOUNT statement 574
UCSHOSTCS statement 575
UCSSUB statement 576
UCSTRUNC statement 577, 578
UDP

protocol 157
queue limit 16
socket close record 959
TCP/IP statistics record 938

UDPCONFIG statement 182
UNIT statement 803
UNITNAME statement 579
UNIX PORTMAP 807

UNIX system services Policy Agent (PAGENT)
see PAGENT 675

usage chart, SOURCEVIPA 110
user exits settings, SMTP 819
user exits, FTP

FTCHKCMD 443
FTCHKIP 447
FTCHKJES 449
FTCHKPWD 448
FTPOSTPR 445
overview 443
SMF 450

user interface
ISPF 1015
TSO/E 1015

USERGROUP statement 410
USM_GROUP 753
USM_USER entry 755
USS macroinstructions, Telnet

default table variable substitution 417
rules 412
USSCMD 413
USSEND 422
USSMSG 415
USSMSG, variables substituted 416
USSPARM 419
USSTAB 421

USS message layout in storage 415
USSCMD macroinstruction 413
USSEND macroinstruction 422
USSMSG macroinstruction 415
USSPARM macroinstruction 419
USSTAB macroinstruction 421
USSTCP statement 411

V
V3CIPHER keyword 438
v9 name server cataloged procedure (NAMED9) 605
VACM_ACCESS 753
VACM_ACCESS entry 758
VACM_GROUP 753
VACM_GROUP entry 756
VACM_VIEW 753
VACM_VIEW entry 757
VCOUNT statement 580
view statement 639
VIPADYNAMIC statement 185
virtual devices

DEVICE and LINK statement 91
example of BSDROUTINGPARMS definitions 39

virtual interfaces 121
virtual IP address support (VIPA)

configuration example 110
on HOME statement 108

VIRTUAL_LINK statement 274, 277
VOLUME statement

FTP 581
LPD 804

VTAM configuration relationship, DEVICE and LINK
statements 50

1046 z/OS V1R4.0 CS: IP Configuration Reference

VTAM ISTLSXCF major node 80
VTAM statement

SNALINK LU6.2 306
X.25 NPSI 321

VTAM, online information xxiii

W
WARNINGAGE statement 870
WLM considerations 582
WLMCLUSTERNAME statement 378, 582
WRAPRECORD statement 583
WRTAPEFASTIO statement 584

X
X.25 NPSI

ALTLINK statement 310
BUFFERS statement 312
cataloged procedure (X25PROC) 307
configuration statements, summary 309
configuration statements, syntax 309
DEST statement 313
FAST statement 314
LINK statement 315
OPTIONS statement 316
sample configuration data set 307
statement syntax 309
TCPIPX25 (X25PROC) 307
TIMERS statement 318
TRACE statement 319
VTAM statement 321
X25PROC 307

X.25 NPSI connections 88
X25CONF 307
X25PROC 307
XLATE statement 585

Z
z/OS Remote Execution server

orexecd 880
orshd 880
UNIX System Services REXECD Command 880
UNIX System Services RSHD Command 880

z/OS, documentation library listing xxv
z/OS, listing of documentation available 1011
zone file

$GENERATE directive 656
$INCLUDE directive 655
$ORIGIN directive 655
$TTL directive 655
BIND master file extension 656
directives 655
inverse mapping 654
MX records 653
PTR records 654
RDATA 651
resource records, components 650
resource records, overview 650
resource records, usage 650

zone file (continued)
RR example 653
RRs as a message 653
textual expression of RRs 652
TTLS, setting 654
valid RRs 650

zone statement 642

Index 1047

1048 z/OS V1R4.0 CS: IP Configuration Reference

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. However, the comments you
send should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by mail, use the RCF at the back of this
document.

v If you prefer to send comments by FAX, use this number: 1-800-254-0206

v If you prefer to send comments electronically, use this network ID:
usib2hpd@vnet.ibm.com

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2002 1049

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|

|

1050 z/OS V1R4.0 CS: IP Configuration Reference

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IP Configuration Reference
Version 1 Release 4

Publication No. SC31-8776-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8776-03

SC31-8776-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01 and 5655–G52

Printed in U.S.A.

SC31-8776-03

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

4.
0

C
S:

IP
Co

nf
ig

ur
at

io
n

R
ef

er
en

ce
Ve

rs
io

n
1

R
el

ea
se

4

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Where to find related information on the Internet
	DNS web sites

	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	How to contact IBM service
	z/OS Communications Server information
	Softcopy information
	z/OS Communications Server library
	Redbooks
	Related information
	Determining if a publication is current

	Summary of changes
	Part 1. Base TCP/IP system
	Chapter 1. Configuration data sets
	Summary of configuration data sets
	

	Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements
	Summary of TCP/IP address space configuration statements
	PROFILE.TCPIP search order
	Statement syntax
	ARPAGE statement
	ASSORTEDPARMS statement
	ATMARPSV statement
	ATMLIS statement
	ATMPVC statement
	AUTOLOG statement
	BEGINROUTES statement
	BSDROUTINGPARMS statement
	DELETE statement
	DEVICE and LINK statements
	DEVICE and LINK statement—ATM devices
	DEVICE and LINK statement—CLAW devices
	DEVICE and LINK statement—CTC devices
	DEVICE and LINK statement—HYPERchannel A220 devices
	DEVICE and LINK statement—LAN Channel Station and OSA devices
	DEVICE and LINK statement—MPCIPA devices
	DEVICE and LINK statement—MPCIPA HiperSockets devices
	DEVICE and LINK statement—MPCOSA devices
	DEVICE and LINK statement—MPCPTP devices
	DEVICE and LINK statement—SNA LU0 links
	DEVICE and LINK statement—SNA LU 6.2 links
	DEVICE and LINK statement—X.25 NPSI connections
	DEVICE and LINK statement—VIRTUAL devices
	DEVICE and LINK statement—3745/46 channel DLC devices
	GATEWAY statement
	GLOBALCONFIG statement
	HOME statement
	INCLUDE statement
	INTERFACE statements
	INTERFACE statement—IPAQENET6 interfaces
	INTERFACE statement—LOOPBACK6 interface
	INTERFACE statement—VIRTUAL6 interfaces
	IPCONFIG statement
	IPCONFIG6 statement
	ITRACE statement
	KEEPALIVEOPTIONS statement
	NETACCESS statement
	PKTTRACE statement
	PORT statement
	PORTRANGE statement
	PRIMARYINTERFACE statement
	SACONFIG statement
	SMFCONFIG statement
	SMFPARMS statement
	SOMAXCONN statement
	START statement
	STOP statement
	TCPCONFIG statement
	TRANSLATE statement
	UDPCONFIG statement
	VIPADYNAMIC statement

	Chapter 3. TCP/IP cataloged procedure (TCPIPROC)
	TCP/IP cataloged procedure (TCPIPROC)
	Using output data sets
	Specifying TCP/IP address space parameters

	Chapter 4. Protocol number and port assignments
	Protocol assignments
	Port assignments
	PROFILE.TCPIP port assignments
	/etc/services and ETC.SERVICES port assignments

	Chapter 5. TCPIP.DATA configuration statements
	Resolver setup statements
	Resolver setup statement information
	Syntax conventions

	COMMONSEARCH/NOCOMMONSEARCH statement
	DEFAULTIPNODES statement
	DEFAULTTCPIPDATA statement
	GLOBALIPNODES statement
	GLOBALTCPIPDATA statement
	; and # Statements

	Summary of statements in TCPIP.DATA
	TCPIP.DATA configuration statements
	system_name considerations
	Dynamically changing TCPIP.DATA statements
	Syntax conventions
	ALWAYSWTO statement
	DATASETPREFIX statement
	DOMAIN statement
	DOMAINORIGIN statement
	HOSTNAME statement
	LOADDBCSTABLES statement
	LOOKUP statement
	MESSAGECASE statement
	NAMESERVER statement
	NSINTERADDR statement
	NSPORTADDR statement
	OPTIONS statement
	RESOLVERTIMEOUT statement
	RESOLVERUDPRETRIES statement
	RESOLVEVIA statement
	SEARCH statement
	SOCKDEBUG statement
	SOCKTESTSTOR statement
	SOCKNOTESTSTOR statement
	SORTLIST statement
	TCPIPJOBNAME statement
	TCPIPUSERID statement
	TRACE RESOLVER statement
	TRACE SOCKET statement
	; and # Statements

	Sample TCPIP.DATA data set (TCPDATA)

	Part 2. Server applications
	Chapter 6. OMPROUTE
	OMPROUTE cataloged procedure (optional)
	Starting OMPROUTE using UNIX system services
	OMPROUTE parameters

	OMPROUTE environment variables
	OMPROUTE configuration file
	OSPF configuration statements
	AREA statement
	AS_BOUNDARY_ROUTING statement
	COMPARISON statement
	DEMAND_CIRCUIT statement
	OSPF_INTERFACE statement
	RANGE statement
	ROUTERID statement
	VIRTUAL_LINK statement

	RIP configuration statements
	ACCEPT_RIP_ROUTE statement
	FILTER statement
	IGNORE_RIP_NEIGHBOR statement
	ORIGINATE_RIP_DEFAULT statement
	RIP_INTERFACE statement
	SEND_ONLY statement

	Common configuration statements for RIP and OSPF
	DEFAULT_ROUTE statement
	INTERFACE statement
	ROUTESA_CONFIG statement

	Chapter 7. SNALINK
	SNALINK cataloged procedure (SNALPROC)
	SNALINK parameters

	Chapter 8. SNALINK LU6.2
	SNALINK LU6.2 cataloged procedure (LU62PROC)
	Sample SNALINK LU6.2 configuration data set (LU62CFG)
	Summary of SNALINK LU6.2 configuration statements
	SNALINK LU6.2 configuration statements
	Statement syntax
	Statement ordering
	BUFFERS statement
	DEST statement
	LINK statement
	TRACE statement
	VTAM statement

	Chapter 9. X.25 NPSI
	X.25 NPSI cataloged procedure (X25PROC)
	Sample X.25 NPSI server configuration data set (X25CONF)
	Summary of X.25 NPSI server configuration statements
	X.25 NPSI server configuration statements
	Statement syntax
	ALTLINK statement
	BUFFERS statement
	DEST statement
	FAST statement
	LINK statement
	OPTIONS statement
	TIMERS statement
	TRACE statement
	VTAM statement

	Chapter 10. NCPROUTE server
	NCPROUTE cataloged procedure (NCPROUT)
	Specifying the NCPROUTE parameters
	NCPROUTE profile data set
	NCPROUTE gateways statements
	Syntax rules

	Chapter 11. TN3270 Telnet Server
	Overview of Telnet profile statements
	TELNETGLOBALS statements
	TELNETPARMS statements
	PARMSGROUP statements
	BEGINVTAM block

	Telnet parameter statements in the TCP/IP profile
	General rules for parameter statements
	Rules for security parameters

	BINARYLINEMODE statements
	CLIENTAUTH statement
	CODEPAGE statement
	CONNTYPE statement
	CRLLDAPSERVER statement
	DBCSTRACE statements
	DBCSTRANSFORM statements
	DEBUG statement
	DROPASSOCPRINTER statement
	DISABLESGA statement
	ENCRYPTION statement
	EXPRESSLOGON statements
	FULLDATATRACE statements
	INACTIVE statement
	KEEPINACTIVE statement
	KEEPLU statements
	KEYRING statement
	LUSESSIONPEND statements
	MAXRECEIVE statement
	MAXREQSESS statement
	MAXVTAMSENDQ statement
	MSG07 statement
	OLDSOLICITOR statements
	PORT and SECUREPORT statements
	PRTINACTIVE statement
	SCANINTERVAL and TIMEMARK statements
	SECUREPORT statement
	SEQUENTIALLU statements
	SGA statements
	SIMCLIENTLU statements
	SINGLEATTN statements
	SMFINIT and SMFTERM statements
	SNAEXT statements
	SSLTIMEOUT statement
	TELNETDEVICE statement
	TESTMODE statement
	TIMEMARK statement
	TKOSPECLU and TKOSPECLURECON statements
	TN3270E statements
	WLMCLUSTERNAME statement

	Telnet mapping statements in the TCP/IP profile
	General rules for BEGINVTAM statements
	Rules for LU name specification
	Client identifier types and definitions
	Rules for client identifier specification
	Rules for host name specification

	ALLOWAPPL statement
	DEFAULTAPPL statement
	DEFAULTLUS statement
	DEFAULTLUSSPEC statement
	DEFAULTPRT statement
	DEFAULTPRTSPEC statement
	DESTIPGROUP statement
	HNGROUP statement
	INTERPTCP statement
	IPGROUP statement
	LINEMODEAPPL statement
	LINKGROUP statement
	LUGROUP statement
	LUMAP statement
	PARMSGROUP statement
	PARMSMAP statement
	PORT statement
	PRTDEFAULTAPPL statement
	PRTGROUP statement
	PRTMAP statement
	QUEUESESSION statement
	RESTRICTAPPL statement
	TELNETDEVICE statement
	USERGROUP statement
	USSTCP statement

	Telnet USS table setup
	General usage rules for Telnet USS macroinstructions
	USSCMD macroinstruction
	USSMSG macroinstruction
	USSPARM macroinstruction
	USSTAB macroinstruction
	USSEND macroinstruction

	Telnet INTERPRET table setup
	General usage rules for Telnet INTERPRET macroinstructions
	INTAB macroinstruction
	LOGCHAR macroinstruction
	ENDINTAB macroinstruction

	Telnet LU exit setup
	Operation
	Requirements for LU exit routines
	Contents of registers at entry
	Contents of registers at exit

	LU exit routine parameter list

	Chapter 12. EXPRESS LOGON using DCAS (Digital Certificate Access Server)
	Starting DCAS
	Express Logon sample procedure (EZADCASP)
	PassTicket server configuration file processing
	DCAS configuration file keywords and parameters
	CLIENTAUTH keyword
	IPADDR keyword
	KEYRING keyword
	LDAPPORT keyword
	LDAPSERVER keyword
	PORT keyword
	SAFKEYRING keyword
	STASHFILE keyword
	TCPIP keyword
	V3CIPHER keyword

	Chapter 13. File Transfer Protocol (FTP)
	FTP server cataloged procedure (FTPD)
	FTPD parameters
	FTP configuration statements in FTP.DATA
	FTP server user exits
	The FTCHKCMD user exit
	The FTPOSTPR user exit
	The FTCHKIP user exit
	The FTCHKPWD user exit
	The FTCHKJES user exit
	FTP server SMF user exit

	Summary of FTP server configuration statements

	FTP.DATA data set statements
	ACCESSERRORMSGS statement
	ADMINEMAILADDRESS statement
	ANONYMOUS statement
	ANONYMOUSFILEACCESS statement
	ANONYMOUSFILETYPEJES statement
	ANONYMOUSFILETYPESEQ statement
	ANONYMOUSFILETYPESQL statement
	ANONYMOUSFTPLOGGING statement
	ANONYMOUSHFSDIRMODE statement
	ANONYMOUSHFSFILEMODE statement
	ANONYMOUSHFSINFO statement
	ANONYMOUSLEVEL statement
	ANONYMOUSLOGINMSG statement
	ANONYMOUSMVSINFO statement
	ASATRANS statement
	AUTOMOUNT statement
	AUTORECALL statement
	AUTOTAPEMOUNT statement
	BANNER statement
	BLKSIZE statement
	BUFNO statement
	CCXLATE statement
	CHKPTINT statement
	CIPHERSUITE statement
	CONDDISP statement
	CTRLCONN statement
	DATACLASS statement
	DATATIMEOUT statement
	DB2 statement
	DB2PLAN statement
	DCBDSN statement
	DCONNTIME statement
	DEBUG statement
	DEBUGONSITE statement
	DEST statement
	DIRECTORY statement
	DIRECTORYMODE statement
	DUMP statement
	DUMPONSITE statement
	EMAILADDRCHECK statement
	ENCODING statement
	EXTENSIONS statement
	FILETYPE statement
	FTPKEEPALIVE statement
	FTPLOGGING statement
	HFSINFO statement
	INACTIVE statement
	ISPFSTATS statement
	JESENTRYLIMIT statement
	JESINTERFACELEVEL statement
	JESLRECL statement
	JESPUTGETTO statement
	JESRECFM statement
	KEYRING statement
	LISTSUBDIR statement
	LOGINMSG statement
	LRECL statement
	MBDATACONN statement
	MGMTCLASS statement
	MIGRATEVOL statement
	MVSINFO statement
	MVSURLKEY statement
	PORTCOMMAND statement
	PORTCOMMANDIPADDR statement
	PORTCOMMANDPORT statement
	PRIMARY statement
	QUOTESOVERRIDE statement
	RDW statement
	RECFM statement
	REPLYSECURITYLEVEL statement
	RETPD statement
	SBDATACONN statement
	SBSUB statement
	SBSUBCHAR statement
	SECONDARY statement
	SECURE_CTRLCONN statement
	SECURE_DATACONN statement
	SECURE_FTP statement
	SECURE_LOGIN statement
	SECURE_PBSZ statement
	SMF statement
	SMFAPPE statement
	SMFDEL statement
	SMFEXIT statement
	SMFJES statement
	SMFLOGN statement
	SMFREN statement
	SMFRETR statement
	SMFSQL statement
	SMFSTOR statement
	SOCKSCONFIGFILE statement
	SPACETYPE statement
	SPREAD statement
	SQLCOL statement
	STARTDIRECTORY statement
	STORCLASS statement
	TLSTIMEOUT statement
	TRACE statement
	TRAILINGBLANKS statement
	TRUNCATE statement
	UCOUNT statement
	UCSHOSTCS statement
	UCSSUB statement
	UCSTRUNC statement
	UMASK statement
	UNITNAME statement
	VCOUNT statement
	VOLUME statement
	WLMCLUSTERNAME statement
	WRAPRECORD statement
	WRTAPEFASTIO statement
	XLATE statement
	SOCKS configuration statements in SOCKSCONFIGFILE
	DIRECT statement
	SOCKD statement

	FTP code page conversion
	Code page conversions for the control connection
	Priority

	Code page conversions for the data connection
	Priority

	Chapter 14. Trivial file transfer protocol (TFTP)
	Chapter 15. BIND 4.9.3-based domain name system (DNS)
	The named daemon
	Boot file directives
	Domain data files
	Control entries, resource records, and special characters
	Control entries
	Resource records
	Special characters

	Chapter 16. BIND 9-based domain name system (DNS)
	v9 Name server cataloged procedure (NAMED9)
	Starting BIND 9-based DNS server from the UNIX shell
	Configuration file concepts
	Address match lists
	Comment syntax

	Configuration file statements
	acl statement
	controls statement
	include statement
	key statement
	logging statement
	options statement
	sortlist statement
	server statement
	trusted-keys statement
	view statement
	zone statement
	Dynamic update policies
	Zone file
	Types of resource records and when to use them
	Resource records (RRs)
	Textual expression of RRs

	MX records
	Setting TTLs
	Inverse mapping
	Other zone file directives
	The $ORIGIN directive
	The $INCLUDE directive
	The $TTL directive

	BIND master file extension: The $GENERATE directive

	RNDC configuration file

	Chapter 17. Dynamic Host Configuration Protocol (DHCP)
	Configuration file option data formats
	Base options
	DHCP load balancing options
	IBM-specific options

	Chapter 18. Syslog daemon
	Syslog daemon files
	Syntax for syslogd
	Configuration statements
	Facility names
	Facilities used by z/OS Communications Server
	Priority codes
	Destinations

	Chapter 19. z/OS UNIX system services Policy Agent and SLA subagent
	The Policy configuration file
	LogLevel statement
	PolicyPerfMonitorForSDR statement
	TcpImage statement
	ReadFromDirectory statement
	SetSubnetPrioTosMask statement
	PolicyAction statement
	ServiceCategories statement
	PolicyRule statement
	ServicePolicyRules statement

	PAGENT search order
	Starting PAGENT from the z/OS shell
	Starting PAGENT as a started task
	Starting the SLA subagent from the z/OS shell
	Starting the SLA subagent as a started task
	Starting the traffic regulation manager daemon (TRMD) from the z/OS shell
	Starting the traffic regulation manager daemon (TRMD) as a started task

	Chapter 20. RSVP agent
	RSVP configuration file
	LogLevel statement
	TcpImage statement
	Interface statement
	RSVP statement

	RSVPD.CONF search order
	Starting RSVP from the z/OS shell
	Starting RSVP as a started task

	Chapter 21. Intrusion Detection Services (IDS) policy
	Chapter 22. Simple Network Management Protocol (SNMP)
	OSNMPD procedure
	SNMP agent (OSNMPD)
	Starting OSNMPD from the z/OS UNIX System Services shell
	OSNMPD parameters
	OSNMPD.DATA statement syntax
	OSNMPD.DATA search order
	OSNMPD.DATA example
	PW.SRC statement syntax
	PW.SRC search order
	SNMPTRAP.DEST statement syntax
	SNMPTRAP.DEST search order
	SNMPD.CONF search order
	SNMPD.CONF statement syntax
	Coding the SNMPD.CONF entries
	SNMPD.CONF sample
	SNMPD.BOOTS statement syntax
	SNMPD.BOOTS search order

	SNMP query engine (SNMPQE)
	SNMP query engine cataloged procedure (SNMPPROC)
	Specifying the SNMPQE parameters
	SNMP parameter data set (SNMPARMS) sample
	Specifying the SNMPARMS parameters

	MIBDESC.DATA
	MIBDESC.DATA search order

	osnmp
	OSNMP.CONF statement syntax
	OSNMP.CONF search order
	OSNMP.CONF sample
	MIBS.DATA statement syntax
	MIBS.DATA search order

	TRAPFWD daemon
	Starting TRAPFWD from an MVS console
	Specifying TRAPFWD parameters
	Starting TRAPFWD from the UNIX shell
	TRAPFWD.CONF syntax
	TRAPFWD.CONF search order
	TRAPFWD examples

	Chapter 23. Remote print server (LPD)
	LPD server cataloged procedure (LPSPROC)
	Sample LPD server configuration data set (LPDDATA)
	Specifying LPD server parameters
	Summary of LPD server configuration statements
	Statements for the LPD server configuration data set
	Syntax rules
	DEBUG statement
	JOBPACING statement
	OBEY statement
	SERVICE statement
	STEPLIMIT statement
	UNIT statement
	VOLUME statement

	Chapter 24. PORTMAP
	PORTMAP cataloged procedure (PORTPROC)

	Chapter 25. UNIX PORTMAP
	UNIX PORTMAP cataloged procedure (OPORTRPC)

	Chapter 26. NCS Interface
	NRGLBD cataloged procedure (NRGLBD)
	LLBD cataloged procedure (LLBD)

	Chapter 27. Network database (NDB) system
	NDB setup cataloged procedure (NDBSETUP)
	PORTS cataloged procedure (PORTSPRC)
	PORTC cataloged procedure (PORTCPRC)

	Chapter 28. SMTP server
	SMTP cataloged procedure (SMTPPROC)
	
	Summary of SMTP configuration statements

	SMTP server exits
	SMTP configuration data set statements
	ALTNJEDOMAIN statement
	ALTTCPHOSTNAME statement
	ATSIGN statement
	BADSPOOLFILEID statement
	CHECKSPOOLSIZE statement
	DBCS statement
	DEBUG statement
	FINISHOPEN statement
	GATEWAY statement
	INACTIVE statement
	IPMAILERADDRESS statement
	LISTENONADDRESS statement
	LOCALCLASS statement
	LOCALFORMAT statement
	LOG statement
	MAILER statement
	MAILFILEDSPREFIX statement
	MAILFILEUNIT statement
	MAILFILEVOLUME statement
	MAXMAILBYTES statement
	NJECLASS statement
	NJEDOMAIN statement
	NJEFORMAT statement
	NJENODENAME statement
	NOLOG statement
	NOSOURCEROUTE statement
	OUTBOUNDOPENLIMIT statement
	PORT statement
	POSTMASTER statement
	RCPTRESPONSEDELAY statement
	RESOLVERRETRYINT statement
	RESOLVERUSAGE statement
	RESTRICT statement
	RETRYAGE statement
	RETRYINT statement
	REWRITE822HEADER statement
	SECURE statement
	SMSGAUTHLIST statement
	SPOOLPOLLINTERVAL statement
	TEMPERRORRETRIES statement
	TIMEZONE statement
	WARNINGAGE statement

	Chapter 29. TIMED daemon
	Starting TIMED from z/OS
	Starting TIMED as a procedure

	Chapter 30. SNTP daemon
	Starting SNTPD from z/OS
	Starting SNTPD as a procedure

	Chapter 31. Remote execution server
	Remote execution server cataloged procedure (RXPROC)
	Remote execution server parameters

	RXUEXIT user exit sample
	z/OS remote execution server
	z/OS UNIX System Services REXECD command (orexecd)
	z/OS UNIX System Services RSHD command (orshd)

	Chapter 32. Miscellaneous (MISC) server
	Miscellaneous (MISC) server cataloged procedure (MISCSERV)
	Specifying the MISC server parameters

	Part 3. Appendixes
	Appendix A. OROUTED server
	OROUTED cataloged procedure
	Starting OROUTED from the z/OS shell
	OROUTED parameters
	OROUTED profile
	Gateways file or data set syntax rules
	OROUTED to OMPROUTE migration

	Appendix B. Using translation tables
	SBCS translation table hierarchy
	Customizing SBCS translation tables
	ASCII-to-EBCDIC table
	EBCDIC-to-ASCII table

	Syntax rules for SBCS translation tables

	SBCS country/region translation tables
	ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points

	DBCS translation table hierarchy
	Usage notes for the TRANSLATE option for the FTP client
	Telnet 3270 DBCS transform mode codefiles
	Customizing DBCS translation tables
	Steps to customize a DBCS translation table:

	DBCS country/region translation tables
	Syntax rules for DBCS translation tables

	Converting translation tables to binary
	CONVXLAT examples

	Appendix C. SMF type 118 records
	Standard subtype record numbers
	Telnet server SMF record layout
	FTP server type 118 SMF record layout
	SMF record layout for API calls
	SMF record layout for FTP client calls
	SMF record layout for Telnet client calls
	SMF record layout for TCPIPSTATISTICS
	SMF record 109 layout

	Appendix D. SMF type 119 records
	Common SMF type 119 record format
	SMF 119 record subtypes
	Standard data format concepts
	Common TCP/IP identification section
	TCP connection initiation record
	TCP connection termination record
	TCP/IP statistics record
	TN3270 server SNA session initiation record
	TN3270 server SNA session termination record
	TSO Telnet client connection initiation record
	TSO Telnet client connection termination record
	FTP server transfer completion record
	FTP server logon failure record
	FTP client transfer completion record
	UDP socket close record
	TCP/IP stack start/stop record
	Server port statistics record
	Interface statistics record

	Appendix E. LDAPv2 schema 2 definition files
	PAGENTAT sample
	PAGENTOC sample

	Appendix F. How to read a syntax diagram
	Symbols and punctuation
	Parameters
	Syntax examples
	Longer than one line
	Required operands
	Choose one required item from a stack
	Optional values
	Choose one optional operand from a stack
	Repeating an operand
	Selecting more than one operand
	Nonalphanumeric characters
	Blank spaces in syntax diagrams
	Default operands
	Variables
	Syntax fragments

	Appendix G. Related protocol specifications (RFCs)
	Draft RFCs

	Appendix H. Information APARs
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix I. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	Communicating Your Comments to IBM
	Readers’ Comments — We'd Like to Hear from You

